Me 149

ACTA
POLY TECHNICA
SCANDINAVICA

MECHANICAL ENGINEERING SERIES No. 149

Developments in Turbulence Modelling with
Reynolds-Averaged Navier-Stokes Equations

PATRIK RAUTAHEIMO

Helsinki University of Technology
Department of Mechanical Engineering
Laboratory of Applied Thermodynamics
FIN-02015 HUT

Finland

Dissertation for the degree of Doctor of Science in Technology to be presented
with due permission of the Department of Mechanical Engineering, for public ex-
amination and debate in Auditorium K216 at Helsinki University of Technology
(Espoo, Finland) on the 27th of April, 2001, at 12 noon.

ESPOO 2001




Rautaheimo, Patrik P. R., Developments in Turbulence Modelling with
Reynolds-Averaged Navier—Stokes Equations. Acta Polytechnica Scandinavica,
Mechanical Engineering Series No. 149, Espoo 2001, 65 pages. Published by the
Finnish Academies of Technology, ISBN 951-666—-569—-1, ISSN 0001-687X, UDC
533.6.013.

Keywords: Turbulence modelling, Reynolds-stress model, finite volume method,
parallel computing.

Abstract

The performance of different low-Reynolds number turbulence models applied to
various flows is described. The emphasis is put on Chien’s & — £ model, an explicit
algebraic Reynolds-stress model by Speziale et al., and a full Reynolds-stress clos-
ure. The Reynolds-stress closure of this work has been developed by the author by
combining different existing models.

Accurate numerical methods are developed to couple the momentum equations
and the low-Reynolds number Reynolds-stress equations. Two methods are intro-
duced and these vary depending on how much the source terms are taken into ac-
count implicitly. The production of turbulence can be used to couple the inviscid
part of the momentum equations and the Reynolds-stress equations in the approx-
imate Riemann solution.

As demanding problems are computed, it has been essential to parallelize the
computer code. This has been performed via a message passing package. The
code shows an excellent parallel performance even in the most complex topologies
simulated.

In this thesis, validations are presented for ten different fluid dynamic problems.
The test cases vary from a simple channel flow to complicated flows in rotating
machinery. In the validations it is found that the Reynolds-stress closure generally
performs better than the two-equation models in complex flows. Especially stream-
line curvature is better captured by the Reynolds-stress closure. For the skin friction,
the present Reynolds-stress closure does not give satisfactory results, and thus, some
further development is needed. For simpler situations the two-equation models give
comparable or even better results than the more complex models.

© All rights reserved. No part of the publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying or otherwise, without the prior written permission of the author.
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Jacobian matrices of the flux vectors, A = 0F/oU
Courant number

diffusion of the Reynolds stresses; wall correction in dissipation
total energy per unit volume

flux vectors in the z-, y- and z-directions

force

production of the kinetic energy of turbulence due to rotation
length; right eigenvector matrix with primitive variables
Mach number

source-term vector

production of the kinetic energy of turbulence

Prandtl number

residual; right eigenvector matrix

Reynolds number

rotation number, Ro = 2Qh /U,

strain-rate tensor; area of cell face

temperature

turbulence intensity, Tu = /2k/U?

vector of conservative variables; velocity

bulk velocity

volume; vector of primitive variables; velocity
vorticity-rate tensor

relaxed pressure-strain tensor

rotation operator .

anisotropy tensor, b;; = w/u/(2k) —1/36;;

model constant or function; speed of sound
skin-friction coefficient, c; = 7,/(1/2pu?,)

specific heat at a constant pressure

height of the cell

specific internal energy per unit volume

damping function

height

grid coordinate directions .

kinetic energy of turbulence, k¥ = u/u} /2, heat conductivity
length scale

average size of energy-containing eddies
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N, Ty, N, cOMponents of a unit normal vector

P static pressure
q heat flux in the ¢-direction
7 location vector
L time
u; velocity component in the ¢-direction
u,v,w  velocity components in the Cartesian coordinate system
v velocity vector
T, Y, 2 Cartesian coordinates
Yn dimensional normal distance from the solid wall
Y172 jet-stream half-width
yt non-dimensional normal distance from the solid wall
A difference operator
® pressure-strain correlation
Q angular velocity
« constant; angle of attack
045 Kronecker’s delta
€ dissipation of the kinetic energy of turbulence
€ijk permutation tensor
N Kolmogorov length scale
A eigenvalue
n efficiency
I dynamic viscosity
v kinematic viscosity, v = p/p
P density
o Schmidt’s number
T shear-stress tensor
¢ scalar variable; part of the pressure-strain correlation
w turbulent vorticity, w o VE /1
W vorticity vector
Subscripts
T turbulent conditions
b bulk quantity
7 ¢-index; summation index
¥ ¢j-component of a matrix
1,7,k grid coordinate directions
max maximum value

meridional component
normal component
reference quantity
tangential component
viscous value

wall value



00 free-stream value
T, Y, 2 component in the z-, y- and z-coordinate directions

Superscripts

T transposition

l left-hand quantity
r right-hand quantity

convective value

Favre time-averaging operator

- time-averaging operator; mass flow averaging operator
vector component

" Favre-averaged fluctuating component

! fluctuating component
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1 Introduction

At the time of writing this, it is a dark and windy autumn night. Outside the wind
is heavily shaking large trees and a great number of leaves have come loose. The
leaves are flying in irregular paths, swirling all over. If one follows the effect of
the wind longer, some large structures of motion can be distinguished, like a large
number of leaves flying in circular paths. Suddenly, as fast as these large structures
of motion appeared, they break up into smaller ones and vanish. The wind forces
seem to be random, at least most of the time. Pick up one leaf and try to follow
it. The motion of a single leaf appears to be unpredictable but still the leaves are
being blown along in the wind and, finally, a large deposit of them can be found in
some corners of the surrounding buildings. In this context, the motion of the leaves
can be considered as a motion of air particles — following the leaves one can see
turbulent flow paths. Turbulent flow paths are impossible to predict precisely, but if
the motion is time averaged, the statistical methods can be used to make an attempt
to predict the average movement of the leaves as well as that of the air particles. No
analytical solution is available so a numerical approach must be used. Statistical
methods and especially their numerical counterparts are the topic of this thesis.

Turbulence is something that takes place almost everywhere where fluid flows.
It can be found in nature like in the atmosphere, in the currents of the sea, rivers
and blood vessels. Most machines are also affected by turbulence, like all vehicles,
engines, the ventilation of buildings and in the cooling of electronic components.
To define turbulence is not an easy task, but perhaps the definition could be taken
as given by Hinze [1]: “Turbulent fluid motion is an irregular condition of flow in
which the various quantities show a random variation with time and space coordin-
ates, so that statistically distinct average values can be discerned.”

The irregular motion is a very important feature of turbulence, since it enhances
mixing. For example, the mixing brings high-speed fluid closer to the solid surface
every now and then. This effect increases drag forces and it is often undesirable, as
in all transport vehicles. Recently, a great deal of research has been carried out to
decrease, e.g. the drag of an aircraft by reducing turbulent mixing next to the solid
surfaces, since considerable savings could be achieved. Nevertheless, turbulence
has also many desired effects. Without turbulent mixing the weather conditions on
the earth would be much more violent, too hot in the equatorial area and too cold
close to the poles, or, on a smaller scale, the cooling of an electronic component
would be much harder. Turbulence increases heat transfer significantly in both ex-
amples. The irregular motion and random variation makes turbulence difficult to
solve and model. However, models are needed in the engineering design calcu-
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lations of the machines that are somehow related to fluid dynamics. Turbulence
modelling plays a paramount role in computational fluid dynamics (CFD).

In this work, turbulent flows are simulated by one of the modern numerical
methods. Because the turbulent flow is highly irregular and, thus, impossible to
simulate directly using direct numerical simulation (DNS) in most cases, the statist-
ical approach has been used. This makes it possible to resolve complex problems.
In the statistical approach, turbulent forces are taken into account by the Reyn-
olds stresses. There are no closed-form equations for the Reynolds stresses and
they must be modelled to some degree. This work concentrates on a comparison
between different classical approaches, a two-equation model, an explicit algebraic
Reynolds-stress model and a full Reynolds-stress model. The problem with the
linear two-equation models is that they do not take into account the effect of the
streamline curvature and they assume the Reynolds-stress tensor to be aligned with
the strain-rate tensor. With these limitations it is not possible to simulate some of
the turbulence-driven phenomena, e.g. a secondary flow in a square duct. Aniso-
tropic alternatives such as the Reynolds-stress models offer the potential to forecast
also these kind of phenomena. The use of the Reynolds-stress models for complex
flows is not yet well documented. For complex flows there have been only a few
validations for the Reynolds-stress closures in the literature and, consequently, here
the focus is on the Reynolds-stress model. New numerical methods are introduced
to couple the Reynolds-stress and flow equations. The capability of the different
turbulence models is found out by validation cases.

Computational fluid dynamics demands large computing resources. The lack
of computer resources is always a problem in fluid dynamics. Although the single
processor performance has increased rapidly, it does not fulfil the requirements of
solving large fluid dynamic problems, and therefor the problems have to be paral-
lelized in order to utilize the present computers efficiently. In this work, the code
has been parallelized using a most portable and very efficient alternative, message
passing. Parallel performance shows excellent efficiency even with the most com-
plicated problems tested.

In the following, a short description of fluid flows, especially turbulent flows
is given. Firstly, emphasis is placed upon the problems encountered when solving
these equations numerically. After this, the models to represent turbulent forces
are described. Both isotropic and anisotropic alternatives are applied. None of the
methods employed in this work utilize the law of the wall, and consequently, they
can be used in complex situations. The numerical and computational issues are also
considered in this thesis. This overview lays stress on validation, the details of the
models can be found in publications. Validation of the models is carried out with
ten test problems that range from simple two-dimensional cases to complex rotating
three-dimensional flows. Finally, conclusions from the methods and the test cases
are drawn.
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2 Modelling of a Fluid Flow

Fluid flows can be categorized in many ways. One of the principal divisions is
between laminar and turbulent flows. In a laminar flow the fluid paths are regular
and smooth. Laminar flow can be steady or unsteady. Turbulent flow is charac-
terized by irregular flow paths and it is always unsteady. Laminar flow becomes
unstable when one of the problem characteristic parameters, Reynolds number,
Grashof number, Taylor number, Richardson number, increases above some crit-
ical values. Generally, only the Reynolds number is important and thus, it is con-
sidered here. If the Reynolds number is increased from the critical value, the flow
becomes turbulent. The Reynolds number can be considered as a ratio between the
convective and viscous forces as
Fconv _ prU;«2 _ prUrLr

= = 2.1
e Fiis U: P &b

Mg

where p,, U, p, and L, are reference density, velocity, molecular viscosity and
length, respectively. The Reynolds number can be also considered as a ratio of a
problem length scale L, and viscosity length scale 1, /(p,U.). The value of the
critical Reynolds number varies with different flows.

In a turbulent flow, swirls or eddies of a different size are present. The largest
eddies arise from the velocity difference between the flow layers, for example close
to the solid surfaces or between two jets. Larger eddies break up into smaller ones.
Finally, due to the viscosity, the smallest eddies dissipate to heat. A size ratio of
the smallest and the largest eddies can be large. This ratio depends on the Reynolds
number as well as on a particular flow. The smallest eddies are of the size of the
Kolmogorov length scale

n=(/e)/ 2.2)

in which v = p/p is the kinematic viscosity and ¢ is the dissipation of turbulent
kinetic energy. Here, it is assumed that the flow field can be divided into two parts
as u = 4 + «/, averaged velocity and turbulent fluctuation. Turbulent kinetic energy
is defined as the energy of the fluctuating velocity. After the eddies have broken up
into the size of the Kolmogorov length scale they dissipate to heat. Dissipation can
be expressed as

e = Au”/l, (2.3)

where A is a constant of the order of unity, v’ is the fluctuation velocity and /. is an
average size of the energy-containing eddies. Using these equations, the ratio /7
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Fig. 2.1: Cross-flow vorticity iso-surfaces (, Jwi + wg) in the flow over a matrix of cubes in a

channel. The cube is located at the centre of the bottom wall behind the iso-surfaces. The results are
from DNS. More details of the test case can be found in Section 4.7.

can be solved
lo/n = AV (Lol fv)*"* 2.4

Generally, it can be approximated that [, o< L, and v’ o U, leading to a ratio
between the reference length and the smallest eddies

L,/n o< Re*/* 2.5)

In engineering applications, the Reynolds number is typically from 10° to 10%. This
means that the ratio of scales varies between 10* to 105, To resolve all the scales,
the number of the computational points in every coordinate direction has to be of
the same order as the ratio of the scales.

In order to get an insight of the complexity of turbulent flow, an instantaneous
vorticity iso-surface in the matrix of cubes in a channel is shown in Fig. 2.1. There
is a cube located at the centre of the bottom wall. It can be seen that the vorticity is
increased at the vicinity of the cube. At the ceiling, typical turbulent streaks can be
seen. The flow is unsteady and very irregular, as can be seen in the velocity vectors
at the right-hand side of the figure.

Next, the flow equations are described, the statistical approach to simulate turbu-
lent flows is introduced, and the modelling of the effects of turbulence is presented.

2.1 Navier-Stokes Equations

The Navier—Stokes equations describe fluid flow. They comprise five partial dif-
ferential equations, one for the conservation of mass, three for the conservation of
momentum and one for the conservation of energy. The momentum equation can
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be written in a rotating coordinate system with absolute velocities as

19} 0 8p or, ik =
= (pui) + o~ (puitig) = =2 + 275 — (3 x 7) 2.6
3 (i) e, (pusiiy) o Toe, i (2.6)
where u; is the i:th component of the instantaneous velocity, Q is the angular velo-
city vector, 7 is the velocity vector, 7 is the shear-stress tensor and 4 is a convective
velocity defined by

i =i~ (8x7) @.7)

k3

Here 7 is a position vector (origin at the rotation axis). The last term in Eq. (2.6)
comes from the rotating coordinate system that is applied frequently in this work.
To ensure the conservation of mass and energy, the continuity equation and the
energy equation are written as

0 opli;

a—f + 8’; ' 0 2.8)
oF d . 0
E + 8_.142 [Eui +pu¢] = a—h [anj - qi] 2.9)

where the total internal energy is E = pe + p——, e is the specific internal energy,

g; 1s the component of the heat flux. For a Newtonian fluid, the viscous stress tensor

is
an aui 2 auk
= — =0 2.10
7ij H 8x,~ + axj 3 8azk “ ( )
In this work, all fluids are considered to be Newtonian. Fourier’s law is used for the
heat flux

oT
In order to close the system, the equation of state specifies the relationship between
the thermodynamic variables: pressure p, density p and internal energy e. Viscos-
ity 1+ and heat conductivity % can be functions of temperature T and pressure p.
Here, 1 and £ are calculated from Sutherland’s formula, which is only a function of
temperature.

The above equations can be used to solve all type of flows, including turbulent
ones. There are a few analytical solutions for the Navier—Stokes equations in lam-
inar flows [2]. For turbulent flow, no analytical solutions are known but fortunately
the modern computer can be used to solve Navier—Stokes equations numerically.
A problem arises with the large ratio of scales that leads to a large number of grid
points. The number of grid points must be at least L, /7 in each coordinate direction
in order to describe all the scales. Since the time-step size is proportional to the grid
size, the cost of simulation scales as

g = —k @2.11)

Cost of Simulation o (L, /n)* « Re? (2.12)

where the ratio of scales L, /7 is taken from Eq. (2.5). The cost of the simulation
rises rapidly with the Reynolds number. To get more perspective, a fluid flow in
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a channel is studied. In the well-known channel flow by Kim ez al. [3] 250 CPU
hours of the CRAY-XMP was used with Rey ~ 6000. At present this problem
could be solved with the most powerful computer available in Finland (January 1,
2000, SGI Origin2000 with 128 R12k) roughly 170 times faster in the optimum
case. With the Origin2000, 1.5 hours would be sufficient to solve the problem.
According to Eq. (2.12) the channel flow with ey = 15000 could be simulated in
24 hours. However, in engineering flows the Reynolds number is generally 100 or
1000 times larger and thus, according to Eq. (2.12), roughly 10° to 10° days would
be needed with the present supercomputers to solve practical cases. If it is assumed
that the computing power will double every 1.5 years, which is rather optimistic,
the problem with Rey =~ 1.5 - 10° will be solved in 24 hours approximately in the
year 2030, and Rey ~ 15 - 10° in the year 2045.

Direct solving of the Navier—Stokes equations is called Direct Numerical Sim-
ulation (DNS). As was shown with the channel flow example, it is not feasible with
existing computers in the near future. This has led to different types of methods to
make the Navier—Stokes equations less sensitive to the different size of the scales.
Below is a list of the most popular methods presented

e Direct Numerical Simulation (DNS)
o Large Eddy Simulation (LES)
e Reynolds-averaged Navier-Stokes (RANS) simulations

The first one, DNS, does not include any modelling, as mentioned earlier. In the
second one, LES, the small eddies are described by a model and the large eddies are
solved directly. In the third approach, one dimension, more precisely, the time di-
mension is averaged. These equations are called Reynolds-averaged Navier—Stokes
(RANS) equations. This approach is, strictly speaking, valid only where a steady
averaged flow can be distinguished. However, the same method is generally used
for transient problems.

2.2 Reynolds-Averaged Navier-Stokes Equations

The Navier—Stokes equations can be averaged with respect to time in order to
avoid the simulation of small scale fluctuations. The variables are divided into
a time-averaged part and a fluctuating part. Here, a mass weighted, i.e. Favre-
averaging [4], is used :

f=f+1 (2.13)

where .
j= (2.14)
p

B 1 to+AE
F=— / fdt (2.15)
to
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where At is large compared to the time-scale of the turbulent fluctuation and small
compared to the large-scale unsteadiness. In some cases, this requirement may not
be valid. It must be noted that in this way the time averages of the fluctuating
quantities are not equal to zero, in general, unless p' = 0. Instead, the time average
of the doubly primed fluctuation multiplied by the density is equal to zero

of =0 (2.16)

By substituting Eq. (2.13) into the momentum equations (2.6) and taking a time
average over the equations we obtain

a -~ 8 _~ = _ 6]5 6 _ W _ = l:‘
a(pul) + %(puiuk) = o + B (Tik — puf uk) (pQ X U) (2.17)

i
where, ignoring viscosity fluctuations, the viscous stress tensor is

ou! o 20ul
R bl ¥ 9 21
Oz; + Oz; 3 0xy 5”] 2.18)

o, 0w _20m ]
dr; Ox; 30z #

Tijg = H

The time-averaged momentum equation is very similar to the instantaneous mo-
mentum equation (2.6). The viscous stress tensor gets a more complicated form. In
practice, the viscous terms involving the doubly primed fluctuations are expected
to be small, and based on order of magnitude arguments [5] are potential candid-
ates for being ignored. If the doubly primed fluctuations in Eq. (2.18) are ignored,
only one new term is introduced into the momentum equation, the Reynolds-stress
component pu;us.

A similar procedure as for the momentum equations is applied also for the con-
tinuity (2.8) and the energy equation (2.9), after which a complete set of RANS
equations is obtained.

2.3 Turbulence Modelling

By applying the time-averaging procedure, the small-scale fluctuations are avoided.
However, new terms, the Reynolds stresses, are introduced into the momentum
equations. Also in the energy equation, similar expressions containing the effect
of temperature fluctuation are present. In this work, these are taken into account
by a simple eddy-viscosity assumption [6], and are not studied in the following.
Hence, the main emphasis is put on momentum equations. Turbulence modelling
with RANS equations can be divided into three different approaches. In the first

one, the differential equations for every component of the Reynolds stresses puju}

are obtained and solved. In the second one, the differential and algebraic equations
are used to describe turbulent forces. In the third one, Reynolds stresses are as-
sumed to depend locally on some algebraic expression of velocities, its derivatives
and perhaps also on wall distance and some condition at the wall. The second al-
ternative uses features from the first and the third approach and is called here the
reduced differential model.
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Reynolds-Stress Equations

The equation for the Reynolds stresses can be derived by using the momentum
equation. After some manipulation [7, 8] the following equations are obtained

a U” // 8 u U” n 8~ a~ au// a ,.,
P + (p ) _ |:pu//u;€/a +PU"UZa :| +pl ( J + i

a " 1 " " "
~ oz, [pu wjuy + Sip’ u + 6;p'u; — (Tiru; + Tk, )}
u; Ou; op op
7 3 " "
N\ Tie=—"+Tjp—1] — +
(T s Tik Oy, (u’ dx; Y 83:@>
—I—ejlekpu uf —|—e,lekpu” " 2.19)

where the left-hand side contains the time derivative and the convection term; the
right-hand side, the production P;;, the pressure-strain term ®;;, the diffusion D;;,
the dissipation ¢;;, the mean pressure-gradient term —u; 0p/dx; — u;0p/dx;, and
the production due to the system rotation G';;.

Assuming nearly incompressible flow, the mean pressure-gradient term can be
ignored, and the Reynolds-stress model (RSM) can be written in the following sim-
plified form [7]
8pu” T A puy, u”u;’)

ot + 8$k = B]‘ + (bij + Di]‘ — P&ij + Gij 2.20)

The production and the rotation terms are exact

——00 ot
P; = pu”uga— + pulju ’,;au (2.21)
Gy = €uSkpuiu] + eimQppuuf (2.22)

As a weak compressibility is assumed, the molecular diffusion can be approximated
as

aull ll
(Tikuj + Tjkui) ,u axk (223)
and the diffusion term obtains the form
a aull //
Dij = —5— | puj ujuy, + Spp' u; + 8jp'uy — [i (2.24)
c%ck oz Tk

where pressure diffusion (J;p'u; + d;xp'u; ) is usually ignored. With a weak com-
pressibility assumption also the dissipation gets a simpler form

8UI‘, aLLH aU,H 6
ne.. — , _] ~
PEij (Tzk 8:rk + 7, Tik ax ) 2 axk 837k (2.25)

Although, the dissipation rate gets a simpler form, it must be modelled as well as
the the pressure strain ®;;.
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Algebraic Models

This group of models is one of the most popular methods to describe the Reyn-
olds stresses. The most widely used assumption is that the Reynolds-stress tensor
depends linearly on the strain-rate tensor

1 (du; | Ou
S5=15 ( 7 axj) (2.26)

and the turbulent forces act in a similar way as viscous forces in momentum equa-
tion. This idea was presented as early as in 1877 by Boussinesq

— 2 Oy, 2
_pu;lu;,’ = uUr (2Sij - ga—xk(sw> - gpkéij. (227)
This expression is also called the eddy-viscosity assumption. Here, two new terms
are introduced, the eddy viscosity pr and the Kinetic energy of turbulence, k=
", "

%ui u;. Eddy viscosity (also called turbulent viscosity) can be defined in different

ways. Dimensionally, it depends on the turbulent velocity and length scales. If vk
is the turbulent characteristic velocity scale, the eddy viscosity can be written as

pr = pVkl (2.28)

where [ is a length scale that characterizes the size of the largest turbulent eddies.
If both scales are taken from an algebraic equation, as in the well-known Baldwin-
Lomax model [9], the third approach is used. These models are usually robust. The
disadvantages of the algebraic models is that they are valid only for some particular
flows. They cannot simulate separations correctly, for example.

Reduced Differential Models

Since the full RSM is many times too complex and algebraic models are not gen-
erally valid, differential models are developed which do not have differential equa-
tions for each Reynolds stress separately. Basically, the reduced differential models
are very similar to the the algebraic models. They use generally the same eddy
viscosity assumption Eq. (2.27). Reduced differential models differ from algebraic
models such that the velocity and length scales are determined by some differential
equations. Many variants of these models have been presented and only the most
popular are presented here. The most common way to describe the turbulence is by
using the £ — ¢ model [10-12]. In this approach, turbulent viscosity is described by
using the kinetic energy of turbulence k, and dissipation of turbulent kinetic energy
€ as

k’2
pr = pVEl = e, pVEE? Je = cup— (2.29)

in which ¢ is defined as ¢ = %sii = Tw/p Ouj/0z; and ¢, is a model constant
or function. For k and e, the differential transport equations can be obtained. The
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10,1

equation for kinetic energy of turbulence £ = ju;uj can be obtained by taking a
half of the trace of the Reynolds-stress Egs. (2.19)
0. o, . ——— Ot 0 (-~ —
i)+ g i) = —p s — o okl + 7 — )
oy —; 0p ou,
b g 2.30
af[?k kaﬂik T 87;2 ( )

An exact equation for the dissipation could be also obtained, but the result will be
complicated and quite useless for computation. The equation for the dissipation, as
well as for other possible length-scale parameters, is based on a similar convection-
diffusion equation with source and sink as the equation of turbulent kinetic energy
k. For the dissipation of turbulent kinetic energy, this is usually written as

O () + - (pic) =

(i) = ¢ el = cap) - - (sl 4 i) @3
where ¢.; and c.o are model constants or functions. Similar equations can also
be presented with various other length-scale measuring parameters, like the & — w
models (w o vk /1) [13], which have recently been gaining in popularity. It must
be remembered that the length-scale equations are always more or less of an “ad
hoc” nature and tuning the model constants is based on some simplified flows or
just on trial and error.

Lately, it has been found that the linear approximation may not be sufficient for
the Reynolds stresses Eq. (2.27). In the eddy-viscosity assumption, the Reynolds
stresses are considered to be a function of &, < (or other length-scale parameter), and
the strain-rate tensor .S;;. In these more advanced approaches, the Reynolds stresses
are also functions of the vorticity-rate tensor W;

1 (0w By
Wi=3 ( o axz) (2.32)

Thus, a general higher-order dependency from the vorticity- and strain-rate tensors
can be written as

p’LL;I‘U,;/ = f(p7 k? &, Skl7 I/Vkla i7 J) (233)

In the most commonly used approach to get these relations, the convection of the
Reynolds-stress anisotropy tensor b;; is assumed to be zero

abij 4 aukb,-j

U =0 2.34
The anisotropy tensor is defined as
w1
by = 5/@] - gdij (2.35)

For two-dimensional flows, the Reynolds-stress anisotropy tensor can be assumed
to be a function of the strain-rate, vorticity-rate tensors and turbulent time-scale
k/e [14,15]

bij = bij (li?/&‘, Skl; LV]C[) (236)



Low-Reynolds Number Models 23

This function is only valid for two-dimensional mean flows but, in general, it is used
for three-dimensional flows as well.

2.4 Low-Reynolds Number Models

Turbulence models for the RANS equations are divided into low- and high-Reynolds
number models. In high-Reynolds number models the flow is not solved next to the
solid surfaces and wall functions are used. This means that boundary conditions
can be applied to points in the flow field next to the solid surfaces. This procedure
can be applied for situations in which the universal wall functions are valid. How-
ever, the wall functions describe the flow accurately only for a flat-plate boundary
layer with a zero or constant pressure gradient and thus, for complex flow situations,
the calculation should be extended onto the solid boundaries. This can be done if
low-Reynolds number turbulence models are used.

In this thesis, many low-Reynolds number models are used. Three of them are
used in most of the problems. The first one is Chien’s k£ — € model [16] (CH). This
model was already available in the CFD code at the beginning of this work and is
applied as a base-line model throughout the work. The numerical implementation of
this approach is described by Siikonen [6]. The second one is an explicit algebraic
Reynolds-stress model (EARSM) by Gatski ez al. [14] (GS). The implementation
of this is described in Paper 4. The third one is a full Reynolds-stress closure. The
model combines the work of Chien [16], Shima [17] and Speziale ef al. [18] and it
is described in detail in Papers 4 and 5. It is referred to in this work as RSM and
the numerical implementation is given in Papers 1 and 2. Here, a short description
of the various turbulence closures mentioned above is given.

Two-equation Models

Models based on the solution of k- and s-equations can be written in a general form
as [19]

k2
br = ¢y fup =z (2.37)
e = §&+D (2.38)
o, 9, .. D Ok _
S0+ i) = -t/ S +P-pe 39
P : z
&( 5) axL( uig) 6 ’ |:(/J’+/'LT/O-5)6 i:| +C51 E‘P
pé*
—Cg2 fg T + K (240)

Table 2.1 summarizes functions and constants for the different two-equation turbu-
lence models applied in this study. The production of turbulent kinetic energy P is
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Table 2.1: Functions and constants for the two-equation turbulence models.

Model D Cy C1  Cea O O

CH 21/]4:/y721 0.09 1.44 192 1.0 1.3

GS 0 0.088 139 1.83 1.0 1.3
Model fu f2 E
CH 1— 670.0115y+ 1— 0.2267&3%/36 —2#(5/y2)e’0'5y+
GS 1 1— e—Rey/12‘5 0

written without additional modelling as

E—— ¥
— // " ?
p= 1“]3 )

(2.41)

where the Reynolds stresses pu 'u;j are obtained in the CH model by using the eddy-
viscosity assumption Eq. (2.27)

_— 2
pLL;’U;/ = —Q/LTSij + g(s”ﬁk (242)

In the GS model the Reynolds stresses are explicit functions of the mean strain
rate and the vorticity tensor as
6(1+7n%)ay  K?
34+ 682 + 662 ¢

pu;’u’-’— pkoy;—

(S, — %skk5ij) + aé(sikw,:j + 5,
—a5§(sikskj - %sklsklcsij) (2.43)
where 5
Wi =Wy — ar—gemilln (2.44)

Above, the modified vorticity tensor comes from the production due to the system
rotation. Unfortunately, this violates coordinate frame invariance, and thus, caution
should be used if it is applied with rotating coordinate systems. In Eq. (2.43) 7 and
¢ are strain-rate invariants defined by

1()[3 lk 10[2 k

= S —(83;Si5)2 = E 5_ - (W W, )5 (2.45)

Above, oy, ag, (g, a4 and a5 are parameters with the following definitions [20]
o = (5-C2g/2 a = (2—C3)%g%/4
az = (2—Cy)’g*/4 ag = (2 Cy)g/2 (2.46)
as = (2—Cs)g 9 =1/(Ci+C5-1)

where the constants of the pressure-strain model of Speziale et al. [18] are applied

Ci=34 C,=036 C3=125
C,=04 Cs5=188 (2.47)
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Reynolds-stress Model

Here Eq. (2.20) for the Reynolds stresses is rewritten as

apu// 7 a(puku,,u”)
ot + axlj J = Pz'j + (I)ij + Dij — PEij + GU (248)

In this equation, the production and the rotation terms are exact, whereas the tur-
bulent diffusion, the pressure strain and the dissipation rate must be modelled. In
this work the high-Reynolds number modelling developed by Speziale, Sarkar and
Gatski (SSG) [18] is applied for the pressure strain ®;;. The low-Reynolds num-
ber counterpart is based on Shima’s work [17]. The connection of the low- and the
high-Reynolds number regions is done by using a wall distance dependent damping
function. The dissipation transport equation is based on Chien’s k¥ — £ model.

In the low-Reynolds number model, the pressure-strain and the dissipation rate
terms can be connected as [17]

ouy 3u;~' o ou’
' + -2 LI — @, — pey =
p (8:@ 0x; M@xk ox 4P

2
3 0i;p (2.49)

¢1],1 + ¢z] 2 + ¢ZJ w

where ¢;; 1 represents the fluctuation part of ®;; and the anisotropic part of &;5, @52
is the mean-strain part of ®;;, and ¢;; ,, takes into account the wall proximity effects.
These terms are modelled in the following way [17, 18]
dija = — [Cr — (C1 = 2) fua] pe by
1
+Cy ( fw ) ( ik bk] — §H6ij) (2.50)
$ij2 = (C3 — C3TIY?)pk Sij+ )
Cy pk(big Si + bjr, Sik — gbkl Swidij)+
Cs pk(bix Wi + bjr Wy) (2.51)
Pijow = [OZ (Pij - gfsiy‘P) + vpkSi+

2
B (Dij - §5ijp)] Jw (2.52)

where P;; is the production from Eq. (2.21) and P = %P“ from Eq. (2.41). The
tensor DJ;; and the wall damping function f,,; are defined as

_8 —8@
fw1 = exp [— (0.0llﬁ\/zyn/lt)] (2.54)
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Table 2.2: Constants in the pressure-strain term.
Model Cl C f CQ 03 C;: 04 05
LRR 3.0 0.0 00 08 0.0 1.7 1.31
SSG 34 1.80 42 0.8 1.30 1.25 0.40

The anisotropy tensor b;;, second invariant of the anisotropy tensor I, and model
parameter C are

wlul 1 _
by = 730y I = bubu G = Ci+CiP/(pe) (2.55)

Here Eqgs. (2.50 - 2.52) are written in a general form. Different models can be
obtained by changing the constants. The idea is that the constants of Launder ez
al. [21] (LRR) with Shima’s low-Reynolds number part are used close to the wall,
and the SSG model constants are applied far away from the wall. For example, C
is not a constant, but it is a combination of two model parameters

Cy = fu2Ciirr + (1 = fu2)Clssa (2.56)

The same treatment is done also for C7, Cs, Cs, C3, Cy and C5. The constants for
the different models are given in Table 2.2. The wall correction values, «, 8 and
7, and the wall damping function f,, > were assigned after test calculations with a
simple channel flow as

a=045 B=0 ~=0.04 2.57)

Fuo = exp [— (0.015ﬁ\/Eyn//z)4] (2.58)

During this work, the constant v was found to have a strong effect on the skin fric-
tion. With a value of v = 0.04, the skin friction is systematically overpredicted. In
most of the test cases, if 7y is set to 0.055, the prediction of skin friction is improved.
Consequently, only for the channel flow v = 0.04 is used, but for the rest of the
cases the value of v = 0.055 is applied.

Complex geometries often contain corners. The effect of the corners is described
by multiplying locally the effects of the walls

fw =1- (1 - fw,i—dir)(l - fw,j—dir)(]- - f'w,k—dir)- (259)
For the diffusion term D;; a simple scalar model [22] is applied
] dul!
Dy = — i L 2.60
ij By (p, + MT/O'z],T) PN ] ( )

where the turbulent eddy viscosity pur is calculated as in Eq. (2.37) for the CH
model, and the appropriate Schmidt number is set to oy, = 1.0.
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3 Numerical Methods

In this chapter, the numerical methods are summarized. The focus in on the con-
vection-diffusion equations with the source terms and it is applied to solve the
Reynolds-stress equations. Also, the methods to take account of the effect of the
Reynolds stresses in the momentum equation are studied. These methods are ap-
plied to various turbulence quantity equations. The summary of parallelization is
also presented with a parallel efficiency investigation. Details of numerical methods
can be found in Papers 1 and 2. A complete description of the parallel solution is
given in Paper 3.

Recent progress in computer technology has made it possible to numerically
simulate complex flows. Reynolds-averaged equations can be used to solve flows
around various geometries. However, complex geometries and the nonlinear turbu-
lence models make numerical solutions a difficult task. In this work, the physics
and the numerics have been separated and a common paradigm

[NUMERICS] AU = PHYSICS (3.1)

is used. The right-hand side of the equations must be solved with high accuracy,
whereas the left-hand side should ensure the stability and good convergence.

In recent years, a lot of development work has been done in order to couple
the Reynolds-averaged Navier—Stokes equations (RANS) and turbulence models.
With algebraic turbulence modelling, the numerical methods remain essentially the
same as in a laminar flow. Difficulties arise as more advanced methods, like two-
equation models, are used. The implementation of the Reynolds-stress turbulence
model in the curvilinear coordinate system is a demanding task, see e.g. [23]. The
difficulties include the robustness and efficiency of the numerical scheme as well as
the complexity of the computer code. This complexity may cause coding errors and
reduce the efficiency.

If the performance of the flow solver is needed to run an order of magnitude
faster than in a conventional algorithm, then parallel processing must be considered.
For over a decade there have been parallel computers and networks of computers
that can be used to run single work in several processors. Naturally, this places
special requirements on the algorithms. The basic idea behind the parallelization is
that the computing work is divided into smaller subtasks. Each subtask is solved in
a different processor. Usually this requires essential changes in the algorithms.

The implementation of the Reynolds-stress model in an existing multi-block
Navier-Stokes solver [24] is performed in this thesis. In order to minimize the
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coding errors, a Cartesian form of the fluxes is utilized for the inviscid terms and
for the Reynolds stresses. This is accomplished by applying suitable rotation op-
erators. The flow equations are solved using Roe’s flux-difference splitting [25].
In incompressible flow, a pseudo-compressibility approach [26] with a Roe-type
damping term can be applied. For the spatial discretization, a MUSCL-type TVD-
scheme to approximate convective volume-face fluxes is applied. The discretized
equations are integrated in time by applying the DDADI factorization [27]. In or-
der to increase the convergence speed, the multigrid method is applied [28]. In the
multigrid method, the flow is also solved for a coarser grid or grids in order to rap-
idly damp large oscillation that might occur during the iteration. It does not have
any effect on the final solution. The computational domain is divided into different
blocks. This makes it possible to simulate more complex geometries and it is also
used in parallelization.

In order to increase the robustness and accuracy of the method, the RANS equa-
tions and the Reynolds-stress equations are coupled in the approximate Riemann
solution. Two coupling methods between the RANS equations and the equations
for the Reynolds stresses have been developed in Papers 1 and 2.

3.1 Spatial Discretization

In the CFD code used [6], a finite-volume technique is applied. The RANS equa-
tions have an integral form

% Udv+/ﬁ(U) 48 = /de (3.2)
Vv s v

for an arbitrary fixed region V' with a boundary .S. Here U is vector of conservative
variables, F' is the flux vector and @ is a vector of source terms. Performing the
integrations for a computational cell ; yields

dl)i -~
—— 7.0).
- E SF +V,Q; (3.3)

faces

Vi

where the sum is taken over the faces of the computational cell. The flux for the
face is defined as

F=n,(F-F)+n,(G-G,)+n,(H-H,) (3.4)

where F, G, H, F,, G, and H, are the inviscid and viscid fluxes in the z-, y- and
z-directions, respectively. For the RANS equations (2.17) with the equations for
turbulent kinetic energy &, dissipation ¢ and scalar variable ¢, fluxes F' and F,, can
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be written as

P
puts 4+ p + puu”
pml + pu”v”
pwi + puw"
Ei + pu + pu"u"u 4+ puv"v + pu'w'u

Pkt
PEU
PPl

_ Tez
F, = (7o + 2pk) + VToy + WTae — ¢y (3.5

1k (Ok /)
e (02 /0x)
119(06/0)

where the viscous stress tensor is defined in Eq. (2.18). Here, the time-averaging
operators (bars and tildes) are not written for simplicity. The Reynolds stresses can
be taken into account in inviscid or viscid fluxes. Here, these are included in the
inviscid flux but a more detailed study is provided in the following section. The
heat flux contains a laminar and a turbulent part, and is written as

—(k+ kp)VT = — ( pope “TP ) VT (3.6)

where kg is turbulent heat conductivity and Prg a turbulent Prandtl number. The
diffusion coefficients of the turbulence quantities and the scalar quantity are approx-
imated as
uk=u+”—T ue=u+M—T u¢=u+”—T (3.7
T T T

where oy, 0. and o, are the appropriate Schmidt’s numbers and the turbulent vis-
cosity pr is determined by the turbulence model.

In the evaluation of the inviscid fluxes, Roe’s method [25] is applied. A rotation
operator is used for the velocity components as well as for the Reynolds stresses.
The flux is calculated as

F=T71F(TU). (3.8)

where T is a rotation operator that transforms the dependent variables to a local
coordinate system normal to the cell surface. In this way, programming is greatly
enhanced, since only the Cartesian form of the inviscid flux F' is needed. This is
calculated from

FU,U") = [F(UY+ F(U")]

N =
l\')l'—‘

K
== rPAB® (3.9)
k=1
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where U! and U™ are the solution vectors evaluated on the left and right sides of the
cell surface, r*) is a the right eigenvector of the Jacobian matrix A = 9F /AU, the
corresponding eigenvalue is A\(*), and o*) is the corresponding characteristic vari-
able obtained from R~16U, where §U = U” — U'. A MUSCL-type discretization
is used for the evaluation of U' and U”. In the evaluation of U’ and U", primitive
variables (p, u, v, w, p), and conservative turbulent variables (pk, pujuf, pg) are
utilized. Primitive variables are used in order to obtain smooth distributions for
the primitive variables through boundary layers. For the turbulence quantities, the
second-order upwind scheme with the limiter of van Albada e al. [29] is used. The
use of the limiter for the turbulence quantities was found to be important, especially
at the edge of the turbulent boundary layer. In this region, e.g. k£ and ¢ go rapidly
from finite values to zero, and thus, overshoots might occur, The Jacobian matrix A

can be split in the usual way

A=RAR'=MLAL "M (3.10)

where R and R~! are the right and left eigenvector matrices of A; L and L~! are
the corresponding matrices with respect to the primitive variables, A is the diagonal
eigenvalue matrix, and M and M —1 are the transformation matrices between the
conservative and the primitive variables.

3.2 Diagonalization of the Flow Equations

Coupling between the Reynolds-averaged Navier—Stokes equations and turbulence
models can enhance the convergence and stability. In this work, new methods to
take account of the Reynolds stresses in the momentum equation are introduced
in Papers 1 and 2. As the Reynolds-stress model is applied, the Reynolds stresses
may be connected with the pressure [7]. In the :-momentum equation, the resulting
effective anisotropic pressure can be defined as

P =p+ pulu} G.11)

Note that in this way the effective pressure is direction dependent. In order to utilize
Roe’s method, the Jacobian of the flux vectors must be diagonalized. This requires
that the Jacobian matrix of the flux vector has a complete set of eigenvectors. Un-
fortunately, linearly independent eigenvectors cannot be found if the anisotropic
pressure field of Eq. (3.11) is applied. In the case of a k — £ model with an isotropic
pressure field, linearly independent eigenvectors exist [6]. Since the anisotropic
pressure field is difficult to handle, the turbulent pressure can be approximated by
the mean of the three components

2
pro= p+§pk (3.12)

Using this, the flux vector can be divided into isotropic and anisotropic parts, and
the Jacobian of the isotropic part can be diagonalized.
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The second method of diagonalization utilizes the production of the turbulence
P;; in vector F'. The production term is exact in RSM and it can be included in
vector F'. In this way, independent eigenvectors can be found. Next, both of the
diagonalization approaches are described.

Isotropic Diagonalization
Vector I defined by Eq. (3.5) can be divided into two parts

where vector F} corresponds to the isotropic part of turbulence and F; contains the
anisotropic part.

pii 0
put +p+ %pk pu"u" — 3pk
p’U@ pu/’U"
F1 = pwll 7F2 = 9 pu”w”
Ei + pu + 2pku (puu" — gpk)u+Wv+Ww
pu 0
pEU 0

(3.14)
The Jacobian of the vector F; can be diagonalized similarly to that of the £ — ¢
model [6]. Vector I, can be evaluated using central differences. In this approach
the Reynolds stresses are not rotated, instead F; is calculated directly from Eq. (3.4)

0
nm(pu//,u// _ %pk) +n, pu"v" 4+ n, puw’
A Ny puv" + ny(pvuvn _ %Pk) + n, pr"w"
F=1n, pu”w” _|: ny PU”'lf)” + nz(pr//w// _ %pk) (3.13)
fogu+ fozv+ fagw
0
0

where fzi is ¢:th element of the vector Fg.

Anisotropic Diagonalization

As mentioned earlier, linearly independent eigenvectors cannot be found if the an-
isotropic pressure field of Eq. (3.11) is applied. However, the production term in-
troduced coupling between the velocity field and the Reynolds stresses. The pro-
duction term is exact in RSM and it can be separated from the other source terms

Q=Q +P (3.16)

Production is included in vector F'. This is not a conservative form of the vector F'
but RSM is never in a conservative form because of the source terms.
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Usually the Jacobian takes the simplest form if the primitive variables are used.
Here, the selected primitive variables are
V=(p v v w e v uv" w'w o vw' wuw' &)
(3.17)
After some mathematical manipulation, the Jacobian (OF/0U) can be obtained in
the primitive variable form as

u p 0 0 0 0 0 0000 0
Py g wfu? oy, 0 0 2 1.0 0 0 0 0 0
p P P
o 0 u 0 0 0100000
U";U” 0 0 v 0 0 0 1 0 0 00
0 2 0 0 « 0 0 0 00 0 0
A= 0 2uul 0 0 0 w 00000 0
0 W' w0 0 0w 00 0 0 0
0 ww' 0w 0 0 0 uw 00 00
0 0 2w 0 0 000w 000
0 0 Www' uw” 0 0 0 0 0 u 0 0
0 0 0 2¢w” 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 00 0 u
(3.18)

It can be seen that there are extra terms in the lower left and upper right corners.
The left one is the effect of the velocities on the Reynolds-stress equations, and the
right one is the effect of the Reynolds stresses on the momentum equations. In this
case the eigenvalues, i.e. the characteristic speeds, are

MO = w4 e u— Ve u — Ve u —c,
u, u+ Vu'u" u+ Vu'u’ u,u,u,u 3.19)

where c is the speed of sound. For an arbitrary equation of state, the speed of sound
is

= pop/p® +p, + 3u'u" (3.20)
Notations p, and p, are
op dp
pe—%p pp—a—pe 3.21)

It can be seen that the Reynolds stresses have an effect on the characteristic speeds
and on the definition of the speed of sound. The speed of sound is direction depend-
ent, although the effect is larger only in very high velocity flows.

Using the primitive variables, the characteristic variables are obtained from

W = (o9) = L7V = R7I6U (3.22)

where §V = V" — V!, The matrices L' and R get a rather complex form and can
be found in [30].
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3.3 Time Integration Method

The discretized equations are integrated in time by applying the DDADI factori-
zation [27]. This is based on the approximate factorization and on the splitting
of the Jacobians of the flux terms. In the implicit stage the factorization is done
isotropically. The implicit stage consists of a backward and forward sweep in every
coordinate direction. The sweeps are based on a first-order upwind differencing. In
addition, the linearization of the source term is factored out of the spatial sweeps.
The boundary conditions are treated explicitly, and a spatially varying time-step is
utilized. The implicit stage can be written after factorization as follows

|:I + Avlt(@;SZH/QA:r — 8;5’1_1/214.;) X

At T
[I + ‘/—,(8;5]4_1/2.3; — 8;5]'_1/2.3;)_ X
y (3.23)
At +_ ot -]
[I + W(ak SkH/ng - ak Sk,l/QCk )_ X
At

where 9, and 97, , are first-order spatial difference operators in the i-, j- and &-
directions, A, B and C are the corresponding Jacobian matrices, D = 9Q/0U, and
R; is the right-hand side of Eq. (3.3). The Jacobians are calculated as

A* = R(|A*|+ kDR™! (3.24)

where AT are diagonal matrices containing the positive and negative eigenvalues,
and k is a factor to ensure the stability of the viscous term [31]

2(p + pr)

k=2

(3.25)
where d is the height of the cell. The idea of the diagonally dominant factorization is
to put as much weight on the diagonal as possible. In the i-direction the tridiagonal
equation set resulting from Eq. (3.23) is replaced by two bidiagonal sweeps and a
matrix multiplication [6].

It can be seen that Eq. (3.23) has the same form as Eq. (3.1); the numerics are on
the left-hand side and physics, the explicit residual R;, on the right-hand side. Here
the turbulent viscosity is also used for the Reynolds-stress calculations to stabilize
the solution. According to Eq. (3.1), it will not change the results, but it will improve
the convergence. In this way, the implicit stage can be kept simpler than taking the
Reynolds stresses implicitly into account. The scheme is even numerically more
robust without highly nonlinear relations to the Reynolds stresses. The turbulent
viscosity ur is always calculated from Eq. (2.37) by using Chien’s model. Also
tests were done to directly calculate the turbulent viscosity from the eddy-viscosity
assumption (2.27) but it did not work as robustly as the Chien’s expression.
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To take account of the effect of the source terms implicitly might be a complic-
ated task. This is especially true for the Reynolds-stress model with low-Reynolds
number extension. The previously developed method [6] to take account of arbit-
rary source terms is adopted with small changes. Details of the method are given in
Paper 2. The basic idea is that the effect of the source term is limited by the value of
the solved variable. The maximum change of U caused by source term ¢} is limited

t0 |AUpax|. The value of |AUpax| is evaluated using the current values of puj'u] as

|A(pU;,U”)max| — Ck ) |pu” H| 4 Ck 2 — 5”)217/{; (3.26)
where Cy 1 and Cj, » were set to 0.2 and 0.02 after the test calculations. The second
term in Eq. (3.26) ensures a possible change of sign in the off-diagonal components
of the Reynolds stresses.

For a multigrid correction, a similar limitation as for the coarse grid correction
of the turbulence quantities is used. Details can be found in Paper 2.

3.4 Limitations of the Reynolds stresses

Reynolds stresses cannot get arbitrary values, since there are some physical limita-
tions that Reynolds stresses must obey (Paper 5). These are generally called realiz-
ability conditions [32]. There are two such conditions: the diagonal components of
the Reynolds stresses must be equal or greater than zero

pdldl >0 ifi= (3.27)

and the absolute value of the off-diagonal components must be smaller than the
square root of the multiplication of corresponding diagonal terms

pull I/p,ull " < pull " pu;lu// (328)

Proof for the first condition is trivial. Proof for the second condition can be found
in [30].

Source terms in turbulence equations should be such that these limits will never
be violated. The RSM used does not fulfil the above conditions in some extreme
academic cases. However, anyone who has performed calculations with higher-
order methods knows that there might be overshoots during the iteration, or even in
the final results. This will occur even if the turbulence model is realizable. Because
of these, limitations, Eqs. (3.27) and (3.28) are checked after every iteration sweep
explicitly. It was found that when the limitations are active, especially for the off-
diagonal terms, the stability increases.

3.5 Parallel Computing

For over a decade, parallelization has been used to enhance the efficiency of flow
solvers. The basic idea is to divide the computing work between many simultan-
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eously running processors. The challenge is to design algorithms so that all pro-
cessors have a full load all the time. This requires that the work load of the pro-
cessors is equal and also the amount of communication between the processors is
small and fast. Details of the original parallelization are given in Paper 3. Here, a
summary is presented with some recent progress and results.

The simplest method of parallelization that can be used with shared-memory
machines takes place on the DO-loop level. This can be done automatically by an
advanced compiler. However, it is effective only with a very limited number of
processors and is limited to shared-memory machines. Better performance from
a large number of processors can be obtained by dividing the space into smaller
sub-domains. A common approach applied, e.g. in [33,34], is to divide the com-
putational domain into equally sized blocks and to apply message passing between
the blocks.

During this work the parallelization has been based on the Message Passing
Interface (MPI) standard [35]. The computational domain is divided into blocks
and the block boundaries are updated using MPL. In order to get a balance between
the processes, the blocks should be of an equal size. However, the code can handle
several (smaller) blocks in one process. This property can be utilized especially
with small tasks and with a small number of processors, when a good load balance
is not so critical.

Parallelization using MPI

A common parallelization tool, the Message Passing Interface (MPI) standard [35]
has been used to keep the code as portable as possible. The computational cycle is
described in Fig. 3.1. One processing element (PEO) is the master and others are
slaves. The updating of boundaries between different processes is most important if
the performance is of concern. Due to the development history of the code, the com-
munication between the boundaries was performed for each variable to be solved
separately in earlier work in Paper 4. In the most recent developments, a boundary
value data is packed up in one vector that is sent to neighboring processors [36].
Large vectors of data are more efficient than a large number of smaller ones. The
order of connection is determined at the beginning of the computing so that most
of the processors can communicate simultaneously and no dead-lock situation is
possible.

Parallel Performance

The parallelization can be tested using two different approaches. One is to keep the
size of one process computation work constant, i.e. scaling. This means that the
total problem size increases as the number of processes increases. For example, if
a problem size is 323 for one processor then the size of a two-processor run will be
twice the 32° grid (e.g. 64 x 32 x 32 grid). Another approach is to keep the total
problem size constant and divide it between the processes. In the following this is
called blocking. If the problem size is 32 for one processor, then a two-processor
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Fig. 3.1: A flow diagram of the parallelized code. Communication between the processors is depic-
ted by horizontal dashed lines.

run will be of the same size but one processor work will be only half of the original
size (e.g. 32 x 32 x 16 grid).

Performance tests were carried out with two different types of computers. One
was a massively parallel processing (MPP) Cray T3E computer with a maximum
224 of processors (only 64 were used in this study), and the other was a cluster of
personal computers. The performance results shown for the T3E computations are
from Paper 3 and for the PC cluster from Ref. [36,37]. The PC cluster contains 16
Dell precision workstation 410 computers. Each computer has Dual Intel Pentium
IT 400 MHz processors with 128 Mbytes of memory. The computers are connected
to each other by a 100 Mbit Ethernet. The operating system is Linux.

In order to test the performance of the scaling, the flow past a cropped delta wing
was calculated at Ma,, = 0.85, Reo, = 4.5 x 10% and v = 0° or v = 10.76°. Grids
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Fig. 3.2: Speed-up of the parallelization in scaling.

were generated so that all the blocks had a size of 32 x 32 x 32. The computational
domain size was from one to 64 different blocks, and each block was calculated in
a different process. On the PC cluster, the largest case contained 32 blocks. Thus
the coarsest grid had 32768 and the densest grid 1048 576 computational cells on
the PC cluster.

The speed-up was determined directly from the absolute time spent in the cal-
culation. The results are presented in Fig. 3.2. It can be seen that a perfect scaling
is achieved in these test runs with the T3E up to 64 processes. The PC cluster had
a good scaling up to 16 processors. It can be estimated that the code is parallelized
in this way so well that it could be run with over a thousand processors in MPP
systems.

The efficiency of the parallelization was also tested in a case of blocking. With
the T3E the grid size was 64 x 64 x 32 = 131 072, and for the PC cluster the grid size
was 192 x 80 x 40 = 614 400. In both cases the size was limited by the processor
memory size in the T3E and in the PC cluster. Because of the different block sizes,
the comparison is not straightforward. The partly unexpected results are shown in
Fig. 3.3. Firstly, the performance curve is somewhat better for the PC cluster than
for the T3E. The situation is different for the PC cluster because the block sizes are
larger in the PC cluster than in the T3E simulation. Secondly, the parallelization
is better for the PC cluster for blocking than for scaling. One explanation can be
that the single-processor performance increases when the size of the problem in one
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processor is decreased. This phenomenon is called super-linear scaling. It seems
that the PC cluster is more sensitive to the problem size, and on the other hand also
the block size used in T3E is not sufficiently large.

It can be concluded that the performance of the flow solver has been increased
by two order of magnitude during this work. This was done by using parallelization.
Parallel implementation is based on the MPI standard, and thus, it is platform in-
dependent. With optimal cases, the parallelization is excellent. However, in reality
the computational domain cannot be divided in an optimal way. An example of a
non-optimal case is presented in the following chapter.
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4 Validations

The turbulence models used have been validated with various flow problems. These
vary from a simple channel (Paper 1) to a centrifugal compressor (Paper 5) or nuc-
lear reactor thermal hydraulics (Paper 6). A part of the validation has been made in
the annual ERCOFTAC/IAHR workshops on refined turbulence modelling. Most
of these test cases were not published separately by the author but can be found in
the proceedings of the workshops. Altogether, the methods are validated with ten
problems in this work. Table 4.1 shows a summary of the test cases.

In most of the flows the Reynolds-stress model (RS), the explicit algebraic
Reynolds-stress model by Gatski et al. (GS) and Chien’s k£ — ¢ model (CH) were
used. In the following, all the problems are briefly described and some of the results
are shown,

4.1 Channel Flow

The Reynolds-stress model was implemented and tuned using a simple channel
flow. In addition the damping function that switches from Shima’s model to the
SSG model was designed originally for the channel flow. The channel flow was
chosen for simplicity and the well-defined DNS data by Kim ef al. [3]. The results
are given in Papers 1 and 2 for Shima’s model. The effect of the damping function

Table 4.1: Summary of the test cases.

Case Reference ERCOFTAC WS
Channel flow Papers 1 and 2

Rotating channel flow 7th

Boundary layer flow Paper 7

Wall jet 5th and 6th
Curved duct Paper 2 5th
Surface-mounted cube 6th

Matrix of surface-mounted cubes 8th

Return channel Paper 4

Centrifugal compressor Paper 5

Turbulent Mixing in Core of Nuclear Paper 6
Reactor Fuel Bundle
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Fig. 4.1: Effect of the damping function in the channel. If f,, » = 1, Shima’s model is applied and
if fi,2 = 0 the SSG model is applied for the pressure-strain term.

fwz2 Eq. (2.58) is shown in Fig. 4.1. In this case the y= = 180 at the centre of the
channel. This means that the SSG pressure-strain model is applied as y* > 70.

4.2 Rotating Channel

This test case was presented at the 7th ERCOFTAC workshop on refined flow mod-
elling [38]. The considered flow is fully developed in a channel rotating in an or-
thogonal mode. The flow is at a low-Reynolds number and DNS data is available
for a range of rotating rates. The Reynolds number, based on the bulk velocity and
the channel half-width is around 2 900. The rotation number Ro = 2Qh /U, varies
from zero to 0.5.

This problem is rather simple and thus, some exotic turbulence models could
be used. The flow is semi two-dimensional. This means that the flow equations
are reduced to one momentum and one continuity equation. The computations are
performed using an implicit time-marching computer code FULFLO [39].

Four different turbulence models are tested:

1. Wilcox’s standard k& —w model [13,40] with a rotational correction, described
below, applied in the w-equation sink term [41].

2. Chien’s low-Reynolds number k& — ¢ model [16] with the rotational correction
applied in the e-equation sink term.

3. EARSM of Gatski et al. [14] with Wilcox’s standard w-equation and with the
rotational correction applied in the w-equation sink term.

4. RSM of Speziale ef al. [18] with Wilcox’s low-Reynolds number w-equation.
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Low-Reynolds number effects in the RSM are modelled by an elliptic relaxa-
tion method similar to Durbin [42].

Chien’s £ — ¢ and Wilcox’s k — w models, excluding the rotational correction, are
applied as in the original papers. Rotational correction is based on a generalized
Richardson number [41]. Although the EARSM is sensitive to the rotation, it was
found this kind of correction is necessary in order to get a correct velocity distribu-
tion.

Elliptic relaxation

The elliptic relaxation method is only used in this case, and thus, the methods are
presented here. Following the work of Durbin [42], a relaxed pressure-strain tensor
(P;;) which includes the conventional pressure-strain interaction and deviation of
the dissipation-rate tensor from Rotta’s dissipation model can be written as

Pij = Pij — ey + w 4.1)
This is solved from an elliptic relaxation equation
Ph
L*N?fij — fij = — k:] (4.2)

P, . .
where f;; = —* and P}! denotes a quasi-homogeneous form of P;;. In this work,

more detailed functions are adopted from Pettersson et al. [43]. The right-hand side
of Eq. (4.2) becomes

k k T
where <I)§’j is calculated by using the SSG model. Various functions are defined as

2b;; 4.3)

Cl - 2+%A2\/Z A2 - 41)”[)2]

A3 = 8b¢kbkjbji A = [1 - 9(142 - Ag)/S]
u;u' 1 . k8 U
bij = 2 k] —_ 5(5” L = OL 8_2 + 077 ? (4 4)
N iy . i 1+ A3 \? '
CL = CL‘42/Z C, = CyA, Y exp l_ (m>
E\? v
T = — Cc2—
() +ait
and the coefficients are
— =4 —
Cp = 025 (), = 647 4.5)

Cr = 6 Cxg = 0.22

Pettersson used a value of 0.18 for C, but this did not give satisfactory results in
this study.
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Fig. 4.2: Friction velocities for both walls of the channel and the averaged friction.

Boundary conditions for the elliptic relaxation

The boundary conditions for the elliptic relaxation are modified from Durbin and
Pettersson’s approaches. In general, boundary conditions can be written as

= - 200 [ ugus f 200 [ uiu
2= Ewall 94 1 12 Ewall 2/4 1 (46)
fu =0 fas = —fz

Since, no difference can be made between the streamwise and the spanwise direc-
tions in more complicated flow simulations, the boundary conditions for fi; and fs3
are rewritten as

fu = —3fe fi = —3fe 4.7

The value of (u;u; / y4) is not taken from the first computational cell adjacent to
1

the wall, instead it is integrated from the wall with a proper length scale. In this way,
the elliptic relaxation method becomes fairly grid independent, it is not sensitive to
the height of the first cell and it is numerically stabilized. In this way the boundary
conditions do not need to be taken into account implicitly.

Results

The resulting wall-friction velocities are seen in Fig. 4.2. It can be seen that all the
models predict quite a good asymmetry in the friction shown on both walls, whereas
the averaged friction on the right-hand side of the figure is superiorly predicted by
the RSM.

It was found within this study that the EARSM is sensitive to the rotational ef-
fect but this effect is too weak. The RSM was the only one that could predict the
shape of the averaged friction as a function of the rotation number. The elliptic re-
laxation method gives promising results, but the method is complex and difficult to
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Fig. 4.3: Skin-friction coefficient and the displacement thickness.

apply in 3-D simulations because of the boundary conditions. It is not straightfor-
ward to apply boundary conditions for arbitrary curvilinear solid boundary surfaces.
Questions arise as to how the function f;; should be rotated and in the 3-D flows
there are also two additional Reynolds stresses and thus boundary conditions for
appropriate f;; should be redesigned.

4.3 Flat-Plate Boundary Layer

The third problem is a flat-plate boundary layer with a high free-stream turbulent
intensity. The problem was taken from the ERCOFTAC Fluid Dynamics Database
WWW Services maintained by Dr. Voke. Experimental results for this flow have
been provided by John Coupland (Rolls-Royce). In this simulation the flow was
simulated up to Re = wu,,L, /v ~ 10%. More details of the boundary conditions and
the computational grid can be found in the reference by the author [44] and also in
Paper 7.

This simulation indicated that the skin-friction coefficient is overestimated with
the Reynolds-stress model. Because of this simulation, the constant vy in Eq. (2.57)
was modified to v = 0.055. Figure 4.3 shows the skin friction and the displacement
thickness for the turbulence models that were used. No transition model is applied.
However, in this simulation the GS and RS models predict weak transition-like
skin-friction distributions. Further downstream, the CH and GS models predict the
skin-friction coefficient correctly, whereas the RS model overpredicts it even after
modifications in parameter +y.

4.4 Wall Jet

The next test case is a two-dimensional plane wall jet that enters along the bottom
of a large pool, through a thin slot. The results were compared against LDA meas-
urements available [45]. The plane wall jet was a test case in the 5th and the 6th
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Fig. 4.4: Spreading rate, maximum velocity decay and two friction coefficients for jet flow problem.

workshops. It is featured as a boundary layer flow as well as a jet flow.

The flow enters in from a 1 cm-wide slot. The dimensions of the pool are 7.45
m X 1.35 m. The inlet velocity is 1 m/s, which corresponds to the inlet Reynolds
number Re = Upb/v = 10000 (here b is the slot height of the jet). The kinematic
viscosity of water at 18°C is v = 1.05 x 107°m?/s. At the inlet, only the u-
velocity and «'-fluctuation component were measured and could be directly utilized
as boundary conditions. Since w' and v’ are unknown at the inlet, their mutual
contribution to the turbulence kinetic energy £ is approximated to be equal to the
contribution of u' alone. Thus, k is approximated as 0.65u'v’ (v = 0 and w' =~
0.3u').

An orthogonal grid is used to simulate the whole pool. The grid consists of 64
cells in the direction of the jet () and 80 cells in the jet normal direction (j). The
grid is heavily clustered in the j-direction to the pool bottom wall and 32 cells are
placed inside the inlet slot height. There is also clustering in the i-direction so that
the majority of the cells in the ¢-direction lies inside the area of interest. Near-wall
cells in the j-direction extend to a distance of about 3 x 107° m (g}, . = 1.6), and
in the i-direction they extend to a distance of about 1.1 x 10~% m, Surface of the
pool is considered as a mirror boundary condition.

Figure 4.4 shows the main parameters of the jet flow. In the figure, 3,2 is
a distance from the wall to the points where the jet velocity is half of the local
maximum velocity Upax. The friction coefficient ¢y is made dimensionless with
the local maximum velocity and ¢ with the inlet velocity Uy. It can be seen that
the spreading rate is best predicted by the GS model. The RSM overpredicts the
skin-friction coefficient here as well as in the boundary layer case. A decay of
the maximum velocity is largest with the RSM, and that is why the skin-friction
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Fig. 4.5: Non-dimensional velocity and shear-stress distributions at station /b = 100. The right-
hand side is a closer view next to the solid surface.

coefficient ¢; is not particularly well captured.

Figure 4.5 depicts the local velocity and turbulent shear-stress magnitudes. In
this station, at a distance of z/b = 100 from the nozzle, the jet is in a self-similar
state. The variables are made non-dimensional by the jet-stream half-width y, ;» and
the local maximum velocity Upax. The two-equation models, both the linear and the
nonlinear alternatives, give coincidental locations of zero shear stress (u"v" = 0)
and zero mean velocity gradient (0U/dy = 0). This well-known deficiency of the
two-equation models (CH and GS) can be clearly seen in the right-hand side of
the figure. The velocity profile at the outer region is better predicted by the RSM,
whereas the shear-stress magnitude is overpredicted by the RSM, which partly ex-
plains the largest decay of the maximum velocity in Fig. 4.4.

4.5 Curved Duct

As a first three-dimensional problem, a flow in a curved duct [46] is considered.
This problem was presented in the 5th ERCOFTAC workshop on refined turbulence
modelling [47] and in Paper 2. The duct, shown in Fig. 4.6, has two straight parts
and a curved section. The rectangular cross-section of the channel has a width of
H = 20.3 cm and a height of 6 x H, as seen in the figure. Only half of the channel is
simulated. The Reynolds number based on the free-stream velocity and the channel
width H is 224 000. This problem is featured by two types of secondary vortices:
a turbulent driven vortex before the bend, and a pressure driven vortex at and after
the bend. The simulation was performed with a grid size of 64 x 48 x 128. The
inlet boundary conditions are taken from the experiments. This simulation was the
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Fig. 4.7: Friction coefficient along the channel wall at stations U2 and D2.

first parallel computing task accomplished in this work. The computation was done
with four processors.

The friction coefficient is presented in Fig. 4.7 at station U2 (x = —0.5H),
before the curve, and at station D2 (x = 4.5H), after the curve. Coordinate s is
defined in Fig. 4.6. As can be seen, the friction is again overestimated with the
RSM. On the right-hand side of Fig. 4.7, at station D2, the experiment indicates
an existence of Gortler-type vortices (scattering in skin friction within a distance
of 5 < s/H < 7) where none of the models shows any indication of it. It is also
possible that the grid might be too coarse in that region to capture the vortices. If the
friction is studied the CH and GS models perform better than the RSM. Although
not shown here, the velocity distributions show similar accuracy for all the models.

4.6 Surface-Mounted Cube

A surface-mounted cube was one of the test cases in the 6th ERCOFTAC turbulence
workshop. This case was taken in the workshop in order to make a comparison
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Fig. 4.8: Schematic figure of the flow around a surface-mounted cube [49].
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Fig. 4.9: Velocities at a side of the cube, u-component is streamwise direction, v perpendicular to
the channel wall and w is spanwise direction.

between the RANS simulations and LES. It was also used in the ERCOFTAC LES
workshop [48].

The flow around a single cube with a side of H = 25 mm placed on the bottom
wall of a plane channel was measured by Martinuzzi et al. [49] with the LDA tech-
nique. A channel height was h = 50 mm and the corresponding Reynolds number
Re;, = 8 x 10%. A schematic figure of the flow is shown in Fig. 4.8.

The computation was made with the CH, GS and RS models. The grid consists
of four blocks and the total number of cells is 884 736. Computing was done using
19 parallel nodes of the Cray T3E computer.

The RANS models give good results at the frontal stations of the cube but behind
the cube the results are not satisfactory. The steady-state RANS calculations do
not capture the mixing of the vortex shedding behind the cube. A time-accurate
LES captures the flow much better behind the cube [48]. The velocity profiles at
two different stations are shown in Figs. 4.9 and 4.10. The first station is at the
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Fig. 4.10: Velocities at the distance of three cube heights downstream from the cube, u-component
is streamwise direction, v perpendicular to the channel wall and wv is Reynolds-stress component.

side of the cube where the RANS models work well, and the second one is at the
wake where the RANS results are poor. At the side of the cube all models predict
quite a good wu-velocity distribution. In the other directions, the Reynolds-stress
model predicts a better agreement with the experimental data. At the station behind
the cube, the re-circulation zone is overestimated by all the models. As mentioned
above, the steady-state RANS does not seem to capture the vortex shedding. Behind
the cube the CH model gives the best results.

4,7 Matrix of Surface-Mounted Cubes

This problem is closely related to the previous one. However, the boundary con-
ditions can be easily defined because the periodicity can be utilized. This problem
was used in the 6th, 7th and 8th ERCOFTAC turbulence-modelling workshops. The
results of the most recent workshop can be seen in the proceedings edited by the
present author [50].

A matrix of cubes, (H = 15 mm) is placed on the bottom wall of a two-
dimensional channel with a height of A = 51 mm. The space between the cubes is
3H. The bulk velocity is u; = 3.86 m/s and the corresponding Rej, = 1.3 x 10%. A
sketch of the geometry is shown in Fig. 4.11. A two-component back-scatter LDA
system was used to measure the velocity components [51].

The computation was made with the CH, GS, RS models and a variant of the
k — w model [41,52]. The computational grid consists of 635 904 control volumes
in nine blocks. Because the flow is virtually fully developed, the periodic boundary
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Fig. 4.11: View and coordinate system of the cube matrix in a channel [51].

conditions could be used.

Figure 4.12 shows the u-component of the velocity, W"u"- and m’—proﬁles.
The profiles are drawn in a vertical plane (z/H = 0). It can be seen that the RSM
predicts the velocity profile better close to the bottom wall, but right next to the
wall, the RSM does not capture the rise of the back flow velocity. The k£ — w model
predicts too strong a reverse flow. However, at the upper part of the channel, the
k — w velocity profile is in good agreement with the experimental data. The pro-
files of the u- and w-velocity components, and the W'w"-shear-stress are drawn in
a horizontal plane (y/H = 0.5) in Fig. 4.13. In this direction none of the models
predict the cross-flow component w to be strong enough. It was found in the 8th
ERCOFTAC turbulence-modelling workshop [50] that LES or DNS captures velo-
city profiles better than the RANS simulations also in this case. On the basis of this
example it is assumed that the steady-state RANS cannot capture-vortex-shedding
type phenomena accurately. The full Reynolds-stress model predicts the cross-flow
somewhat better than the eddy-viscosity assumptions, whereas in this case the GS
model does not seem to give any improvement.

The comparison of the Reynolds-stress profiles for the linear two-equation mod-
els is somewhat fuzzy because the eddy-viscosity assumption works well for the
off-diagonal component, but not well for the diagonal components. Therefore, it
is slightly surprising that Chien’s k£ — ¢ model predicts the best profiles for the
Reynolds stresses in Fig. 4.12. However, the shear-stress component u"w” is best
captured by the RSM in Fig. 4.13.
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4.8 Return Channel

The next test case is a flow in a return channel. The geometry of the present test
case given in Fig. 4.14 is typically used to join the exit from the first stage of a
centrifugal machine to the inlet of the second stage. Experiments are provided
by Concepts ETI, Inc. [53]. A flow field in the return channel is affected by a
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Fig. 4.15: Pitch-averaged meridional velocity C,,, and tangential velocity C; from the hub to the
shroud at station 6.

strong streamline curvature, separations take place and three-dimensional vortices
occur. Hence, simulation of this flow is a highly demanding test for turbulence
modelling. Because of the asymmetric stretching of the velocity field, it is expected
that Reynolds-stress models perform better than a traditional two-equation model.
This simulation is presented in Paper 4.

The CH, GS and RS models were applied for this problem. Only one deswirl
channel is simulated and the grid size is 655 360. The computational domain begins
at station 5 (see Fig. 4.14). Experimental values are set for the velocities corres-
ponding to the average inlet Mach number 0.15.

Measurement station 6 is located after the crossover at the leading edge of the
deswirl cascade. The profiles for the meridional and tangential velocities are shown
in Fig. 4.15. Station 8 is located 47.8 mm after the bend (see Fig. 4.14) and the
velocity profiles are shown in Fig. 4.16. The RS and GS models seem to predict
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Fig. 4.17: Surface streamlines at the deswirl cascade and at the bends with the GS model. The inset
figures are from the leading and trailing edge regions.

the flow better than the simpler CH model. For example, the tangential velocity
at station 6 contains a peak close to the hub, which is captured well by the RSM.
The GS model also predicts the peak, but it is smaller. All the turbulence models
have difficulties at the shroud area. They underpredict the meridional velocities
and overpredict the tangential velocities. At the hub region of station 6, the size of
the separation bubble can be estimated from the meridional velocities in Fig. 4.15.
The RSM predicts the strength and the size of the bubble well. At station 8, the
meridional velocities are predicted similarly for all the methods, but the shape of
the tangential velocity is captured only by the RSM. Again, the GS model results
are somewhat better than the CH model.

Surface streamlines are shown in the case of the GS model in Fig. 4.17. Complex
three-dimensional separations and vortices are seen in the flow field. For example,
at the leading edge of the vane, separation occurs on the pressure side. Separation
takes place also at the trailing edge.
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4.9 Centrifugal Compressor

The NASA low-speed compressor is the next test case [54]. In this study the GS
model was not applied, but instead the algebraic Baldwin-Lomax (BL) model [9]
was used. The simulations and details of the BL model are described in Paper 5.

The test case is a backswept impeller with a design tip speed of 153 m/s. The
main dimensions can be seen in Fig. 4.18. The impeller is followed by a vaneless
diffuser that generates axisymmetric outflow boundary conditions. The impeller has
20 blades with a backsweep of 55°. The inlet radius is 0.435 m and the exit radius
0.765 m. The clearance between the impeller blade tip and the shroud is a constant
2.54 mm from the impeller inlet to the impeller exit. This is also modelled in the
simulation. The mass flow rate is 30 kg/s and the rotation speed 1862 rpm at the
design point. With these values the total pressure ratio over the impeller is roughly
1.14, the temperature ratio 1.04 and the adiabatic efficiency 92.2 per cent.

Extensive experimental results are provided by Hathaway er al. [54]. The ex-
perimental data contains velocity measurements from 20 survey planes, pressure
distributions on the blade surfaces and on the shroud, performance measurements
and some flow visualizations. In the simulation only one passage is modelled. The
grid size is 1281 024 computational cells and it contains five different blocks.
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Figure 4.19 shows the efficiencies and pressure ratios across the impeller with
different models and with different grid densities. It can be seen that the total to
static efficiencies are very close to the experimental values for the BL and CH mod-
els. It should also be noted that the CH model predicts good values for a very coarse
grid size with only 20000 nodes. The RSM seems to predict a bit lower values for
the efficiency. The BL and CH models predict exactly the correct value for the total
pressure ratio with the densest grid, whereas the RSM predicts a somewhat lower
value again. Lower efficiencies and pressure ratios for the RSM could be explained
by the higher skin friction, as is generally predicted by the present RSM.

Figure 4.20 depicts the meridional velocities at 96 per-cent distance downstream
from the leading edge and 9.4 per-cent downstream from the trailing edge. The
velocities are averaged from the hub to the shroud. The velocity distributions are
quite similar inside the impeller channel. After the impeller, the RSM seems to
predict the history effect caused by the impeller blades better.
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4.10 Turbulent Mixing in the Core of a Nuclear Re-
actor

As an example of the efficiency and the importance of parallel processing, the sim-
ulation of a fuel bundle of a nuclear power plant is described. More details of the
thermodynamic behaviour of a fuel rod bundle can be found in Paper 6. The pur-
pose of this study was to predict the turbulent mixing of the temperature inside a
core.

The Loviisa VVER-440 units are of the pressurized water reactor-type (PWR),
and thus, the cooling of the reactor core under normal operation is done by water
that can reach a subcooled boiling state only locally. The fuel is located in the rods
that are bound up as a bundle. Each bundle has 126 fuel rods. The dimensions of a
single rod are shown in Fig. 4.21. The top of the bundle is shown in the Fig. 4.22.
For the simulation only one twelfth of a fuel rod bundle is modelled. This 30°
sector contains six full and nine half rods. The volume grid has 7784 640 cells in
216 blocks. Turbulence is simulated with the CH model. The computations were
done on a Cray T3E computer. As a main result of the simulations, the outflow fluid
temperature distribution was predicted.

Because the simulations were run on a massively parallel computer, the Cray
T3E, the computational domain had to be decomposed into sufficiently small blocks
in order to obtain an acceptable balance between the processors (Paper 3). In this
simulation, 128 of the total of 224 processors available were utilized. After the
decomposition the grid consists of 303 computational blocks. The largest block
contains 61 568 cells. In the original grid the largest block has 532 480 cells. Even
if the grid is made up of simple H-type blocks, the topology is complicated owing
to the large number of blocks. The boundary condition file contained 9097 lines
including 1696 pairs of connections between the blocks. During an iteration cycle,
the boundary conditions are updated in 2 554 patches by MPI. The number of vari-
ables changed in one patch is 13000 on average, so altogether about 34 million
variables are changed during each iteration cycle.

The simulation took roughly 5 days on the T3E with 128 processors. The ef-
ficiency of this parallelization was about 85 per cent. This means that if only one
processor had been used, the simulation would have taken 5 - 128 - 0.85 = 544
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Fig. 4.22: Fuel rod bundle in its casing. One bundle contains 126 rods. The diameter of a fuel rod is
9.1 mm and the total length is 2440 mm. The simulation model can be seen as a dashed line.

days. The speed of the T3E processor is approximately one fourth of the speed of
the latest workstation processors (SGI R12k), so the simulation would have taken
roughly 140 days using only one R12k. This means that the simulation would not
have been feasible. Only parallelization makes it possible to simulate large systems.

4.11 Improved Solid-Wall Boundary Treatment

As a part of this work also solid-wall treatment is studied in Paper 7. In this last
part of the thesis, novel discretized equations next to the surface are developed.
These equations include new formulae for the velocity derivatives at the wall, for the
turbulent stresses in the momentum equation close to the surface, for the production
of turbulent kinetic energy in the first computational cell and some other smaller
improvements. The proposed methods are applied to a channel flow, a zero pressure
gradient boundary layer, the ONERA M6 wing and the BAe Hawk trainer. Although
these new methods are applied with one particular turbulence model, Chien’s & —
€, the most important refinements are directly applicable any eddy-viscosity type
approach or with small modifications to the RS models.

For the original model it is shown that the non-dimensional first cell height
should have a value less than two, if one percent accuracy is desired in the friction
coefficient. Compared to the original modelling, roughly three times larger cells
next to the solid boundaries can be used in order to retain the same accuracy. As an
example of the new method the results for the flat-plate boundary layer simulation
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800 000 for the flat-plate boundary layer.

(same case as in Section 4.3) is presented in Fig. 4.23. In the figure d} is the height
of the first cell next to the surface. The new method clearly improves the results
when 2 < d} < 13. Accuracy is still very good at the value of the non-dimensional
height df = 7. Similar results are obtained with the ONERA M6 wing and the BAe
Hawk trainer in the Paper 7.

4.12 Summary of the Validations

The present Reynolds-stress model overpredicts the skin friction. This can be
clearly seen already in the boundary layer case. In two-dimensional flows without
rotation, the RSM and EARSM do not work any better than the eddy-viscosity
models. This is seen in the channel, the boundary layer and in the wall jet flows.
In those cases the eddy-viscosity assumption performs even better in some respect.
However, if the flow is three-dimensional, the RSM seems to predict the overall
flow field better. This is especially true for the cross-flow components. This can be
seen in the cube and the matrix of cubes flows. In addition, in the return channel,
the tangential components are better predicted by the RSM. The EARSM generally
predicts three-dimensional flows better than eddy-viscosity models, but not as well
as the RSM.

In the flows with large separations, the steady-state Reynolds-averaged Navier—
Stokes (RANS) equations do not seem to be an appropriate method. These flows are
usually time dependent, and thus, the steady-state RANS cannot predict the vortex
shedding like phenomena. It could be that when the time-dependent eddies are
of the size of the characteristic length of the problem itself, the averaging approach
fails. This phenomenon is clearly seen in both cube flows. It could also be one of the
reasons why in the return channel flow, the velocity distribution in the shroud is not
well captured (Fig. 4.15). In the return channel the real flow field pulsates because
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of the rotor. In the simulation, the averaged velocities from the measurement were
used.

In order to take into account the rotational effects one must use a method sens-
itive to rotation. However, only the RSM is able to capture the trend of skin friction
in the rotating channel correctly. Although the RSM captured the rotating effects
better in the rotating channel flow, it does not seem to bring anything new in the
NASA low-speed compressor. Thus, in turbomachinery if there is no large separ-
ation, a turbulence does not seem to play an important role in predicting the total
values or the velocity distributions. In rotating turbomachinery, the driving forces
are much stronger than the turbulent forces, and thus, the turbulence model is not so
important. However, the situation at an off-design point could be different. In the
diffuser, where the history effects caused by the impeller are important, the RSM
predicts better velocity profiles.
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5 Conclusions

In this thesis, the validation of different types of turbulence models in various tur-
bulent flows is presented. Turbulence is modelled using a traditional engineering
approach, i.e. by time averaging the fluctuations. The turbulent forces are taken
into account by using the Reynolds stresses. A new Reynolds-stress turbulence
closure is developed as a combination of existing methods parameterized by the
author.

Most of the validation cases were simulated with three alternatives: Chien’s two-
equation model, an explicit algebraic Reynolds-stress model, and the full Reynolds-
stress closure. The Reynolds-stress model uses the ideas from Chien’s k — ¢ model,
Shima’s RSM, and the RSM by Speziale et al. The dissipation equation is taken
from Chien’s model, the low-Reynolds number part of the dissipation tensor and
the pressure-strain tensor are based on Shima’s work. The high-Reynolds number
modelling of the pressure strain tensor was originally developed by Speziale et al.

New numerical methods are developed to couple the momentum equations and
the low-Reynolds number Reynolds-stress equations. A novel anisotropic coupling
of the Navier—Stokes and the Reynolds-stress equations is introduced. Coupling
between the momentum equation and the Reynolds stresses is made possible by us-
ing the production term. In the evaluation of the fluxes, the turbulence equations
are coupled with the inviscid part of the Reynolds-averaged Navier—Stokes equa-
tions, and thus, it is feasible to use Roe’s method. For the turbulence quantities, the
second-order upwind scheme is applied with a limiter which was found to enhance
the robustness of the scheme. The discretized equations are solved using an implicit
method with a multigrid acceleration for convergence. In the Reynolds-stress and
k — € equations, the source term is linearized in a simplified manner. In addition,
the limitation of the Reynolds stresses was found to be essential in order to simulate
difficult tasks. These methods are proven to be numerically stable and they have a
fast convergence rate.

In order to be able to compute large cases, the parallelization is an important
tool to reduce computing times. In most of the present simulations the parallel
processing has shortened the computing time from the level of a week to the level
of a day. The performance of the parallelization is perfect with the “academic”
cases and it is still very good with real, complex topologies like with a reactor core.

In complex geometries with a streamline curvature, the simulation of 3-D effects
and flow separation often fails with the £ — ¢ model. This is due to the isotropic
Boussinesq approximation as well as the history effect of Reynolds stresses. Gen-
erally, the best results for the 3-D cases are achieved by the RSM, although there
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are some locations where the situation is not so clear. The cross-flow is generally
better captured by the RSM. In simpler 2-D cases, the two-equation models per-
form generally better. In the flows that contain large time-dependent vortices, like
vortex shedding behind the cube, the Reynolds-averaged Navier—Stokes equations
might not be an appropriate tool. The problem arises from what time-dependent be-
haviours, like turbulent fluctuation, should be taken into account by the turbulence
model and which part should be solved in flow equations. The difference between
the turbulent scales and the main flow scales is vague in this and many similar cases.

One of the biggest shortcomings of the RSM is still the modelling of the wall
proximity effects. In the present model, the skin friction is systematically over-
predicted. The promising elliptic relaxation method was tested in a simple rotating
channel flow. Although the results were good, the generalization of the method is
not possible without further development. The boundary conditions in the curvilin-
ear coordinates are not fully evaluated. In the literature, there is a large number of
different ideas to take account of the wall proximity effects, but none of the them
has had extensive validation for complex flows.

The Reynolds-stress model has been the promising future method for over 25
years now. In principle, it contains more information about the turbulent forces
than the simpler approaches. Moreover, it includes the anisotropy of these forces,
by taking separately into account the production and the history of each Reynolds-
stress term. However, the complexity of the unknown source terms might bring too
much uncertainty to the model. The use of the RSM requires a specialist to define
the boundary conditions and to get reasonable results. Nevertheless, in some com-
plex flows it brings more information about the flow. In order to model turbulence
successfully it requires skill, knowledge of the model, an understanding of fluid dy-
namics, and experience. This is true for all turbulent models, and especially true for
the Reynolds-stress model. There is no universal law of turbulence.
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