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This work, concentrating on improving the quality of multi-modal medical image fusion, was carried out in the Brain
Research Unit of the Low Temperature Laboratory at Helsinki University of Technology (TKK) in close collaboration
with the Advanced Magnetic Imaging (AMI) Centre of TKK.

Modern medical imaging devices produce large amounts of highly detailed information about the anatomy and
function of various body parts. Different imaging modalities are typically sensitive to different properties of the
underlying tissue and therefore produce complementary information. In multi-modal neuroimaging, data from
different modalities is fused together to facilitate better analysis of the structure and activity of the brain or of other
parts of the nervous system.

Multi-modal image fusion in human neuroimaging has many uses both in clinical settings and in research. Since the
different imaging modalities reveal different properties of the nervous system, joint visualization helps to combine all
this information for interpretation. Typically, data are combined to visualize the anatomical locations of the functional
activations. In addition to joint visualization, multi-modal neuroimaging can also incorporate information from one
modality to the analysis of data in another modality and thereby lead to more accurate results.

In the core of multi-modal imaging lies image registration that brings together the information from two or more
imaging modalities. Since the spatial alignments and resolutions of the registered images typically differ, resampling is
required to bring the data into a common coordinate frame for visualization or for further analysis. This thesis work
concentrates on the three key stages of the multi-modal image fusion: registration, resampling, and visualization. The
introduced enhancements for mutual-information registration allow for sub-sample accuracy even in the worst-case
scenarios and the novel two-stage resampling algorithm produces smaller resampling errors than any of the currently
used methods. Furthermore, the proposed enhancement to combine triangle meshes with volume rendering techniques
provides fast high-quality visualization. In addition to these technical improvements, an application of diffusion tensor
imaging to delineate the course of peripheral nerves is presented.





AB

VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU
PL 1000, 02015 TKK

http://www.tkk.fi

Tekijä Mika Seppä

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 12.06.2007 Korjatun käsikirjoituksen päivämäärä 21.08.2007

Väitöstilaisuuden ajankohta 17.09.2007

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia

Osasto

Laboratorio

Tutkimusala

Vastaväittäjä

Työn valvoja

Työn ohjaajat

Tiivistelmä

Asiasanat lääketieteellinen kuvantaminen, kuvien kohdennus, uudelleennäytteistys, visualisointi

ISBN (painettu) 978-951-22-8927-1

ISBN (pdf) 978-951-22-8928-8

Kieli englanti

ISSN (painettu)

ISSN (pdf)

Sivumäärä 66 s. + liit. 59 s.

Julkaisija Kylmälaboratorio, Teknillinen korkeakoulu

Painetun väitöskirjan jakelu Kylmälaboratorio, Teknillinen korkeakoulu

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2007/isbn9789512289288/

Laadullisia parannuksia multimodaaliseen neurokuvantamiseen

X

Teknillisen fysiikan ja matematiikan osasto

Systeemianalyysin laboratorio

Sovellettu matematiikka

prof. Rainer Goebel

prof. Raimo P. Hämäläinen

prof. Matti Hämäläinen & prof. Riitta Hari

X

Tämä väitöskirjatyö, jossa esitetään uusia tapoja parantaa eri kuvantamismenetelmien tuottamien kuvien yhdistämistä,
on tehty Teknillisen korkeakoulun Kylmälaboratorion aivotutkimusyksikössä läheisessä yhteistyössä TKK:n
AMI-keskuksen (Advanced Magnetic Imaging Centre) kanssa.

Nykyaikaiset lääketieteelliset kuvantamismenetelmät tuottavat suuret määrät tarkkaa tietoa kehon eri osien anatomiasta
sekä toiminnasta ja eri kuvantamismenetelmillä saatu tieto täydentää yleensä toisiaan. Multimodaalisessa
neurokuvantamisessa eri menetelmillä saadun tiedon yhdistäminen helpottaa aivojen tai muun hermoston rakenteen ja
toiminnan tutkimista. Kuvantamismenetelmien yhdistämisestä on paljon hyötyä sekä kliinisissä sovelluksissa että
perustutkimuksessa. Tyypillisessä käytössä aivojen aktivaatiota ja rakennetta erikseen kuvaavien menetelmien tulokset
visualisoidaan niin, että mitattu aivotoiminta on helppo paikallistaa suhteessa aivojen anatomiaan. Eri menetelmien
tuottaman tiedon yhdistäminen mahdollistaa usein myös tarkemmat tulokset, kun yhden kuvausmenetelmän tietoa
voidaan käyttää toisen menetelmän tulosten mallinnuksessa ja analyysissa.

Eri menetelmien tuottamien kuvien tarkalla kohdennuksella on keskeinen rooli kuvatietojen yhdistämisessä. Koska
kuvien tarkkuus sekä kolmiulotteinen asemointi poikkeavat yleensä toisistaan, kuvat joudutaan
uudelleennäytteistämään ennenkuin ne voidaan tuoda yhteiseen koordinaatistoon visualisointia tai analyysia varten.

Tämä väitöskirjatyö keskittyy multimodaalisen kuvantamisen kolmeen keskeiseen vaiheeseen: kohdennukseen,
uudelleennäytteistykseen sekä visualisointiin. Työssä esitetyt parannukset kuvien kohdennukseen mahdollistavat alle
näytekoon kohdennustarkkuuden huonoimmassakin tapauksessa ja uudelleennäytteistykseen kehitetty uusi
kaksivaiheinen menetelmä tuottaa pienempiä virheitä kuin mikään aiempi menetelmä. Visualisoinnissa työ yhdistää
kolmioverkkoihin perustuvan pintaesityksen tilavuuskuvien suoraan visualisointiin käytettyihin
säteenheittomenetelmiin ja mahdollistaa erittäin nopean korkeatasoisen visualisoinnin. Teknisten parannusten lisäksi
esitetään sovellus, jossa diffuusiotensorikuvauksen avulla erotetaan ääreishermot niitä ympäröivästä kudoksesta.
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Kalle Väisälä (Finnish Academy of Sciences and Letters), the Helsinki University of
Technology, and the Hospital District of Helsinki and Uusimaa (HUSLAB). I am also
thankful for the support of the Finnish Graduate School of Neuroscience (FGSN).

It has been a great privilege and joy to work in the Low Temperature Laboratory
which provides excellent facilities and good spirit for its many researchers to stay at
the cutting edge of science. These circumstances are largely due to the efforts of the
laboratory’s first director, late Academician Olli V. Lounasmaa, and the current director
Prof. Mikko Paalanen.

I am equally grateful to the primus motor of the Brain Research Unit, Prof. Riitta
Hari, for creating the top-class possibilities for our interdisciplinary group to work on
the forefront of the brain research. Her aptitude to master all the sides from admin-
istration to science and from neurophysiology to technical details has never ceased to
amaze me.

I thank my supervisors, Prof. Riitta Hari and Prof. Matti Hämäläinen, for all the
guidance, support, and positive attitude I have received during these years, both related
and unrelated to this thesis. You gave me the inspiration and the possibility to work on
this field that I have so much enjoyed.

I am grateful to my supervising professor, Prof. Raimo P. Hämäläinen from the
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Introduction 1

Chapter 1

Introduction

Modern medical imaging devices produce large amounts of highly detailed informa-
tion about the structure and function of various body parts. Different medical imaging
modalities are sensitive to different properties of the underlying tissue and therefore
produce complementary information. In multi-modal neuroimaging, data from dif-
ferent modalities are fused together to facilitate better analysis of the structure and
function of the brain or of other parts of the nervous system.

Medical imaging modalities can be divided into anatomical and functional, ac-
cording to the data they produce. Anatomical imaging provides information about the
structure and other time-invariant properties of the tissue. On the other hand, func-
tional imaging produces information about the dynamic behavior of the imaged body
part, typically in a time scale ranging from a few milliseconds to a few seconds. The
functional imaging of the human brain reflects neural activations, either directly or
indirectly.

Multi-modal neuroimaging has many applications in both clinical and research
studies. Joint visualization of data from different imaging modalities is needed to
combine all this information for interpretation. For example, functional and structural
information is typically combined to visualize the anatomical locations of the func-
tional data. In addition to joint visualization, multi-modal neuroimaging can bring in-
formation available from one modality to the analysis of data in another modality. For
example, boundary element models (BEMs), created from anatomical images, allow
more accurate forward modeling of magnetoencephalographic and electroencephalo-
graphic signals and thus lead to more precise estimates of the underlying sources.

At the core of multi-modal neuroimaging lies the data registration (also known as
co-registration or spatial normalization) that brings together the information from two
or more different data-sets. In case of 2-D or 3-D data, the specific terms “image
registration” or “volume registration” are often used. Since the spatial alignments and
resolutions of the registered data-sets typically differ, resampling is required to bring
the data into a common coordinate frame for visualization or for further analysis.

Despite the diversity of applications in multi-modal imaging, the following three
key stages are practically always present: registration, resampling, and visualization.
Even in the absence of an explicit resampling stage, the data are typically implicitly
resampled during visualization or already in the registration stage.



2 Introduction

1.1 Contributions of the Thesis

This work aims at improving the quality of multi-modal neuroimaging. It presents
improvements to the three key aspects of image fusion: registration (P1), resampling
(P2), and visualization (P3). The last publication (P4) presents an application of multi-
modal imaging.

In the analysis of multi-modal data, high-quality image processing algorithms are
essential to guarantee that the correlations found are actually real and not produced by
the registration and resampling errors or by other artifacts of the methods. In particular,
the otherwise very versatile mutual-information (MI) registration metrics are known to
contain in certain situations sampling-related artifacts that reduce the registration ac-
curacy. These artifacts are currently one of the key concerns and limit the applicability
of these metrics in e.g. motion-correction applications.

For the joint visualization of the analyzed multi-modal data, the tendency is to
combine more and more information for simultaneous viewing. To allow interactive
manipulation of such complex scenes, it is crucial to render each geometrical model or
other displayed data in minimal time while maintaining high visual quality.
Publication P1 of this Thesis concentrates on the sub-sample accuracy of the MI

registration. A new concept of continuous sampling is developed and it leads to a
higher-order sampling method that reduces the sampling-related artifacts and improves
the registration accuracy. The simulation experiments reveal and measure the regis-
tration errors inherent in the MI metric itself with sub-sample accuracy. The results
indicate a worst-case average error of 0.2–0.3 samples for the currently used methods
and of only 0.04 samples for the suggested higher-order method.
Publication P2 introduces a novel two-stage resampling method that combines

Fourier-space up-sampling with traditional interpolation. Efficient implementation de-
tails are discussed and a new algorithm for Fourier-space up-sampling is presented.
The experiments show that the proposed two-stage resampling method produces 2–10
dB better signal-to-noise ratio (i.e. signal to interpolation error ratio) than the previ-
ously used methods.
Publication P3 introduces a novel technique for visualizing T1-weighted magnetic

resonance images (MRIs) of the human brain. A previously used method in volume
rendering is combined with texture-mapped triangle meshes. The work concentrates
on minimizing errors when the 3-D geometry is opened onto a flat 2-D texture image.
A novel idea of measuring the distortion with respect to the data resolution rather than
to the geometry is introduced. The proposed visualization technique allows the use of
larger triangles, thereby providing high-quality visualization with excellent speed.
Publication P4 presents the first diffusion tensor imaging and tractography re-

sults of human distal peripheral nerves. The results show that the maximum fractional
anisotropy (FA) of the diffusion at the nerves covaries with the nerve size. The nerves
were consequently delineated by tractography using two pieces of software: one freely
available on-line and other implemented by our laboratory. Our software employed
tensor interpolation and different tractography algorithm, and thereby allowed the reli-
ability of the results to be assessed. The visualization combined the tracts with anatomy
and employed the method of publication P3.

This Thesis introduces enhancements to the key methods used in medical image
processing. Therefore, these novel algorithms are not limited to any specific use but
can be employed in a large variety of applications ranging from the intra-subject reg-
istration to inter-subject registration, group averages, and brain atlases.
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1.2 Outline of the Thesis

This summary provides background information for multi-modal neuroimaging in a
concise form, briefly presenting the current state-of-the-art of the developed methods.
First, Chapter 2 provides an overview of the medical imaging modalities relevant to
this work. Then, the three key aspects of the multi-modal imaging are described in
detail: the registration (Chapter 3), resampling (Chapter 4), and visualization (Chapter
5). Finally, the results are discussed and the conclusions are drawn in Chapter 6.

For simplicity, medical data-sets in this thesis are called “images” regardless of
whether they are 2-D images, 3-D volumes, or something else. The samples in these
images are called pixels. The specific terms volume, voxel, etc. are used when it is
necessary to differentiate from 2-D images.
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Chapter 2

Medical imaging modalities

This Chapter describes the anatomical and functional imaging modalities directly rel-
evant to this Thesis. Here, magnetic resonance imaging (MRI), diffusion tensor imag-
ing (DTI), and functional magnetic resonance imaging (fMRI) are considered as sep-
arate modalities, although they employ the same imaging device, i.e. an MRI scanner.
However, MRI, DTI, and fMRI data reflect very different properties of tissues. Es-
pecially for image registration (Chapter 3), images from these methods and even MR
images with different weightings (see Fig. 2.1) are considered to originate from differ-
ent modalities.

MRI and DTI are central to this Thesis and are therefore explored in greater detail
whereas fMRI, magnetoencephalography (MEG), electroencephalography (EEG), and
computed tomography (CT) are described more briefly. Nowadays, fMRI, MEG, and
EEG are the main noninvasive functional imaging modalities used in brain research.
The Brain Research Unit at the Low Temperature Laboratory, where this work has been
conducted, is known as one of the pioneers in MEG development. The results of func-
tional imaging are typically combined with the anatomical information provided by
MRI, although CT provides better resolution with lower geometrical distortions. How-
ever, the soft-tissue contrast is poor in CT and the inherent radiation dose is acceptable
only for clinical studies.

2.1 Magnetic resonance imaging

Magnetic resonance imaging (Lauterbur, 1973;Mansfield, 1977) employs nuclear mag-
netic resonance (NMR) (Bloch, 1946; Purcell et al., 1946) for non-invasive 3-D imag-
ing. The NMR phenomenon is based on the quantum-mechanical properties of the pro-
tons and neutrons in an atom’s nucleus. All nuclei containing odd numbers of protons
or neutrons have a net spin angular momentum and a related net magnetic moment.
In medical imaging, hydrogen 1H (single proton) is the most commonly measured nu-
cleus due to its natural abundance in the tissues. In the following discussion of NMR,
we assume that the target nucleus is that of 1H.

2.1.1 Nuclear magnetic resonance

The spin of the proton can take either a value of 1/2 or −1/2. When a proton is placed
in a magnetic field with field strength B0, the spin-related magnetic moment is either
parallel (low-energy spin state) or anti-parallel (high-energy spin state) to the field
and precesses about it. The angular frequency of this precession is ω0 = γB0 with
the respective Larmor frequency f = ω0/2π = γB0/2π (Freeman, 1998). Here, γ is
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the nucleus-specific gyromagnetic ratio; for hydrogen protons γ/2π = 42.58 MHz/T
(Huettel et al., 2004).

The difference between the proton’s two energy levels is ΔE = γB0h/2π , where h
is Planck’s constant. At a thermal equilibrium state, the lower energy level is slightly
more populated (about 20 parts per million at 37◦ C and 3 T field) according to the
Bolzmann equation Nhigh/Nlow = exp(−ΔE/kT ) (Freeman, 1998). Here, k is the
Boltzmann constant, T is the absolute temperature, and Nhigh and Nlow are the number
of protons in the high and low energy states, respectively.

In a group of protons, this population difference in the energy levels produces a
net magnetizationM0. As the protons precess at random phases, the net magnetization
vector is parallel to the magnetic field B0. The MRI manipulates this net magneti-
zation vector by applying radio-frequency (RF) electromagnetic pulses at the Larmor
frequency. At this specific frequency, protons in the lower energy state can absorb a
photon with energy ΔE and enter the higher energy state. Soon after the excitation, the
protons re-emit their excess energy at the Larmor frequency and return to the lower
state.

The net magnetization vector can be rotated into the plane orthogonal to the mag-
netic field B0 by using an RF excitation pulse with correct length and orthogonal to
B0. Such a pulse is called the 90◦ pulse as it flips the net magnetization vector by 90◦.
The magnetic moments of the individual protons are now in phase and give rise to the
precessing transverse net magnetization that produces the measured NMR signal. Over
time, the synchrony is gradually lost and the transverse magnetization disappears. This
phenomenon, known as the transverse relaxation, is caused by two effects.

Spin–spin interactions, the disturbances the spins cause to one another, are the
intrinsic cause for the transverse relaxation. The signal loss by this mechanism is called
T2 decay and is characterized by the spin–spin relaxation time T2. The transverse
magnetizationMxy disappears according to

Mxy(t) =M0 e
−t/T2 (2.1)

where t is the time after the 90◦ pulse (Huettel et al., 2004). An extrinsic cause for the
transverse relaxation is the magnetic field inhomogeneity experienced by the protons.
Variation in the local field strength affects the precession frequency and leads to the
loss of coherence. The signal loss due to the combined effects of spin–spin interactions
and the field inhomogeneities is known as T∗2 decay and is characterized by the time
constant T∗2. The T

∗
2 decay is faster than the T2 decay (T

∗
2 < T2) due to the added effect

of field inhomogeneity.
The local magnetic-field variations cause some of the protons to precess faster and

some slower. The slow protons will lag behind, whereas the fast protons will be ahead.
In a spin-echo sequence, a 180◦ refocusing RF pulse inverts the phase. Now, the faster
protons are behind in phase and will soon catch the slower ones again. As the phase
coherence returns for a moment, the transverse magnetization re-emerges and causes
an echo in the measured RF signal. The echo signal is employed for the MRI and in
addition to spin-echo, other common pulse sequences employ gradient-echo imaging
where the echo is produced by magnetic field gradients.

Immediately following the original 90◦ pulse, the longitudinal net magnetization is
zero and the two energy levels are equally populated. The time constant that describes
how fast the longitudinal component returns back to the thermal equilibrium is called
the spin–lattice or longitudinal relaxation time (T1). The recovery of the longitudinal
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Table 2.1: Approximate values for the relaxation times at 3 T field strength (Wansapura et al.,
1999).

T1 (ms) T2 (ms) T∗2 (ms)
Gray matter 1300 110 45
White matter 800 80 45

T1 T2 PD

Figure 2.1: T1-weighted (T1), T2-weighted (T2), and proton-density weighted (PD) MR im-
ages. Imaged at 3 T at the AMI Centre of TKK.

component is given by equation (Huettel et al., 2004)

Mz(t) =M0(1− e−t/T1) (2.2)

and is always slower than the loss of the transverse component: T1 > T2 > T∗2.

2.1.2 Signal formation

The NMR phenomenon is applicable for medical imaging because each tissue type
has its specific relaxation time (see Table 2.1 for examples). By varying the RF pulse
sequences, the measured signal can be made sensitive to T1, T2, or T∗2 effects. The
timing of the pulse sequences is governed by two important parameters.

The first parameter, repetition time (TR), is the time interval between successive
excitation pulses. If TR is small relative to the relaxation time T1, only a part of
the original longitudinal magnetization M0 has recovered (Eq. 2.2) before the new
excitation. Therefore, the transverse magnetization component Mxy after the second
excitation is reduced to

Mxy(t) =M0(1− e−TR/T1)e−t/T2 . (2.3)

The second parameter, echo time (TE), is the time interval between the excitation
and the data acquisition occurring at the signal echo. The transverse magnetization is

Mxy(TE) =M0(1− e−TR/T1)e−TE/T2 (2.4)

at the time of the acquisition and relates directly to the measured MR signal.
By controlling the parameters TR and TE, it is possible to maximize tissue contrast,

i.e. the difference in signal strength between the tissue types. Fig. 2.1 shows examples
of T1-weighted (intermediate TR, short TE), T2-weighted (long TR, intermediate TE),
and proton-density (long TR, short TE)MRIs. Proton-density (PD) imagingminimizes
the effects of the exponential terms in 2.4 and measures the signal strength related to
M0 directly, i.e. the density of the protons producing the signal.
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2.1.3 Image formation

Magnetic-field gradients are central for MR image formation (Lauterbur, 1973; Mans-
field, 1977). These gradients cause spatial variations in the magnetic field and thus the
magnetic-field dependent Larmor frequency is different at different points of the tis-
sue. When such a field gradient is applied during the narrow-band RF excitation pulse,
only protons in a thin slice of the imaged volume are capable of absorbing the energy.
This procedure is called slice selection as the subsequently measured MR signal will
only come from this single excited slice.

Two other gradients, orthogonal to each other and to the slice selection gradient, are
employed for spatial encoding of the received signal. These gradients correspond to
the row and column directions of the image on the excited slice. One of these gradients
is applied during the signal acquisition and it varies the field strength along the image
row direction. Therefore, the protons at each column position emit their energy at a
different Larmor frequency.

Another magnetic field gradient is applied for a short time just prior to signal ac-
quisition. This gradient is along the column direction so that the Larmor frequency
for each image row is different. Therefore, the protons in a certain image row precess
faster than protons in another row. After this gradient is turned off, all protons return to
the original precession frequency but maintain their phase difference acquired during
the presence of the field gradient.

These two gradients create a frequency–phase encoding scheme, called k-space,
for the acquired signal. The k-space representation of the image is typically collected
one row at a time, i.e. the frequency-encoded signal is recorded for a certain phase
encoding and then repeated with another phase encoding. The final MR image can be
reconstructed from this collected k-space image by a 2-D Fourier transform.

The explanation above describes the basics of the MR imaging and many different
variations of the MRI pulse sequences exist. Sequences can employ different flip an-
gles other than 90◦, use multiple echoes to collect more than one row of the k-space
image for each excitation, sample the k-space along special trajectories, and even in an
in-homogeneous fashion. A 3-D volume is typically imaged one slice at a time using
the technique above. However, 3-D volumes can also be collected using 3-D k-space
pulse sequences, where the slice selection gradient is discarded and a second phase-
encoding gradient is introduced. The primary advantage is the higher signal-to-noise
ratio (SNR) as the volume contains more excited spins contributing to the MR sig-
nal. Such pulse sequences are used especially for high-resolution anatomical images
(Huettel et al., 2004).

2.2 Diffusion tensor imaging

Diffusion tensor imaging (DTI) measures the random movements of water molecules
(Basser et al., 1994b; Le Bihan, 1995) and can reveal organized micro-structure that
limits these movements in certain directions. DTI has been mainly applied in the study
of fiber tracts and white matter structures of the human brain (Pierpaoli et al., 1996),
although other applications have also emerged. The basics of the DTI are explained
below, largely based on a recent review by Le Bihan (2003).



Diffusion tensor imaging 9

2.2.1 Diffusion

Molecular diffusion is caused by the random thermal motion of molecules. During a
given time in a free medium, this random walk (Brownian motion) leads to molecular
displacements that obey a 3-D Gaussian distribution. These displacements are statisti-
cally described by a diffusion coefficient D which depends only on the size (mass) of
the molecules, the temperature, and the nature (viscosity) of the medium (Le Bihan,
2003).

The diffusion along one dimension is characterized by the equation E{Δx2} =
2DTd , where Td is the diffusion time and E{Δx2} is the variance of the molecular
displacements Δx. For example, the diffusion coefficient for free water molecules in
37◦ C water is approx. 3×10−9 m2s−1 giving a diffusion distance (standard deviation)
of 17 μm during 50 ms (Le Bihan, 2003).

During their diffusion in a non-homogeneous medium, the molecules interact with
obstacles present and thereby probe the medium on a microscopic scale. In tissues, cell
membranes, fibers, and macromolecules impede the water-molecule movements and
thereby reduce their diffusion distances. Depending on the local microscopic struc-
tures, the diffusion might be limited more in one direction than in another, thereby
causing anisotropy in the displacement distribution.

Measures of the average diffusion distances and of the diffusion anisotropy provide
invaluable clues to the organization of the fine-structure features in the tissue. As the
water diffusion distances are in the scale of 10 μm during typically used diffusion
times, the water molecules probe the surroundings well below the usual millimetric
image resolution.

2.2.2 Diffusion weighted images

Diffusion-weighted images (DWIs) (Merboldt et al., 1985; Taylor and Bushell, 1985;
Le Bihan, 1995) are acquired by special MRI pulse sequences that sensitize the NMR
signal to spin diffusion (Stejskal and Tanner, 1965). Two strong magnetic field gradi-
ent pulses control the diffusion weighting. The first pulse induces a phase shift along
the applied gradient direction whereas the second pulse induces an equal but opposite
phase shift. Therefore, the phase shift is canceled for all spins that have not moved
in the gradient direction. On the other hand, those spins that have diffused along the
gradient direction will experience different phase shifts and will not be completely re-
focused at the signal echo. Thus, diffusion along the applied gradient direction causes
signal loss.

To measure this signal loss and remove the signal dependency to PD, T1, and T2
effects, at least two measurements for the diffusion are required. Typically, one image
is acquired without diffusion weighting and another with the weighting applied. Then,
the apparent diffusion coefficient (ADC) D can be calculated from equation (Stejskal
and Tanner, 1965)

S= S0 e
−bD (2.5)

where S0 is the signal without diffusion weighting, S is with the weighting, and b is the
diffusion weighting factor (Le Bihan et al., 1986). This factor is

b= γ2δ 2
(
Δ− δ

3

)
|g|2 (2.6)
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where δ is the duration of the diffusion gradient pulses, Δ is the time between these
pulses, and |g| is the strength of the diffusion gradients. The measured ADC value
D depends on the diffusion weighting factor b and on the direction of the sensitizing
gradient g. Top row of Fig. 2.2 shows examples of diffusion weighted images.

2.2.3 Diffusion tensors

The strength of the diffusion can be different in different spatial directions, and the
formalism of the diffusion tensor (Basser et al., 1994b,a) was developed to characterize
this anisotropy. Using the diffusion tensor D (second rank tensor), described as a
symmetric 3×3 matrix

D=

⎡
⎣ Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

⎤
⎦ , (2.7)

Eq. 2.5 above can be expressed as

S= S0 e
−bĝTDĝ (2.8)

where ĝ = g/|g| is the normalized gradient vector. The symmetric tensor D has six
independent coefficients, and thus at least six different gradient directions in addition
to the baseline data S0 are required to estimate it. More directions can be used to
suppress noise and to provide more robust tensor estimate.

For a total of n applied gradient directions, the following set of linear equations can
be used for estimating the tensor coefficients (Masutani et al., 2003, with corrections).

⎡
⎢⎢⎢⎢⎢⎣

x21 y21 z21 2x1y1 2y1z1 2z1x1
...

...
...

...
...

...
x2i y2i z2i 2xiyi 2yizi 2zixi
...

...
...

...
...

...
x2n y2n z2n 2xnyn 2ynzn 2znxn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Dxx
Dyy
Dzz
Dxy
Dyz
Dxz

⎤
⎥⎥⎥⎥⎥⎥⎦

= −1
b

⎡
⎢⎢⎢⎢⎢⎢⎣

ln S1S0
...

ln Si
S0
...

ln SnS0

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.9)

where ĝi = [xi yi zi]T is the ith gradient direction and Si is the respective signal intensity.
If n> 6, these equations can be solved in the least-squares sense by the singular value
decomposition method (Press et al., 1988). Examples of estimated tensor coefficients
are shown as images in Fig. 2.2.

2.3 Functional magnetic resonance imaging

Functional magnetic resonance imaging measures neural activity indirectly by exploit-
ing the interrelations between physiological function, energy metabolism, and local
blood supply. Various techniques exist to image different aspects of the hemodynamic
response. For example, perfusion-based fMRI estimates the blood-supply changes by
quantitatively measuring the blood flow. Here, we concentrate on the most widely
used fMRI technique that employs the blood oxygenation level dependent (BOLD)
MR signal (Ogawa et al., 1992).

Measuring neural activation using BOLD fMRI is possible because oxygenated
and deoxygenated hemoglobin have different magnetic properties (Thulborn et al.,
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Dxx Dxy Dxz

Dyy Dyz

Dzz

S0

Figure 2.2: Examples of diffusion imaging. The top row shows DWIs, one without weighting
(S0) and two with different directions of diffusion sensitizing gradient (direction shown by the
white lines). The bottom part visualizes the computed six tensor coefficients. The intensity in
these images is related to the absolute value of the respective coefficient and the off-diagonal
elements are scaled by 5 to make them better visible. The schematic (lower left) shows fiber
bundle locations (black lines) in the anterior and posterior parts of the corpus callosum. Note
the signal drop in the DWIs when the bundles are aligned with the gradient direction. The fiber-
direction related intensities in the tensor coefficients (e.g. Dxx and Dxy) can also be seen. White
region in the illustration denotes the ventricles that have strong isotropic diffusion. Imaged at
3 T at the AMI Centre of TKK.
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1982) and the local concentration of the deoxyhemoglobin changes during brain ac-
tivation. The paramagnetic deoxyhemoglobin has a significant magnetic moment, un-
like the diamagnetic oxyhemoglobin, and thus causes changes in the local magnetic
field. These local field changes lead to faster spin dephasing in the neighboring pro-
tons, which the T∗2-decay sensitive MR pulse sequences can detect as a signal drop.

The complex relationships between neural activity, blood flow, and blood oxygena-
tion are not completely understood (Di Salle et al., 1999; Turner and Ordidge, 2000;
Logothetis, 2002; Huettel et al., 2004; Lauritzen, 2005; Raichle and Mintun, 2006).
The increased neural and metabolic activities cause an increase in the consumption of
glucose and oxygen, thereby resulting in larger amounts of deoxygenated hemoglobin.
However, the response measured by the BOLD-fMRI actually shows a signal increase
relative to a resting state. This response suggests a decrease in the concentration of the
deoxyhemoglobin in the tissues, likely resulting from the increase in the local cerebral
blood flow supplying excessive amounts of oxygenated hemoglobin.

The signal change caused by the BOLD response is only a few percentages of the
normal signal amplitude. Therefore, statistical analysis is typically required to detect
subtle consistent changes from the image noise. In MRI, the SNR is proportional to
the voxel volume and therefore the spatial imaging resolution also affects the signal
strength. Typical spatial resolution for human fMRI is 1–5 mm, but animal experi-
ments with high-field MRI devices can obtain even 0.1 mm resolutions. For localizing
brain activations, the question still remains how the detected blood flow changes pre-
cisely relate to the actual neural activity.

The temporal resolution of the fMRI is in the order of a few seconds and is affected
by many factors such as MRI hardware, imaging sequence, spatial resolution (number
of slices), experimental setup, and the hemodynamic response (Huettel et al., 2004).
However, despite the several second delay of the hemodynamic response, some specific
measurements, such as differences in onset times, can be made with temporal accuracy
of even tens of milliseconds (Menon et al., 1998; Menon and Kim, 1999; Formisano
and Goebel, 2003).

2.4 Magnetoencephalography and electroenceph-
alography

Magnetoencephalography (Cohen, 1972; Hämäläinen et al., 1993) and electroenceph-
alography provide recordings that are directly related to electric currents in the neu-
rons. MEG measures the resulting magnetic field with arrays of magnetometers or
gradiometers placed outside the head whereas EEG uses electrodes to record the pro-
duced electrical potential distribution on the scalp.

The magnetic fields produced by neural activations and measured outside the head
are very weak, typically on the order of 10−9 times the static geomagnetic field of the
earth and 10−7 times the magnetic field disturbances caused by electrical equipment
in a typical laboratory. The MEG measurements are usually carried out in a special
magnetically shielded room using extremely sensitive superconducting quantum inter-
ference devices (SQUIDs) embedded in liquid helium.

In brain research, the main modeling task in both MEG and EEG is to estimate
the source current distributions producing the recorded fields. This inverse problem is
ill posed and further constraints or models for the sources are required. Furthermore,
regularization is required to avoid error magnification in the inverse source estimates.
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Typically, spherically symmetric models or boundary-element models (BEMs) are em-
ployed for the volume conductor and the source currents are modeled as constellations
of point sources (equivalent current dipoles) or as continuous current distributions with
location and orientation constraints derived from MRI. The required BEMs are usually
constructed by segmenting and tessellating the respective surfaces from the individual
anatomic images.

Both MEG and EEG have excellent temporal resolution and are able to follow
neural activation on a millisecond scale. The spatial accuracy of the MEG is a few
millimeters in favorable conditions (Hämäläinen et al., 1993), even with the simple
spherically symmetric conductor models. The poorly conducting skull confines most
of the volume currents inside the intra-cranial volume and, consequently, the forward
modeling is considerably more straightforward than in EEG where the electrical po-
tential on the scalp is heavily affected by such differently conducting layers and by
their inhomogeneities. As a result, the spatial resolution and localization accuracy of
EEG is inferior to MEG.

2.5 Computed tomography

Computed tomography (Hounsfield, 1980), originally known as computed axial to-
mography, collects a series of X-ray projection images taken around a single axis of
rotation to compute a 3-D volumetric representation. The CT scans can provide an-
atomical information with good sub-millimeter spatial resolution and with minimal
geometrical distortions.

The CT images show the absorption of X-ray beams which is related to the density
of the tissue. Bone, soft tissue, and air cavities of the head are clearly visible and easy
to separate by means of image segmentation. However, different soft-tissue classes,
such as white and gray matter of the brain, cannot be well distinguished. Various
contrast agents can be employed in CT scans to enhance the visibility of certain tissues
or pathologies by imaging the build-up of the agent.

The use of the CT for brain research is very limited due to the inherent radiation
dose and it is mainly applied in clinical settings for acute neurology and for pre-surgical
or radiation-therapy planning.
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Chapter 3

Image registration

A crucial step in multi-modal imaging is image registration which creates a correspon-
dence (a mapping) between two different images. The result of the registration is a
coordinate transformation that maps coordinates from one image to the coordinates of
the respective location in the other image.

The process of image registration consists of three key elements: a specification of
geometrical transformation, a match metric, and an optimizer. The geometrical trans-
formation, with its parameters, specifies what kind of transformations are considered
for the best registration. The match metric measures the goodness of the applied regis-
tration and allows to compare different candidates of transformation parameters. The
optimizer tries to efficiently find the best registration from the parameter space of the
selected geometrical transformation.

The following sub-sections describe these elements. Due to their importance in
multi-modal image registration, mutual-information (MI) metrics have their own sub-
section at the end, separate from the other match metrics. For a more in-depth view
of medical image registration, see surveys by Maintz and Viergever (1998), Hill et al.
(2001), and Pluim et al. (2003).

3.1 Transformations

The suitability of a given geometrical transformation depends on the registration ap-
plication and on the medical images used. Different imaging modalities may have dif-
ferent geometrical distortions in their images and successful registration should allow
for correction of these distortions. Furthermore, the purpose for which the registration
is used might dictate which transformations are sensible.

3.1.1 Linear transformations

Linear (also known as affine, linear affine) transformation is usually suitable for intra-
subject (within subject) registration of rigid body parts. In brain research, the head and
brain are typically considered rigid because skull effectively limits soft-tissue move-
ment and deformation. Linear transformation has been employed in a variety of cases,
for example by Collignon et al. (1995), Hill et al. (1998), Maes et al. (1997), Studholme
et al. (1996a, 1997, 1999), Thévenaz and Unser (2000), Viola and Wells (1995, 1997),
Wells et al. (1996), and Zhu and Cochoff (2002). Under linear transformation, straight
and parallel lines remain straight and parallel, but the angles between non-parallel lines
are not necessarily preserved.

The simplest of linear transformations is the rigid-body transformation with 6 de-
grees of freedom (DOFs). It allows for translation (3 DOFs) and rotation (3 DOFs)
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only and is sufficient for registering images from two correctly calibrated imaging
modalities when image distortions are not present. Registrations using a rigid-body
transform with (1 DOF) global scaling allow for uniform scale correction between the
imaging modalities. Both of these special cases of linear transformation preserve the
angles.

Non-uniform scale correction requires at least 3 DOFs for scaling, in addition to
the rigid-body transform. However, this minimum of 9 DOFs limits the scale correc-
tion to a fixed set of coordinate axes, typically those in one of the registered images.
Non-uniform scale correction with a free set of axes requires the full 12 DOFs affine
transformation, which allows for translation, rotation, scale, and skew.

3.1.2 Non-linear transformations

In contrast to intra-subject registration, inter-subject (between subject) registration tries
to match images from different subjects. Since the individual anatomy varies, higher-
order transformations are required to allow for local deformations in addition to global
matching. Non-linear registration is also useful in intra-subject registration to correct
for non-linear distortions in images and to match images of soft-tissue body parts.
In many of the non-linear methods, linear registration is performed first to bring the
images in rough correspondence and the non-linear transformation then refines the
registration result.

Several different non-linear (curved) transformations have been employed in med-
ical imaging, and their usability typically depends on the requirements of the regis-
tration. For registrations that match feature-based homologous point landmarks, thin-
plate splines (Bookstein, 1989) can be used for interpolating the transformation be-
tween these landmarks. This interpolation matches the landmarks exactly and the
method has been extended into approximating transformations (Rohr et al., 1996, 2001;
Rohr, 1998) that allow for errors in the landmark locations.

Above, the geometrical transform was directly linked to the match metric but usu-
ally these two are not coupled and the transform can be selected separately from the
metric. Woods et al. (1998) and Horsfield (1999) use linear combinations of polyno-
mial terms and Ashburner and Friston (1999) employ linear combinations of smooth
basis functions to define the transformation. Thin-plate splines have been also applied
with feature-independent control points (Kim et al., 1997; Meyer et al., 1997) when
the match is defined by an image intensity based metric.

The non-linear geometrical transformations often employ control points in a reg-
ular grid or otherwise distributed throughout the images. These control points can
be individually adjusted to define local deformations and the transformation is then
propagated from the control points by linear interpolation (Kjems et al., 1999), by
B-splines (Rueckert et al., 1999; Studholme et al., 2000, 2001; Rohlfing and Maurer,
2001; Schnabel et al., 2001), by Gaussian kernels (Gaens et al., 1998), or by other
kernels (Lötjönen et al., 1999; Lötjönen and Mäkelä, 2001; Rohde et al., 2003).

Even if the transform is defined by control points, a common way to represent the
final transformation is a vector field providing the local displacement vector for each
pixel. To guarantee the smoothness of the transformation, this vector field can be ex-
plicitly smoothed (Thirion, 9981; Kjems et al., 1999; Guimond et al., 2001; Lau et al.,
2001) or regularization terms can be used in the optimization (Kjems et al., 1999; Hel-
lier et al., 1999; Hellier and Barillot, 2000; Hermosillo and Faugeras, 2001; Lötjönen
and Mäkelä, 2001). Some authors base their transformations on physical models of
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elastic materials and fluids (Christensen et al., 1994; Bro-Nielsen and Gramkow, 1996;
Schormann et al., 1996; Christensen et al., 1996, 1997; Hata et al., 1998; Wang and
Staib, 1998).

Special transformations for rigid bodies in deformable tissue have also been created
(Little et al., 1997; Tanner et al., 2000) and they are suitable for modeling bones that
can move with respect to each other. Such transformations are especially useful for
imaging the spinal column, for example.

3.2 Match metrics

A match metric allows comparison of different candidates of transformation parame-
ters. It represents the goodness of a particular geometrical transformation by a single
scalar value which is consequently optimized. The metric can measure the registra-
tion error or distance from an optimal match, in which case the value is minimized.
Alternatively, the metric can measure the similarity of the images, in which case the
maximum is sought.

The match metrics can be divided into two classes: landmark or structure-based
metrics and image intensity based metrics. The first class typically requires extensive
preprocessing and possibly user intervention to extract the landmarks or structures for
matching. On the other hand, metrics based on image intensities often use the acquired
images directly with only minimal or no preprocessing.

The requirements for the match metric depend on the application and, in particular,
on the two images being registered. Inter-modal registration is usually more difficult
than intra-modal registration, due to the differences in images. One imaging modal-
ity might capture details that are not present in the images of the other modality, for
example.

3.2.1 Landmark and structure-based metrics

Landmarks used in a registration metric can be anatomical, geometrical, or external.
Anatomical landmarks are usually prominent, accurately locatable points in the visi-
ble anatomy that can be easily identified by the user. Geometrical landmarks are the
extrema of some geometrical property, e.g. the locus of maximum curvature, and they
are usually identified automatically. External landmarks employ markers attached to
the skin surface or to a stereotaxic frame and consequently identified from the images
by the user.

The benefit of landmark-based registration is that it can be applied to a variety of
different medical data as long as the respective landmarks can be identified. Further-
more, the optimization is relatively fast because the images are reduced to a set of
homologous landmarks. The landmark-based match metrics typically minimize the
average distance between the corresponding landmarks and use most often the least-
squares error measure (e.g. Arun et al., 1987). The geometrical transform using thin-
plate splines (Bookstein, 1989), mentioned above, is a special non-linear transform
matching the landmarks exactly and defining a smooth transform between the points.

Other structures, such as tissue boundaries and surfaces, are typically more distinct
than landmarks in medical images. Various segmentation methods exist to delineate
such high-contrast structures. The boundary between tissue and air is clearly visible in
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most imaging modalities, which makes the skin surface a very widely used structure
for matching.

Several different methods have been successfully applied in structure-based regis-
tration. Pelizzari et al. (1989) developed the “head-and-hat” algorithm for matching
two surfaces representing the scalp. Here, the match metric is the squared distance
between the points on the “hat” surface and the respective closest points on the head
surface, as measured in the direction to the centroid of the head.

Borgefors (1988) employs a similar metric with distance transforms. A segmented
binary image is transformed into a distance image, where each pixel contains the dis-
tance from that location to the segmented structure. Such a transform allows for fast
computation of distances when a point-set is matched to the segmented structure.

Another very versatile registration method is the iterative closest point (ICP) algo-
rithm (Besl and McKay, 1992) that can be used with a variety of different geometrical
data-sets, including point sets, lines, curves, and surfaces. The algorithm matches a
point set to geometrical data by first finding the closest locations on the geometrical
structure to given points. A transform is then computed that minimizes the squared
distance between these point pairs. As the transform changes, the closest points on the
geometrical structure also change, and the procedure is repeated until it converges to a
solution.

The drawback of the landmark and structure-based metrics is that their accuracy
is limited by the accuracy of landmark and structure identification or segmentation.
Some of the method also require user intervention in the form of landmark localization
or image segmentation.

3.2.2 Metrics based on image intensity

Metrics based on image intensity employ directly the information in the pixel intensi-
ties. For intra-modality registration, the two registered images should have very sim-
ilar intensities at the corresponding pixels when the images are correctly aligned. If
the images differ only by Gaussian noise, the optimal match metric is the least-squares
intensity difference (Friston et al., 1995; Hajnal et al., 1995b,a).

Usually, at least a global intensity scaling difference is present between the images,
even for intra-modality registration. A least-squares metric with intensity rescaling
(Alpert et al., 1996) has been proposed to correct for this difference. The ratio image
uniformity (RIU) (Woods et al., 1992), frequently also called the variance of intensity
ratios (VIR), is another metric to tackle the same problem. A ratio of image intensities
is computed and the registration aims to minimize the variance of this ratio.

Cross-correlation metrics (Junck et al., 1990) have been widely employed directly
to image intensities or to feature images extracted in a pre-processing step. If suffi-
ciently similar features can be extracted from different modalities, the cross-correla-
tion, as well as other intra-modality match metrics, can be applied also to inter-mo-
dality registration. Typically, high-contrast changes, such as intensity ridges (van den
Elsen et al., 1995), are used.

Another approach to employ intra-modality metrics with inter-modality registra-
tion is to apply intensity re-mapping (Andersson et al., 1995). A modality-specific
intensity mapping function is estimated that maps intensities from one modality to the
corresponding intensities in the other modality. Typically, cross-correlation is used as
the match metric between the re-mapped image and the other image.
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Currently, the most versatile multi-modal match metrics employ techniques from
information theory. In particular, metrics based on the concept of mutual information
have gained a lot of attention. Due to their importance, these metrics will be described
in detail in Section 3.4, below.

3.3 Optimizers

The third key element of image registration is the optimizer which finds the parame-
ters of the geometrical transform that optimize the selected match metric. In this sense,
image registration is like any other mathematical optimization problem where a func-
tion is either minimized or maximized with respect to a set of parameters. A variety
of well-known optimization algorithms (see, e.g., Press et al., 1988) have been em-
ployed. Below, these algorithms as well as the most widely used speed-up technique
are explored.

3.3.1 Algorithms

If the gradient of the match metric is impossible or too time consuming to compute, al-
gorithms without gradient information can be employed. In image registration, the
most popular methods of this class are the Powell’s direction-set method and the
downhill-simplex method (Maintz and Viergever, 1998; Hill et al., 2001; Pluim et al.,
2003). Simulated annealing and genetic algorithms have been also employed. With the
gradient information present, the most often used algorithms employ gradient-descent,
conjugate-gradient, quasi-Newton, and Levenberg-Marquardt methods.

With the MI-based metrics, the gradient depends on the selected MI measure and
also on the exact implementation. Wells et al. (1996) compute a stochastic approx-
imation for the gradient employing Parzen windowing for the MI measure. Maes
et al. (1999) show the exact gradient in the case of the partial-volume interpolation
(PVI) (Collignon et al., 1995) method and also compare different optimization strate-
gies. They conclude that the downhill-simplex, conjugate-gradient, and Levenberg-
Marquardt methods provide the best performance for the MI registration in a multi-
resolution optimization context. With the MI measures, the gradient of the match met-
ric is relatively time consuming to evaluate and therefore the downhill-simplexmethod
performs equally well with the gradient-based algorithms (Maes et al., 1999).

3.3.2 Multi-resolution techniques

The most widely used technique to speed-up optimization is to employ the multi-
resolution scheme. The technique can be applied to the registered images, to the de-
formation field (deformation grid), or to both. When applied to the deformation field
or grid, the technique is sometimes called multi-grid optimization.

In both cases, the idea is to down-sample either the images or the deformation field
into a lower-resolution version. Several resolution levels can be employed, and the
optimization starts with the most coarse level. When a sufficient match is found at a
certain resolution level, the optimization continues at the next higher resolution.

In a lower resolution scale, the evaluation of the match metric is much faster and
therefore the multi-resolution techniques greatly enhance the speed of convergence.
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They also allow the global structures to be registered first and thereby typically increase
the robustness of the applications.

3.4 Mutual-information registration

The information-theory concept of mutual information was first brought to the regis-
tration of medical images by Collignon et al. (1995) and Viola and Wells (1995). The
MI metrics are based directly on image intensities and typically require no preprocess-
ing. Furthermore, they make only minimal assumptions about the correspondence of
the intensities between the images. Below, the definition and use of MI metrics are
described. A detailed view with the current state of the art can be found in an excellent
survey by Pluim et al. (2003).

3.4.1 Entropy

In information theory, the entropy is a measure of randomness in a probability distribu-
tion. The higher the uncertainty of the outcome of an event, the higher is the entropy.
Entropy measures the “information content” of an event and it also relates to the min-
imum coding length of information for transmission. The most widely used entropy
measure is the Shannon entropy (Shannon, 1948)

H(X) = − ∑
x∈X

p(x) log p(x) = −E{log p(X)} = E{log 1
p(X)

} (3.1)

where X is a discrete random variable, X is the set of all possible outcomes, p(x) is
the probability of an outcome x, E{g(X)} = ∑x∈X p(x)g(x) is the expected value of
the random variable g(X), and a loga= 0 if a= 0.

The entropyH(X) yields positive values, or 0 if the outcome is certain (i.e. p(x) = 1
for some x). The value of the entropy is at maximum for an even distribution, i.e. if
p(x) = 1/N for all x where N is the number of outcomes in X . In this case, all
outcomes are equally likely and the uncertainty of an event is at maximum.

For a pair of random variables X and Y with a joint-probability distribution p(x,y),
the joint (Shannon) entropy is

H(X ,Y) = − ∑
x∈X

∑
y∈Y

p(x,y) log p(x,y) = −E{log p(X ,Y)} (3.2)

where Y is the set of all possible outcomes for Y . Similarly, the conditional entropy
H(Y |X) is based on the conditional probabilities p(y|x):

H(Y |X) = − ∑
x∈X

∑
y∈Y

p(x,y) log p(y|x) = −Ep(x,y){log p(Y |X)}. (3.3)

The probability p(x,y) in the sub-index of the expectation E denotes the applied prob-
ability distribution for clarity. The chain rule for the entropies states that

H(X ,Y) =H(X)+H(Y |X). (3.4)
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3.4.2 Mutual information

Mutual information is a measure of the dependence of two random variables X and
Y (Cover and Thomas, 1991). It is based on the Kullback-Leibler distance between
the joint distribution p(x,y) and the product distribution p(x)p(y) representing total
independence. The MI metric I(X ,Y) measures the amount of information that one
random variable contains about another, and it is defined as

I(X ,Y) = ∑
x∈X

∑
y∈Y

p(x,y) log
p(x,y)
p(x)p(y)

(3.5)

= H(X)−H(X |Y) = H(Y)−H(Y |X) (3.6)

= H(X)+H(Y)−H(X ,Y) (3.7)

with the following properties (Pluim et al., 2003):

• I(X ,Y) = I(Y,X).
Mutual information is symmetric.

• I(X ,X) =H(X).
The information a random variable X contains about itself (self-information) is
equal to the information (entropy) in the variable X .

• I(X ,Y) ≤min{H(X),H(Y)}.
The information a random variable contains about another variable can never be
greater than the information in either of the variables.

• I(X ,Y) ≥ 0.
The information cannot be negative, i.e. the uncertainty in a random variable X
can never be increased by learning about Y .

• I(X ,Y) = 0, if and only if X and Y are independent.
When X and Y are independent, X does not contain any information about Y .

3.4.3 Mutual-information in image registration

For applying MI in image registration, the intensities of two images A and B represent
the random variables. The joint probability distribution p(a,b) is estimated, and it
represents the probability of having intensity a in A and intensity b in B at the same
location. The mutual information I(A,B) measures the change in uncertainty about an
intensity in image A when the intensity in the corresponding location of B is given, and
vice versa. The measure I(A,B) reaches maximum when one image predicts best the
values of the other image and this maximum is considered as the correct registration
between the two images. For evaluating the MI measure I(A,B), the required marginal
distributions p(a) and p(b) are calculated by summation from p(a,b).

The joint probability p(a,b) is computed for the overlapping area of the two im-
ages. Therefore, the MI measure I(A,B) is dependent on the extent of overlap between
the images. A less sensitive normalized MI measure

Y (A,B) =
H(A)+H(B)
H(A,B)

(3.8)
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proposed by Studholme et al. (1999) has been widely employed to minimize this ef-
fect. OtherMI-based measures mentioned in the literature include ρ(A,B)=H(A,B)−
I(A,B) and the entropy correlation coefficient ECC(A,B) = 2I(A,B)/(H(A)+H(B)) =
2−2/Y (A,B) (Maes et al., 1997).

Pure MI measures are based only on the probabilities of co-occurring intensities
without any spatial information about neighboring pixels. Both connected region la-
beling (Studholme et al., 1996b) and image gradients (Pluim et al., 2000a; Lötjönen
and Mäkelä, 2001) have been used for integrating spatial information into the MI met-
ric.

3.4.4 Joint-probability estimation

From the implementational point of view, the key aspect of any MI metric is the es-
timation of the joint probability distribution p(a,b), and different methods have been
developed. One frequently used method is Parzen windowing (Parzen, 1962) that al-
lows the estimation of a probability distribution p(x) from a set of samples S. The
estimated probability is defined as

p(x) ≈ P(x,S) =
1
n∑s∈S

W (x− s) (3.9)

where n is the number of samples in S andW (x) is a weighting function. Most imple-
mentations employ Gaussian weighting (Wells et al., 1996; Viola andWells, 1997; Her-
mosillo and Faugeras, 2001; Mangin et al., 2001; Sarrut and Clippe, 2001), although
double exponential function (Kim et al., 2000) and splines (Thévenaz and Unser, 2000)
have also been used.

However, to estimate p(a,b), the majority of the implementations (see survey by
Pluim et al. 2003) use a straight forward alternative employing joint histogram. The
joint histogram h(a,b) represents the number of times when intensity a in image A
coincides with intensity b in image B. It is typically computed by sampling through
all the pixels of one image and collecting the values at respective places in the other
image. Division of the histogram bins by the sum of all entries normalizes the values
and yields the joint-probability distribution p(a,b).

In image registration, the geometrical transformation does not typically map the
centers of pixels (grid-points) of one image to the grid-points of the other image.
Therefore, the joint histogram h(a,b) cannot be computed just by picking the intensi-
ties from both images. This problem can be overcome by interpolation or fractional
incrementation.

Applications of the first class employ some interpolation method to calculate the
intensity values at non-grid locations. Typically, linear interpolation (LI) is chosen for
its speed, but also higher order interpolation methods can be used. Consequently, the
histogram bin corresponding to the interpolated intensity is incremented by one. On the
other hand, fractional incrementation methods do not compute a new intensity value
from the surrounding pixels but increment the histogram bins corresponding to these
surrounding pixels by fractional amounts. This idea was first introduced by Collignon
et al. (1995) in a form of the PVI and it was later generalized by Chen and Varshney
(2003) to higher-order kernels.
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Figure 3.1: Artifacts in the MI metric I(A,B) as a function of translation (left) and rotation
(right) with different sampling methods. The vertical lines show the correct registration at –0.2
pixels for translation and 0.1 degrees for rotation. Adapted from publication P1.

3.4.5 Artifacts

In certain situations, the two most used joint-histogram estimation methods, LI and
PVI, produce artifacts in the MI metric (Pluim et al., 2000b; Ji et al., 2003; Tsao,
2003). These artifacts manifest especially when the axes of the images are parallel and
the pixel sizes are equal. In such circumstances, these methods tend to “grid-lock” due
to the artifacts and therefore the registration accuracy is limited to pixel size. Examples
of such artifacts in the MI measure I(A,B) are shown in Fig. 3.1. The BS4 denotes the
support-4 B-spline method explained below in Section 3.4.6.

The origin of these artifacts is different for the interpolation and the fractional
incrementation methods. Interpolation tends to blur images and to affect small details
and noise (Pluim et al., 2000b; Tsao, 2003). It can also produce new intensity values
that do not occur in the original image, for example in images with only a few distinct
intensity levels. Both of these effects spread the joint histogram and thereby affect
the entropies. The amount of spread varies with the pixel-grid alignment and thereby
creates the artifact patterns visible in Fig. 3.1.

The fractional-incrementation methods do not produce new intensity values but
they transfer the histogram weights gradually from one original sample to another
as the location changes. The PVI method uses linear weights and the artifacts are
attributed to the non-linearity of the entropy (Pluim et al., 2000b). For example, if the
weight from one bin is distributed equally into two bins, the total entropy increases
(H(p) < 2H(p/2) if p> 0). As above, this effect depends on the pixel-grid alignment.

Although the MI measures are theoretically symmetric, the implementational de-
tails cause asymmetry to the metric. Typically, both the interpolation and fractional-
incrementation methods sample through all the pixel centers of image A when the his-
togram h(a,b) is estimated. A slightly different histogram would result if the occurred
in the pixel centers of image B instead.

3.4.6 Improvements in accuracy (P1)

Publication P1 introduces a novel theoretical concept of continuous fractional incre-
mentation. In a normal fractional-incrementation method, the histogram h(a,b) is sam-
pled at every pixel of image A overlapping image B. The respective location in B is
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computed and the surrounding pixels determine which histogram entries receive the in-
crementation. The amount of incrementation, i.e. the fractional weight, is determined
by a kernel ϕfi(x) chosen by the application. The kernel function for fractional incre-
mentation has to fulfill the following two conditions (Chen and Varshney, 2003) for all
x ∈ R:

ϕfi(x) ≥ 0 (3.10)
∞

∑
n=−∞

ϕfi(n+ x) = 1 (3.11)

For example, the PVI method uses the same kernel function as the linear interpolation:

ϕPVI(x) = ϕLI(x) =

⎧⎨
⎩
1+ x, if −1≤ x< 0
1− x, if 0≤ x≤ 1
0, otherwise.

(3.12)

In contrast to sampling at every pixel center of A, the newly proposed method sam-
ples the images for histogram h(a,b) everywhere, in a continuous fashion. Publication
P1 demonstrates that this theoretical sampling concept can be reduced into the nor-
mal fractional-incrementation procedure in the special circumstances where the most
severe artifacts appear. Under these circumstances, the continuous sampling with ker-
nel ϕfi(x) is equivalent to employing the normal fractional-incrementation procedure
with the auto-correlated kernel ϕfi(x) ∗ ϕfi(x). Publication P1 further shows that this
auto-correlated kernel fulfills the conditions 3.10 and 3.11 if the original kernel ϕfi(x)
also does. Therefore, the kernel produced by auto-correlation can be used in every
situation, and not only in the special circumstances in which it was developed.

The novel concept of continuous sampling provides new insight into the kernels
already in use. For example, the well-known PVI kernel is the auto-correlation result
of the nearest-neighbor kernel

ϕNN(x) =

⎧⎨
⎩
1, if |x| < 1

2
1
2 , if |x| = 1

2
0, otherwise.

(3.13)

Therefore, applying the PVI method can be considered as sampling with ϕNN(x) in
a continuous fashion1. Similarly, the higher-order kernels suggested by Chen and
Varshney (2003) can be connected to the lower-order kernels. For example, the auto-
correlation of the PVI kernel produces support-4 third-order B-spline kernel (BS4 in
Fig. 3.1).

The experiments in Publication P1 study the registration errors of the linear inter-
polation, the PVI, and the BS4 methods with sub-sample accuracy. The effect of image
quality, in the form of noise and anti-aliasing, as well as method implementation pa-
rameters are explored. The results show that the higher-order BS4 method provides
slightly better accuracy in normal cases and significantly better registration accuracy
under the worst case scenario. In circumstances when the sampling-related artifacts
are typically present, the BS4 method has the average and maximum errors of 0.04
and 0.2 pixels, respectively, whereas both the LI and the PVI methods produce average
and maximum errors of 0.2–0.3 and 0.5 samples, respectively. To achieve the better
accuracy, the BS4 method requires a computation time 2–4 times that of the LI and
PVI methods.

1under the special circumstances
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Chapter 4

Resampling

Image registration produces a coordinate transform (a mapping) between registered
images. For joint visualization or for analysis, one of the images is typically trans-
formed (mapped) into the coordinate space of the other image. Alternatively, both of
the images can be transformed into some other, common coordinate frame.

This process of transforming an image from one pixel-grid to another is called
resampling and is a very common process that can happen explicitly or implicitly in
many stages. For instance, if an image is not shown on a computer screen pixel-by-
pixel, some form of resampling has taken place.

Naturally, high-quality resampling algorithms are needed to minimize artifacts and
the loss of information. Even if the artifacts are not readily visible, they can affect the
image analysis. The effects of interpolation in mutual-information registration form a
good example of such artifacts, see Page 23.

In resampling, a pixel-grid point (i.e. the center of a pixel) in one image does not
generally transform onto a grid-point in the other image. Therefore, an interpolation
method is required to estimate the pixel value at a particular location between the grid
points. This Chapter reviews methods commonly used in medical image processing.

First, the relevant aspects of the sampling theory are briefly discussed. The theory
is explored in the one-dimensional case, and for clarity we refer to the image and the
pixels as signal and samples, respectively. Next, the traditional convolution interpola-
tion and the generalized interpolation methods are described. Finally, two specialized
Fourier space methods and the two-stage method developed in Publication P2 are ex-
plored.

4.1 Sampling theory

The Nyquist-Shannon sampling theorem (Shannon, 1949) states that exact reconstruc-
tion of continuous-time signal g(t) (t ∈ R) from its samples x(n) = g(nT ) (n ∈ Z) is
possible if the signal is band-limited and the sampling frequency fs is greater than twice
the signal bandwidth. Here, T is the sampling interval ( fs = 1/T ) and the Nyquist fre-
quency (“critical frequency”) of the sampling system is fs/2. If all signal frequencies
are below the Nyquist frequency, the original signal can be completely recovered by

g(t) = ∑
n∈Z

x(n) · sinc( fs t−n) (4.1)

where sinc(t) = sin(πt)/(πt) is the normalized sinc function, and sinc(0) = 1.
The sampling and reconstruction above can be represented in an alternative way by

using the Dirac delta function (unit impulse function) δ (t) which is a special function
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that has the value of infinity at t = 0, the value zero elsewhere, and it integrates to
unity:

∫ ∞
−∞δ (t)dt = 1 (Bracewell, 1986). Using the Dirac comb (impulse train)

ΔT (t) = T ∑
n∈Z

δ (t−nT ) (4.2)

the sampling can be represented as multiplication with ΔT (t):

gs(t) = g(t) ·ΔT(t) = T ∑
n∈Z

g(t)δ (t−nT ) (4.3)

= T ∑
n∈Z

g(nT)δ (t−nT ) = T ∑
n∈Z

x(n)δ (t−nT ) (4.4)

where the sampled signal gs(t) retains the information in g(t) at the discrete time points
t = nT and is zero elsewhere.

Now, the reconstruction of g(t) can be expressed as a (continuous) convolution
between the sampled signal gs(t) and the function h fs(t) = fs sinc( fs t):

g(t) = gs(t) ◦ h fs(t) (4.5)

=

{
T ∑
n∈Z

x(n)δ (t−nT )

}
◦ fs sinc( fs t) (4.6)

= ∑
n∈Z

x(n){δ (t−nT ) ◦ sinc( fs t)} (4.7)

= ∑
n∈Z

x(n) · sinc( fs(t−nT )) = ∑
n∈Z

x(n) · sinc( fs t−n). (4.8)

Convolution with the signal domain function h fs(t) is equivalent to ideal low-pass
filtering in the frequency domain. The rectangular pulse

rect fs( f ) =
{
1 if | f | ≤ fs/2
0 otherwise

(4.9)

in the frequency domain can be inverse Fourier transformed as

F−1{rect fs( f )} =
∫ fs/2

− fs/2
ei2π f t df = fs sinc( fs t) = h fs(t). (4.10)

Comparison of the Shannon’s Eq. 4.1 and the convolution Eq. 4.5 reveals that the
convolution with h fs(t) = fs sinc( fs t) is equivalent to Shannon’s method. Furthermore,
Eq. 4.10 shows that the signal-domain convolution with h fs(t) is equal to ideal low-
pass filtering in the frequency domain. In a summary, all three equations and methods
reconstruct the original continuous-time signal from the samples.

4.2 Convolution interpolation

In the following sections, unit sampling frequency ( fs = 1) is assumed for clarity and
the theory is explored in terms of sample spacing. The convolution interpolation can
be then expressed as

gint(t) = gs(t) ◦ ϕint(t) (4.11)

where gint(t) is the interpolated continuous signal and ϕint(t) is the interpolating con-
volution kernel. To reproduce the original samples gint(k) = gs(k) for all k ∈ Z, the
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Figure 4.1: Interpolating convolution kernels: nearest neighbor (solid line), linear (dashed
line), and sinc (dotted line). Circles mark the values that interpolating kernels must obtain for
integer offsets.

kernel has to fulfill ϕint(0) = 1 and ϕint(k) = 0 for all integer k �= 0 (circles in Fig. 4.1).
Similarly as above, the continuous convolution can be converted into sum

gint(t) = ∑
n∈Z

x(n) ·ϕint(t−n). (4.12)

For implementing the convolution interpolation algorithm, the summation in Eq.
4.12 is employed. The support of kernel ϕint(t), i.e. the range of t where ϕint(t) as-
sumes non-zero values, affects the computational complexity of the selected kernel.
It determines how many samples x(n) and how many multiplications are required for
each interpolated outcome. Therefore, the choice of the interpolating kernel ϕint(t) is
a trade-off between the computational effort and the interpolation quality.

As is obvious from the sampling theory (Eq. 4.5), kernel ϕint(t) = sinc(t) (see Fig.
4.1) is the optimal interpolator that reproduces exactly the original continuous signal
g(t) = gint(t) if all signal frequencies were below the Nyquist limit. However, this
kernel is impractical as the sinc function extends to infinity and either truncated or
windowed sinc kernels have to be employed. Furthermore, the sinc function decays
very slowly and therefore relatively large support kernels are needed. These aspects
make the sinc-based convolution-interpolation methods very slow.

The fastest convolution interpolation kernels are the nearest neighbor (Eq. 3.13)
and the linear interpolation (Eq. 3.12) kernels (see Fig. 4.1). Especially the support-2
linear interpolation is widely employed due to its speed. Other common finite-support
methods include cubic (Keys, 1981) and polynomial (Meijering et al., 1999) interpo-
lation. Surveys by Lehmann et al. (1999, 2001) and by Meijering et al. (2001) provide
a comprehensive comparison of different interpolation kernels.

4.3 Generalized interpolation

Similarly as above, the generalized interpolation (GI) introduced by Blu et al. (Blu
et al., 1999, 2001; Thévenaz et al., 2000) is also written as a summation

gint(t) = ∑
n∈Z

y(n) ·ϕ(t−n). (4.13)

Here, the original samples x(n) of Eq. 4.12 are replaced by prefiltered samples y(n),
and the interpolating kernel ϕint(t) is replaced by a general kernel ϕ(t). The prefiltering
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creating y(n) from x(n) is linked to ϕ(t) by the interpolation condition gint(n) = gs(n)
∀n ∈ Z, i.e. the function gint(t)must reproduce the original samples.

The support of the kernel is the most crucial factor determining the computational
efficiency of convolution interpolation (Eq. 4.12) and GI (Eq. 4.13), especially with
multi-dimensional data. If the support for the kernel is S and the data set has D dimen-
sions, the total of SD multiplications are required for each interpolated output value.
For example, support-2 and support-4 kernels require 23 = 8 and 43 = 64 multiplica-
tions, respectively, in the 3-D case.

For convolution interpolation, larger support kernels allow for better interpolation
quality since more samples are taken into account. The generalized interpolation tries
to circumvent this effect by prefiltering the data and thereby spreading the information
in the samples. Therefore, a GI kernel has information available from a larger area
using the same support size. For typical GI methods, the prefiltering can be imple-
mented efficiently as a succession of forward and backward recursive filters (Blu et al.,
1999) and the extra time required is minimal. Furthermore, if repeated interpolation is
performed on the same image, the data can be kept in the prefiltered form for efficiency.

Due to the required prefiltering, spline interpolation (Hou and Andrews, 1978;
Unser et al., 1993a,b; Unser, 1999) and the shifted linear interpolation (Blu et al.,
2004) also fall into this GI category. Blu et al. (2001) introduced a class of maximal-
order-minimal-support (MOMS) functions made of linear combinations of B-splines
and its derivatives. These functions were shown to have minimal support for a given
interpolation accuracy. The optimal versions were labeled as OMOMS and they are
currently one of the most accurate interpolation methods.

4.4 Specialized resampling methods

Some specialized methods exist for certain image resampling tasks. For example,
the rotation matrix in 2-D image rotation can be decomposed into two or three one-
dimensional image shears (Catmull and Smith, 1980; Tsuchida et al., 1987; Unser
et al., 1995). In shape-based interpolation (Goshtasby et al., 1992; Grevera and Udupa,
1996), the interpolation process itself is influenced by the underlying images. Typi-
cally, the interpolation kernels are separable although non-separable two-dimensional
cubic kernels have been studied as well (Reichenbach and Geng, 2003).

Below, two different Fourier-space methods and a two-stage resamplingmethod are
explored in more detail. The Fourier-space methods efficiently employ full-width sinc
interpolation through discrete Fourier transforms (DFTs) and they are especially suited
for data up-sampling. The two-stage resampling method combines these up-sampling
methods with traditional interpolation methods for general resampling.

4.4.1 Fourier-space methods

Fourier space methods usually employ the fact that a signal-space convolution corre-
sponds to multiplication with a transfer function in the Fourier domain. Large-support
convolution kernel can therefore be efficiently implemented as a (complex) multipli-
cation of the transformed signal and the transfer function. Below, two Fourier space
up-sampling methods and their limitations are discussed after a brief summary of the
DFT.



Specialized resampling methods 29

Discrete Fourier transform

The discrete Fourier transform G(u) of an N-sample array g(x) and its inverse are
defined as

G(u) = F{g(x)} =
N−1
∑
x=0

g(x)e−i2πux/N (4.14)

g(x) = F−1{G(u)} =
1
N

N−1
∑
u=0

G(u)ei2πux/N (4.15)

where i=
√−1, andF{. . .} andF−1{. . .} denote the Fourier and the inverse Fourier

transforms, respectively. The Fourier transform and the inverse Fourier transform have
several well-known properties (Gonzalez andWoods, 1992) such as separability, trans-
lation, periodicity, and conjugate symmetry.

Shifted-DFT (SDFT) algorithm

The specific task of up-sampling a signal with a discrete factor can be performed by
sub-sample shifts (Du et al., 1994; Yaroslavsky, 1997). The original signal and the sub-
sample shifted signals can be composed together to form a higher-resolution version.
For example, interleaved original signal and signals shifted by 1/3 and 2/3 samples
form a up-sampled signal with magnification factor of 3.

The sub-sample shift can be performed by an appropriate phase-shift in the Fourier
domain. The signal is Fourier transformed, multiplied by a transfer function Hs(u)
causing the shift, and finally inverse transformed. It is crucial to note that the well-
known Fourier-space phase-shift equation Hd(u) = ei2πud/N is valid only for discrete
shifts of d samples. For sub-sample shifts of s samples, the Fourier-space transfer
function is (Yaroslavsky, 1997)

Hs(u) =

⎧⎨
⎩

ei2πus/N if 0≤ u< N/2
cos(πs) if u= N/2
e−i2π(N−u)s/N if N/2< u≤ N−1

(4.16)

In case N is odd, the middle term cos(πs) is left out in Eq. 4.16.

Zero-filled up-sampling

The Fourier-space zero-filling methods employ ideal low-pass filtering in the frequency
domain (Eq. 4.9). The Fourier-transformed sample array is extended to contain higher
frequencies that are consequently filled with zeros. The inverse Fourier transform
yields the up-sampled signal.

With this method, the original signal length N and the final length L > N can be
any size. However, due to the available Fast Fourier Transform (FFT) algorithms, both
of these values are often restricted to powers of two. In the usual case where N is
even, the sample G(N/2) at the Fourier transformed array contains aliased frequencies
and therefore needs to be handled specially when converting into the extended array
(Yaroslavsky, 1997; Seppä, 2007).

The factor for up-sampling is typically 2 or higher, meaning that the zero-filled
array contains mostly zeros. With the normal FFT algorithms, the inverse transform
leads to many unnecessary multiplications and additions with zeros. To remediate
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Figure 4.2: Illustration of the up-sampled stage (on the right) of the two-stage resampling
method. White frame indicates the position of the new image to be computed. Adapted from
Publication P2.

this drawback, Markel (1971) developed a pruned decimation-in-frequency type FFT
algorithm. Similarly, Skinner (1976) introduced a slightlymore efficient version for the
decimation-in-time type FFT algorithm. These algorithms were originally developed
for computation of high-resolution spectra and modified FFT algorithms for zero-filled
up-sampling has been also introduced (Nagai, 1986; Smit et al., 1990; Seppä, 2007).

Limitations

Fourier-space methods bear some limitations that arise from the FFT algorithms used.
Typically, radix-2 FFT algorithms are employed and therefore the signal array sizes
need to be powers of two. Naturally, this obstacle can be circumvented by (zero)
padding the array to the next suitable size. The up-sampling factor needs to be an
integer for the SDFT method and a power of two for the zero-filled up-sampling meth-
ods with radix-2 algorithms. Fractional factors are also possible by discarding part of
the up-sampled data. For example, factor 4/3 can be realized by up-sampling first by
factor 4 and then selecting every third sample.

With the Fourier-space methods above, the up-sampled image grid is always aligned
with the original image grid and free placement (rotation, scaling, etc.) of the resulting
grid is not possible. Furthermore, the Fourier transforms assume implicitly that the
images are periodic, i.e. the data repeats end-to-end. Therefore, the up-sampled pixels
at one edge of an image depend on the pixels at the opposite edge.

Fourier-space methods also compute the up-sampling simultaneously for the whole
image. Therefore, they are not necessarily efficient if the result is needed only for a
relatively small part of the image.

4.4.2 Two-stage resampling (P2)

The two-stage resampling method introduced in Publication P2 combines the Fourier-
space methods above with the traditional interpolation methods. The first stage em-
ploys Fourier-space methods for high-quality up-sampling of the image. Next, the sec-
ond stage computes the resampled image from this up-sampled intermediate version
(see Fig. 4.2). Either normal convolution interpolation or the generalized interpolation
can be employed in the second stage. The GI prefiltering is conveniently performed
by transfer-function multiplication during the first-stage Fourier-space processing with
virtually no extra computational cost. Publication P2 also represents an improved algo-
rithm for zero-filled up-sampling that provides a slight 1–8% speed increase compared
to the previously used algorithms.



Specialized resampling methods 31

Time/step (s) Time/step (s)

S
N

R
 (

dB
)

S
N

R
 (

dB
)

CT

T1 MRIfMRI

Synthetic

0 10 20 30 40 50

14

12

16

18

20

22

24

26

28

0 5 10 15 20 25 30 35 40

10

12

14

16

18

20

22

24

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25

20

15

10

5

0

25

30

35

40

NN

LI LS

CU

BS4

OMOMS4

N

L

S

C B4
O4

BS6

OMOMS6

WS4

WS6

NN

LI

LS

CU

BS4

OMOMS4

N

L

S

C

B4
O4

BS6

OMOMS6

WS4

WS6

NN

LI

LS

CU

BS4

OMOMS4

N

L

S
C

B4
O4

BS6

OMOMS6

WS4

WS6

NN

LI
LS

CU

BS4

OMOMS4

N

L

S

C

B4

O4

BS6

OMOMS6

WS4

WS6

Figure 4.3: Quality and speed of different resampling methods with 3-D data. For details of
the abbreviations of the methods, see text. Adapted from Publication P2.

The combination of these two stages has many benefits. Because high-quality full-
width sinc interpolation is used in the up-sampling, the second stage can employ rela-
tively small-support interpolation kernels. The size of the support is always a trade-off
between computational efficiency and interpolation quality, and the high-quality inter-
mediate stage now leads to small interpolation errors even with small-support kernels.
Especially in 3-D medical imaging, the size of the support is the most crucial factor for
fast computation. The combination of the two stages also circumvents the limitations
of the first stage. Specifically, the second stage allows free positioning and sizing of
the resampling grid which is not possible with Fourier-space methods alone.

The experiments in Publication P2 show that the two-stage resampling method
produces very high-quality results. With a suitable up-sampling factor and second-
stage kernel, the resampling errors are smaller than for any typically used resampling
method. The results show that the up-sampling factor 2 is optimal in normal cases in
combination with support-4 kernels in the second stage. Special cases requiring repeti-
tive resampling of the same image (e.g. image registration) can benefit from higher up-
sampling factors in combination with faster support-2 kernels. In such circumstances,
the first stage is computed just once and only the second stage is repeated.

Figures 4.3 and 4.4 illustrate the speed and quality of various resampling meth-
ods. The quality is measured by the signal-to-noise ratio (SNR) after 15 successive
resampling steps. In each panel, the solid line combines the two-stage methods and
they all use up-sampling with factor 2. The letter identifies the second-stage resam-
pling method and is either nearest neighbor (N), linear (L), shifted-linear (S), cubic
(C), support-4 B-spline (B4), or support-4 OMOMS (O4). Dashed lines connect the
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Figure 4.4: Quality and speed of different resampling methods with 2-D data. For details of
the abbreviations of the methods, see text. Adapted from Publication P2.
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previously known methods (in 3 groups) which employ nearest neighbor (NN), linear
(LI), shifted-linear (LS), Keys cubic (CU), B-spline (BSx), OMOMS (OMOMSx), or
windowed sinc (WSx) interpolation. The windowed sinc methods employ Hamming
windowing and the subscript x in the labels indicate the size of the support.

The 2-D image or 3-D volume used in the experiments is identified in the lower-
right corner of each panel. The experiments employed T1-weighted MRIs (T1 MRI),
T2-weighted MRIs (T2 MRI), proton-density weighted MRIs (PD MRI), computed
tomography images (CT), functional MRIs (fMRI), synthetic images (Synthetic), and
a gray-scale photograph (Lena).

As is shown in Publication P2 and evident in Figs. 4.3 and 4.4, the two-stage re-
sampling method is capable of producing higher-quality results than the previously
known methods. With support-4 cubic (C), B-spline (B4), or OMOMS (O4) kernels,
the two-stage resampling is faster and produces better results than normal support-6
methods. The method is best suited for applications requiring minimal resampling er-
rors. Such applications typically perform statistical analysis (e.g. fMRI data analysis)
or otherwise further process the resampled data.
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Chapter 5

Visualization

Visualization, as the final step of medical imaging, should be easy and intuitive to un-
derstand, leaving no room for misinterpretations. If interactive real-time manipulation
of the view is possible, the identification of 3-D spatial relationships becomes easier.
Therefore, the speed of a particular visualization method also affects the usability of
the method.

Typically, analysis results of the functional images or other processed information
is overlaid on the anatomical images. Different tissue properties, borders, and struc-
tures of the anatomical images allow identification of the physical locations of the
overlaid data. The visibility of such anatomy can be further enhanced by extracting
various structures by means of image segmentation and by visualizing them as indi-
vidual objects.

Nowadays, the typically employed medical imaging methods produce 3-D volu-
metric data, especially in brain imaging. Therefore, the following sections concentrate
on exploring volume visualization and the techniques are divided into scalar and tensor
volumes, according to the type of information present in each voxel.

5.1 Scalar volumes

Scalar volumes contain one value for each voxel and the interpretation for the value
depends on the imaging method. These volumes are not necessarily even the direct
outcome of the imaging but might be the results of further processing and data anal-
ysis. A single imaged volume might even lead to several different scalar volumes,
each expressing different analysis results. In the simplest form, the imaged values
might directly represent densities, concentrations of particular substances, or some
other physical characteristics of the tissue. On the other hand, the analysis results
could express probabilities or confidences of a particular event (e.g. of neural activa-
tion), estimated current densities, or some more complex physical properties such as
diffusion anisotropies. Below, the most common methods to visualize scalar volumes
are explored.

5.1.1 Cross-sections

Two-dimensional planar cross-sections (Fig. 5.1) are perhaps the most common way to
visualize 3-D volume data. A 2-D plane cuts through the volume and the values on this
plane are visualized. In the simplest approach, the 2-D plane is constrained to match
a pair of axes of the 3-D volume data. No interpolation is necessary if each 2-D pixel
on the cut plane coincides with a 3-D voxel, and the data can be directly copied into
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1 cm 1 cm

Figure 5.1: Two cross-section images of a 3-D T1-weighted MRI volume. One original sagittal
slice is shown on the left (no interpolation required) with a line representing the location of the
interpolated oblique cross-section on the right.

Figure 5.2: Examples of surface-based rendering using triangle meshes. The cortical surface
(left) is inflated (right) to reveal areas hidden inside sulci. Visualization employs inflation
techniques of Fischl et al. (1999). Images by courtesy of Lauri Parkkonen.

the cross-section image. However, such constraints severely limit the possible views
and 3-D interpolation can be employed to allow for oblique cross-sections. Tri-linear
interpolation is commonly used for speed, although higher-order methods can be also
employed for better quality results.

5.1.2 Surface-based rendering

Surface-based rendering methods, also known as indirect volume rendering (IVR)
methods, require preprocessing to extract objects of interest from the 3-D volumes.
Such objects can be iso-surfaces obtained by simple thresholding or they might re-
quire more complex segmentation. After extraction, the surfaces are represented by
surface primitives, such as polygons or patches. In medical imaging, triangle meshes
are by far the most commonly employed surface representations.

The surface extraction reduces the number of data primitives significantly. A 3-
D volume contains typically millions of voxels that are consequently represented by
some thousands or hundred thousands of surface primitives. The visualization of these
reduced number of primitives is usually much faster than the original 3-D volume
data. Current display hardware and graphics processing units (GPUs) are especially
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2 cm

Figure 5.3: Example of the flat maps where part of the right visual cortex (left) is unfolded
onto a plane (right) to reveal the fMRI activation patterns. Visualization is computed using
Brain á la Carte software employing retinotopic mapping techniques of Warnking et al. (2002).
Image by courtesy of Linda Henriksson.

suited for fast rendering of triangle meshes which makes them very attractive surface
representations.

As an additional benefit, triangle meshes and other surface representations allow
further processing and analysis of the surfaces. For example, local surface curvatures
or distances measured along the surfaces can provide useful information. Highly con-
voluted surfaces, such as the human cortex, can be inflated (Fig. 5.2) and even unfolded
onto a plane (flat maps, Fig. 5.3) to reveal surface areas otherwise hidden from view
(Fischl et al., 1999). Due to the intrinsic curvature of the unfolded surface, some de-
gree of geometrical distortion is inevitably introduced and various methods have been
developed for minimizing these distortions.

Unfolding a surface onto a 2-D plane is equivalent to parametrizing the surface with
a 2-D coordinate system. Low-distortion surface parametrization is widely studied
in computer graphics and, in addition to surface unfolding, it has many applications
such as multi-resolution analysis and re-meshing (Eck et al., 1995; Lee et al., 1998;
Alliez et al., 2003), surface fitting (Floater, 1997), digital geometry processing (Guskov
et al., 1999), texture synthesis (Turk, 2001), and mesh compression (Gu et al., 2002).
To minimize the distortions, many popular methods use a set of forces that aim to
preserve local distances, areas, and angles (Maillot et al., 1993; Carman et al., 1995;
Eck et al., 1995; Floater, 1997). Another possibility is to minimize the changes in
vertex distances (Schwartz et al., 1989; Wolfson and Schwartz, 1989; Fischl et al.,
1999) that are induced by the unfolding. The use of conformal maps have been also
investigated (Hurdal et al., 1999; Haker et al., 2000; Lévy et al., 2002; Gu and Yau,
2003) in applications where minimization of the angle distortion is important.

5.1.3 Volume rendering

Volume rendering, also known as direct volume rendering (DVR), is performed using
the volumetric 3-D data as such. Typically, no preprocessing is required although ad-
ditional steps, such as segmentation and tissue classification, can be used for removing
certain parts or for otherwise enhancing the data (Fig. 5.4). To reveal the structures
in the volume, voxels have different opacities which can depend directly on the voxel
values or be separately assigned by a preprocessing step. Some methods limit the
voxels to be either totally opaque or transparent, while others allow different levels of
transparency.
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Figure 5.4: Visualizations of the brain surface from T1-weighted MR images. Same segmented
volume is rendered using ray-casting (left) and hardware-assisted 3-D texture mapping (right)
techniques. Images created with software written by the author.

The four most common (Meissner et al., 2000) volume rendering techniques are
ray-casting (Tuy and Tuy, 1984; Levoy, 1988), shear-warp factorization (Lacroute and
Levoy, 1994), splatting (Westover, 1990), and hardware-assisted 3-D texture mapping
(Cabral et al., 1994). Ray-casting has been widely studied and it has collected the
largest number of publications over the years (Meissner et al., 2000). Virtual rays are
traced from each pixel in the the view plane (i.e. camera) into the 3-D volume and
their interaction with the data is computed on a voxel-by-voxel basis. Different space
subdivisions, such as octrees (Levoy, 1990) and binary-space-partitioning (BSP) trees,
have been employed to enhance the speed of the ray-casting methods.

The shear-warp factorization is a further enhancement to ray-casting and it is rec-
ognized as the fastest software rendering method (Meissner et al., 2000). A clever
encoding scheme for the volume and image data is employed that shears the 3-D vol-
ume for ray-casting. The resulting rays are always perpendicular to the volume slices
which simplifies the calculations. A final warping step transforms the volume-parallel
image into the final image.

In contrast to ray-casting, the splatting algorithm is a forward mapping technique
that processes through the 3-D volume and maps the voxels to the rendered image in
back to front order. Voxels are represented by overlapping basis functions, typically
Gaussian kernels, with amplitudes scaled by the voxel values. These basis functions
are consequently projected onto the screen and efficient rasterization is achieved with
precomputed footprint look-up tables.

Lately, the increase in the capabilities and on-board memories of modern consum-
er-level PC graphics adapters have made 3-D texture-mapping a very attractive and
widely available (Rezk-Salama et al., 2000) volume-rendering technique. The method
off-loads the majority of the rendering effort from the central processing unit (CPU)
to a dedicated GPU specialized in such computations. A further benefit is the easy
incorporation of other solid objects and standard graphics processing methods, such as
clipping planes (Fig. 5.5).

Nowadays, the large GPU memories allow multi-channel volumes to be employed
in visualization. For example, intensity gradients can be computed from the original
volume and the magnitudes of these gradients can be encoded as the second channel.
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Figure 5.5: Example of a combined volume and surface-based rendering. T1-weighted MRI
volume is visualized by hardware-assisted 3-D texture mapping employing two cut planes.
Bone structures, visualized as solid objects with standard triangle meshes, are cut open with a
set of three cut planes. Image created with software written by the author.

The borders between different tissue types are represented as intensity changes and are
easily identified from this second channel. Such a method does not require a separate
segmentation step as the voxel opacities can be interactively and efficiently changed
with 2-D color-table look-ups during the visualization. The tissue boundaries (Fig.
5.6) are especially easy to visualize by setting voxels with a minimal gradient value to
transparent.

5.1.4 Texture-mapped triangle meshes (P3)

Publication P3 presents improvements to the surface-based rendering methods employ-
ing triangle meshes. The suggested method is especially suited for visualizing the brain
surface from T1-weighted MRI data although it can be also applied to other surfaces.
The method combines the benefits of volume rendering and surface-based rendering
and produces high-quality images with excellent speed.

The introduced method uses well-known 2-D texture mapping techniques (Blinn
and Newell, 1976; Heckbert, 1986) to add surface details on the rendered triangle
meshes. Such techniques have not been previously employed in medical imaging as
proper texture images are not readily present. One novel idea in publication P3 is to
lend volume rendering techniques, namely depth integration (Bomans et al., 1990), for
the texture image generation. The method thereby provides accurate surface texture
images from the same 3-D volume that is used for extracting the triangle mesh.

Publication P3 pays careful attention to minimizing the distortions when the sur-
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Figure 5.6: Example of tissue boundaries, skin and bone, visualized from a CT volume using
hardware-assisted 3-D texture mapping. Image gradient magnitudes are augmented as a second
channel to allow easy identification of the surfaces. The picture was created with the Simian
(Kniss, 2006) software using the techniques by Kniss et al. (2001, 2002).

a) b)

c) d)

Figure 5.7: Brain surface visualizations using ray-casting (a), hardware-assisted 3-D tex-
ture mapping (b), solid-colored triangle mesh (c), and 2-D texture-mapped triangle mesh (d).
Adapted from publication P3. Images created with software written by the author.
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Figure 5.8: Example combining two 2-D texture-mapped surfaces (skin and brain), one non-
textured surface (skull), and volume rendering (in gray). Cut planes are employed to reveal
inside structures. Image created with software written by the author.

face mesh is flatted on the 2-D texture images and to minimizing possible sampling
artifacts present in the textures. The novel idea of measuring the distortions in terms
of data resolution rather than mesh geometry is presented. Furthermore, a new error
measure, especially suitable for minimizing distortions with respect to data resolution,
is introduced.

The proposed method benefits from the texture-mapped surfaces in many ways.
The texture images are capable of presenting surface details more accurately than
would be practical by increasing the accuracy of surface tessellation. Typically, the
triangle size can be increased, producing far less triangles for the surface model. Fur-
thermore, segmentation and triangulation into sulci is no longer necessary for visual-
ization of the cortical mantle, which makes the surface extraction significantly easier.
The above effects typically reduce the number of triangles from around 100,000 for
human cortex to a mere 10,000–20,000 with textures applied. Such a reduction in
triangle count naturally speeds-up the rendering process.

Fig. 5.7 illustrates the visual quality of the proposed method in comparison with
volume rendering and solid-colored triangle meshes. The experiments in publication
P3 show that such texture-mapped meshes can be rendered many times faster (approx.
7-fold) than a solid-colored mesh with corresponding surface details. Comparing with
the volume rendering methods, the difference in speed is around 100-fold in favor of
the textured meshes. The method is not limited to brain surfaces alone and can easily
incorporate multiple textured objects and employ other standard rendering techniques,
such as cut planes and stencil buffers. Fig. 5.8 employs the method for brain and skin
surfaces with multiple cut planes and volume rendering. The speed of the proposed
method allows real-time interactive manipulation of such complex scenes. Fig. 5.9
shows the 2-D texture images computed for the surfaces of Fig. 5.8.
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Figure 5.9: 2-D texture images created for the surface models of Fig. 5.8.
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Figure 5.10: Prolate (λ1 � λ2 ≥ λ3), oblate (λ1 ≈ λ2 � λ3), and isotropic (λ1 ≈ λ2 ≈ λ3)
tensors.

5.2 Tensor volumes

In medical imaging, tensor volumes can be produced by diffusion tensor imaging (see
Section 2.2) and also as a result of complex image analysis. For example, the dis-
placement vector fields in image registration can be analyzed over multiple subjects
and the distribution between individual displacements and the average displacement
can be summarized as a covariance tensor (Kindlmann et al., 2004).

Such tensor volumes contain a symmetric 3×3 tensor (matrix) in each voxel and
many different attributes, such as fractional anisotropy (FA), relative anisotropy (RA),
and volume ratio (VR), can be computed from them (Basser and Pierpaoli, 1996; Pier-
paoli and Basser, 1996; Uluǧ and van Zijl, 1999). These attributes produce scalar
volumes that can be visualized with the methods described above, and the subsections
below concentrate on methods visualizing the tensor data.

5.2.1 Direct tensor visualization

The tensors can be decomposed into 3 eigenvalues λ1 ≥ λ2 ≥ λ3 with corresponding
eigenvectors e1, e2, and e3. The eigenvectors specify three orthogonal axes such that
the diffusion or variance, for example, is the largest along e1 and smallest along e3.
The strength of the effect (e.g. diffusion or variance) along each axis is specified by
the respective eigenvalue. Fig. 5.10 shows the three main shapes of the tensors as
ellipsoids.

The tensor data can be visualized using the eigenvalue decomposition. In the sim-
plest form, only the direction of the strongest effect, i.e. the principal direction e1, is
shown. In Fig. 5.11 (a,b), the principal directions are visualized using directionally
encoded color (DEC) maps (Douek et al., 1991; Pajevic and Pierpaoli, 1999) that rep-
resent the 3-D direction with colors. For example, in Fig. 5.11 (a,b), red color is used
for encoding left–right direction, green for anterior–posterior direction, and blue for
superior–inferior direction. The principal directions can also be visualized directly as
vectors (line segments) showing the local tensor orientation (Fig. 5.11 c,e,f).

Although the visualizations of the principal axis do not reveal anything about the
other two components, they are very informative for prolate tensors. Further data,
such as FA or other derived attributes, can be used for modifying the brightness and
transparency of the DEC map pixels or the color, visibility (transparency), and size
of the vector representation. However, if λ1 ≈ λ2 � λ3 (oblate tensor), the principal
direction becomes arbitrary due to noise and could just as well be any direction in the



44 Visualization

c) d)

e) f)

a) b)

Figure 5.11: Examples of tensor visualization using DEC maps (a,b), vectors for principal
direction (c), tractography (d), and combination of vectors and tractography (e,f). Panels (c)
and (d) use simulated depth-of-field effect to add sense of depth and to remove visual clutter.
Panels (c), (e), and (f) show vectors for tensors with FA > 0.4, and panels (e) and (f) further
constrain them into 1 cm thick volume over the transaxial cut plane. A sagittal cut plane
in panels (e) and (f) separates the visualizations in the two hemispheres. Panels (a) and (b)
were created with DtiStudio software (Jiang et al., 2006) and provided by courtesy of Jaana
Hiltunen. Panels (c)–(f) were created with software written by the author. Data acquired at 3 T
at the AMI Centre of TKK.



Tensor volumes 45

Figure 5.12: Example of tensors at the anterior part of the corpus callosum visualized as
ellipsoids. White rectangle on the FA image (right) shows the location of the magnified portion
on the left. Visualization created using dTV (Masutani, 2005a) and Volume-One (Masutani,
2005b) software employing methods by Masutani et al. (2003). Data acquired at 3 T at the
AMI Centre of TKK. Images by courtesy of Jaana Hiltunen.

plane spanned by e1 and e2. In these and isotropic cases, the visualization of the full
tensor is necessary.

The entire tensor can be visualized using glyphs that illustrate the direction and
the tensor size in 3-D. The three eigenvectors specify a local coordinate frame for the
3-D glyph object and the eigenvalues determine the shape and size along these axes.
Typically, ellipsoids (Basser et al., 1994b,a; Pierpaoli et al., 1996) are employed as the
glyphs (Fig. 5.10 and 5.12). However, the exact 3-D shape of an ellipsoid is sometimes
difficult to view in 2-D pictures, especially if the view cannot be interactively rotated.
Other glyph objects and shapes, such as super-quadric glyphs (Kindlmann et al., 2004),
have been suggested to overcome this problem.

5.2.2 Tractography

A tensor volume can also be visualized indirectly by proper modeling of the effects
producing those tensors. For example, diffusion anisotropy in the white matter of the
brain is known to roughly be caused by bundles of axonal fibers running in parallel
(Le Bihan and van Zijl, 2002). Such fiber tracts can be delineated and extracted from
the tensor volume by tractography (Fig. 5.11 d,e,f).

DTI tractography has been intensively studied in recent years (Conturo et al., 1999;
Jones et al., 1999; Mori et al., 1999; Westin et al., 1999, 2002; Basser et al., 2000;
Poupon et al., 2001; Tench et al., 2002; Parker et al., 2002, 2003; Masutani et al.,
2003) and many different tract reconstruction techniques exist. Tract tracing is most
often started from a user-selected region of interest (ROI), although the whole tensor
volume can also serve as the ROI. Tracing stops when selected termination criteria are
fulfilled. Typically, the value of the FA is employed and the tracing is terminated when
the FA drops below a predetermined limit, for example 0.2. Another usual termination
criterion is the high local tract curvature, i.e. large change in the tract angle.

In addition to a single ROI, multiple ROIs can also be employed. One of the ROIs
serves as the launch site for the fibers and the others serve as filters. Extraneous fibers
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are removed by keeping only those that connect from the launch site to one of the
filtering ROIs. Such elimination removes clutter from the visualization and allows the
study of possible connections between two specified brain regions.

For tracing the fiber tracts, the principal direction e1 of the tensor is assumed to
indicate the average fiber bundle direction in a voxel. Some of the methods (e.g. Mori
et al., 1999; Conturo et al., 1999) employ only this principal direction for the tract
propagation. Mori et al. (1999) compute the principal direction for each voxel and an
entering tract follows that direction through the whole voxel. A new direction is as-
signed only at the border of the next voxel. On the other hand, tensor interpolation (e.g.
Conturo et al., 1999) produces smoother paths and offers better tracing accuracy, es-
pecially if the resolution is low with respect to tract curvature. The tract is followed in
short steps, for example 0.5 mm, and a new direction is obtained from the interpolated
tensor at each step.

Even if an imaged voxel contains only a single fiber bundle, its principal direction
will be disturbed by imaging noise. The tensorlines techniques (Weinstein et al., 1999;
Westin et al., 1999, 2002) utilize the full information of the diffusion tensor for more
accurate tracing. The current tract direction vi is modulated by the tensor D to produce
a new direction vi+1=Dvi. In effect, the vector vi is divided into components along the
eigenvectors of D and these components are modulated by the respective eigenvalues.
Therefore, if λ1 � λ2 ≥ λ3 (prolate tensor), the vector vi+1 will be almost parallel
to the principal direction e1 as the components along e2 and e3 are suppressed. On
the other hand, if λ1 ≈ λ2 � λ3 (oblate tensor), the direction in the plane spanned by
e1 and e2 will be almost unchanged and only the orthogonal component along e3 is
suppressed.

The tensorlines technique is more robust than the techniques using only the prin-
cipal direction. Even in the prolate case, the principal direction of a tensor is easily
perturbed due to image noise. Furthermore, fiber crossings cause problems as the dif-
fusion tensor is typically oblate in those areas and the principal direction is not well
defined. In such cases, the tensorlines technique allows extrapolation of the old direc-
tion.

The line propagation methods above produce a tract from a given seed point, but
do not provide any information about the sensitivity to perturbations (e.g. noise or
seed location). Naturally, the tracing can be repeated with small variations of the seed
point location to assess the spread caused by such effects. Probabilistic methods (Koch
et al., 2002; Behrens et al., 2003; Parker and Alexander, 2003, 2005) utilize probability
density functions to describe the local uncertainty of the tract orientation at each spatial
location and can therefore provide probability estimates for anatomical connections.
Another approach employs regional energy minimization (minimal tract bending) to
select the most probable trajectory from several candidates (Poupon et al., 2000).

Nevertheless, partial volume effects (i.e. multiple tissue types or fiber bundles in a
voxel), image noise, and fiber branching still pose challenges to all tractography tech-
niques. However, as concluded by Mori and van Zijl (2002), even the simple tractog-
raphy methodologies are able to visualize major white matter connections in animals
and humans, and thus DTI and tractography provide valuable in vivo information about
brain connectivity on an individual level.
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Tibial

Peroneal

Figure 5.13: Visualization of tibial and peroneal nerves of right knee region, adapted from
publication P4. Data acquired at 3 T at the AMI Centre of TKK. Image created with software
written by the author.

5.2.3 Tractography of distal peripheral nerves (P4)

Publication P4 presents the first DTI and tractography results of human distal periph-
eral nerves. Diffusion in the median, ulnar, and radial nerves of the upper limb and
the tibial and peroneal nerves of the lower limb was quantified using the apparent dif-
fusion coefficient and FA. These nerves were subsequently delineated and visualized
with tractography (see Fig. 5.13).

Our results showed that peripheral nerves are extremely difficult to delineate from
standard T1- and T2-weighted anatomical MRIs. The nerves and the surrounding tis-
sues have very similar intensities making thresholding and 3-D region growing ap-
proaches unsuccessful even in high-resolution volumes. However, the diffusion tensors
contain information about the nerve direction (i.e. diffusion direction) which is lacking
from the anatomical scalar images. Tractography can be considered as a special form
of 3-D region growing allowing the delineation to follow the diffusion direction only.
Consequently, DTI and tractography are better at distinguishing the peripheral nerves
from the surrounding tissues.

As shown in publication P4, tractography delineated successfully the majority of
the studied peripheral nerves. A total of 21 nerves were traced: 3 lower limb nerves in
3 subjects and 3 upper limb nerves in 4 subjects. Only in one of the subjects, the radial
nerve running very superficially at the wrist was not detected. Anatomical, FA, and
DEC images were used to manually position the ROIs for tract tracing. FA thresholds
and tract lengths were used to distinguish nerves from other nearby tissues. Muscle
fibers and ligaments in the joint areas sometimes showed high anisotropy but produced
only short tract bundles that were easy to separate from the long nerve tracts.

The maximum FA values in the nerves tended to covary with the nerve size, being
smaller for smaller nerves. This change in FA could reflect the more compact tissue
structure in the larger nerves. On the other hand, partial volume effects have a larger
influence on small nerves, thereby also lowering the measured FA value. In any case,
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the maximum FA value seems to be an indicator for the peripheral nerve size.
The main analysis in Publication P4 used dTV (Masutani, 2005a) and Volume-One

(Masutani, 2005b) software available on-line. The tractography algorithm of this soft-
ware employs the principal direction technique (Masutani et al., 2003) and is therefore
more susceptible to noise. To increase the reliability and weight of the results, tractog-
raphy for one subject was also performed with our own software (Fig. 5.13) employing
tensor interpolation and the tensorlines tracing algorithm (Westin et al., 1999, 2002).
This software used the original diffusion-weighted images and computed the tensors
and the eigenvalue decompositions independently from the other software, thereby also
validating these processing stages. The tracts were visualized in combination with the
techniques developed in Publication P3 and validated the results of the other software.
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Chapter 6

Discussion and Conclusions

In this Thesis, three novel enhancements of the three key stages of multi-modal image
fusion were presented. These enhancements allow more accurate image registration,
better quality image resampling, and fast high-quality visualization. In addition, an ap-
plication of the diffusion tensor imaging to peripheral nerve tractography successfully
delineated these nerves.

The proposed improvement to the mutual-information-based image registration
(P1) allows sub-sample registration accuracy even under worst-case conditions. With
the currently used sampling schemes, the MI registration is known to grid-lock and
produce registration bias when the matched images have equal pixel size and when
the image axes align. Under such conditions, a maximum bias of 0.5 pixels and an
average bias of 0.2–0.3 pixels produced by the current methods is reduced by the pro-
posed method to a maximum bias of 0.2 pixels and an average bias of 0.04 pixels. The
computation time increases with the more accurate method 2–4 fold.

The sub-sample registration accuracy is important for medical data-sets with rela-
tively large pixel sizes, especially when the registered images are used for further anal-
ysis; good examples are the functional magnetic resonance images and the diffusion
tensor images. Both fMRI and DTI typically employ resolutions of a few millimeters
and comprise large sets of serially imaged volumes registered together for statistical
analysis (fMRI) or for tensor estimation (DTI). The identical resolution in the consec-
utive volumes and the possible alignment of the image axes during registration consti-
tute the worst-case conditions for the MI metric. This metric would otherwise be ideal
for the fMRI and DTI data since it makes only minimal assumptions about the corre-
spondence between pixel intensities. Especially in diffusion-weighted images, pixel
intensities vary greatly depending on the applied gradient direction. In addition, acti-
vation differences in fMRI volumes are known to mislead some registration metrics.
Thus, the proposed improvements to the worst-case MI registration accuracy are very
important.

The proposed improvement to the image resampling (P2) combines Fourier-space
up-sampling with conventional convolution-based interpolation. The Fourier-space
stage employs efficiently the theoretically-perfect full-width sinc interpolation for im-
age up-sampling. The convolution stage allows the limitations of the first stage to be
circumvented and this combination leads to a very high-quality resampling method
with better SNR than the other currently employed methods (e.g. OMOMS and B-
splines). The proposed method is especially suitable for fMRI and DTI volumes.

The minimization of the resampling errors is necessary when the resampled images
are used for further analysis. For example, fMRI volumes are registered to remove sub-
ject motion and are subsequently resampled before statistical analysis. High-quality
registration and resampling guarantee that the analyzed correlations are actually due
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to brain activation and not produced by image registration or resampling errors. The
proposed two-stage resampling method is also especially fit for image registration ap-
plications which resample one of the original images while iteratively searching for
the best match. In such applications, the first up-sampling stage can employ higher
magnification and the second stage can use fast small-support interpolation. For the
repeated resampling during the iterative search, only the fast second stage needs to be
re-computed, thereby providing high-quality results with high speed.

The introduced enhancement for the triangle-mesh rendering (P3) combines the
benefits of the surface-based visualization and the volume visualization. The applied
standard 2-D texture mapping, optimized with respect to data resolution, provides ac-
curate surface details and allows the use of bigger triangles, thereby reducing their
count. Consequently, the suggested method provides 5–100 fold increase in the speed
to produce equal or even better quality results than the previously used methods.

The high-quality high-speed visualization is important to allow interactive manipu-
lation of the rendered scene. Certain special techniques, such as depth-of-field simula-
tion and concave cuts, require multiple rendering passes for a single scene. Typically,
the scene contains several complex models, and thus a single model has to be ren-
dered as quickly as possible. Fast interactive manipulation of the scene, even a simple
rotation of the view, allows better interpretation of the 3-D spatial relationships.

The application of DTI to peripheral nerves (P4) illustrates that the diffusion imag-
ing, typically used for the white matter of the brain, can be successfully applied to de-
lineating distal peripheral nerves. The maximum of the fractional anisotropy measure
was also shown to covary with the nerve size. The DTI could provide useful informa-
tion for the diagnosis and follow-up of nerve lesions, entrapments, and regeneration.
Furthermore, the peripheral nerves could serve as ’living phantoms’ for testing and
validating different tractography methods as the course of these nerves can be readily
verified from known anatomy.

The fields of multi-modal neuroimaging and medical imaging in general are rapidly
developing and full of potential for useful applications. High-quality image processing
steps, such as those presented in this Thesis, are crucial for accurate image fusion,
analysis, and visualization.

Topics of future research

Although the proposed improvements to the MI-based image registration significantly
reduced the sampling-related artifacts, the remaining maximum worst-case bias of 0.2
pixels warrants further research. Naturally, this maximum bias can be reduced by
increasing the kernel size, but that will happen at the expense of computation time.
The present kernels are derived from the nearest-neighbor and the linear kernels, and
thus fall into the B-spline family of kernels. Therefore, some other type of kernel in
support sizes 2–4 could perhaps further improve the worst-case accuracy.

The proposed two-stage resampling method was tested with the first-stage magni-
fication factors up to 8 using the 2-D data. Curiously, factor 2 was already capable
of producing the best results, with no further benefit with the increased magnifica-
tion. With higher factors, all versions employing different second-stage interpolators
approached an upper limit, already set by the best versions with magnification factor
2. Since a change from the floating-point calculations to double-precision calculations
had no effect, this limit was not caused by the numerical round-off errors and seemed
to be image-specific. Therefore, it will be interesting to see if any future resampling
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method with any support size could clearly exceed this limit.
To minimize the possibility of visible texture discontinuities, the proposed visual-

ization method was designed to minimize the number of parts that the mesh was di-
vided into. However, these discontinuities turned out to be invisible to the eye with the
typical texture generation parameters. The current design limits the method to meshes
that are topologically spheres and it also causes larger distortions with surfaces having
high local curvature. Since discontinuities are not an issue, a dynamic method could
be developed that divides the surface into any required number of parts to circumvent
the present problems.

The current trend in computer science is to increase the number of cores in a CPU.
Although the speed of a single core is also gradually increasing, the real performance
boost comes from parallel processing with multi-thread programming. The vast ma-
jority of the current image processing algorithms and software are designed for serial
processing and the next challenge in the field is to utilize this parallel computation
power in the best possible way.



52



Bibliography 53

Bibliography

Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. (2003).
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Visualization in Biomedical Computing, Vol. 1131 of Lecture Notes in Computer
Science, pp. 337–342. Springer-Verlag, Berlin, Germany.

Schwartz, E. L., Shaw, A., and Wolfson, E. (1989). A numerical solution to the gen-
eralized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11: 1005–1008.
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