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Analysis and Design of Full-Order Flux Observers

for Sensorless Induction Motors
Marko Hinkkanen

Abstract—This paper deals with the flux estimation for sensor-
less induction motor drives. The linearized model of the speed-
adaptive full-order flux observer is applied to help choosing the
observer gain and the speed-adaptation gains. It is shown that the
linearized model reveals potential instability problems that are
difficult to find by other means. An observer gain and a method
to vary the speed-adaptation gains in the field-weakening region
are proposed. Experimental results show stable operation in a
very wide speed range.

Index Terms—Flux estimation, full-order adaptive observer,
induction motor drives, speed sensorless.

I. INTRODUCTION

Speed-sensorless induction motor drives have developed

significantly during the last few years. Speed-adaptive full-

order flux observers [1], [2] are promising flux estimators

for induction motor drives. The speed-adaptation mechanism

seems to imply tolerance of measurement noise, and the

flexible observer structure makes it possible to use same anal-

ysis tools and experimental algorithms for different observer

designs.

The speed-adaptive observer consists of a state-variable ob-

server augmented with a speed-adaptation loop. The observer

gain and the speed-adaptation law determine the properties of

the observer. The observer gain is often chosen to be zero [1],

[3]–[5]. If a nonzero observer gain is used, the gain is usually

selected by ignoring the effect of the speed-adaptation loop

and using pole placement [2], [6], [7].

However, the speed-adaptive observer is a nonlinear sys-

tem, even if a constant rotor speed is assumed. The speed-

adaptation loop affects considerably the dynamics of the

observer and may cause unstable regions. Instability problems

encountered in the regenerating mode at low speeds are

well known [3], [5], [8]–[10]. Speed-sensorless reduced-order

observers may also have similar problems in the regenerating

mode as shown in [11]. There is also a risk of instability at

higher speeds if the observer gain is zero or poorly selected.

Furthermore, inappropriate gains may unnecessarily lower the

bandwidth of the speed estimation in the field-weakening

region. Therefore, the speed estimation should be incorporated

into the analysis. A straightforward way to do this is to

linearize the observer for analysis purposes.

Even though some authors have taken the speed-adaptation

loop into account in the analysis of full-order observers [3],

[8], [9], [12], the application of linearized models to the gain
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selection for a wide speed range operation has not been con-

sidered. However, linearized models have been successfully

applied to reduced-order observers in [13].

This paper applies the linearized model of the observer

to help selecting the observer gain and the speed-adaptation

gains. The induction motor model and the speed-adaptive flux

observer are first defined. Then, the linearized model of the

speed-adaptive observer is introduced. Based on the model,

an observer gain and a method to vary the speed-adaptation

gains in the field-weakening region are proposed. Finally, a

control system based on the rotor flux orientation is described

and experimental results are presented.

II. INDUCTION MOTOR MODEL

The parameters of the inverse-Γ-equivalent circuit [14] of

an induction motor are the stator resistance Rs, the rotor

resistance RR, the stator transient inductance L′
s, and the

magnetizing inductance LM . The electrical angular speed of

the rotor is denoted by ωm, the angular speed of the reference

frame ωk, the stator current space vector is, and the stator

voltage us. When the stator flux ψ
s

and the rotor flux ψ
R

are

chosen as state variables, the state-space representation of the

induction motor becomes

ẋ =

[

− 1

τ ′

s
− jωk

1

τ ′

s
1−σ
τ ′

r
− 1

τ ′

r
− j (ωk − ωm)

]

︸ ︷︷ ︸

A

x+

[
1
0

]

︸︷︷︸

B

us (1a)

is =
[

1

L′

s
− 1

L′

s

]

︸ ︷︷ ︸

C

x (1b)

where the state vector is x = [ψ
s

ψ
R
]T , and the parameters

are σ = L′
s/(LM + L′

s), τ
′
s = L′

s/Rs, and τ ′r = σLM/RR.

The electromagnetic torque is

Te =
3

2
p Im

{

isψ
∗

R

}

=
3

2
p
1

L′
s

Im
{

ψ
s
ψ∗

R

}

(2)

where p is the number of pole pairs and the complex conju-

gates are marked by the symbol ∗.

III. SPEED-ADAPTIVE FULL-ORDER FLUX OBSERVER

Choosing the stator and rotor fluxes as state variables is

preferred since no inductance derivatives are needed and the

modelling of magnetic saturation becomes simpler. In addition,

the observer could be used with stator flux orientation control

or direct torque control [7] as well as with rotor flux orientation
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control. Consequently, the full-order flux observer is defined

by

˙̂x = Â x̂+Bus + L
(
is − îs

)
(3a)

îs = Cx̂ (3b)

where the observer state vector is x̂ = [ψ̂
s

ψ̂
R
]T and the

estimates are marked by the symbol ˆ. The matrix Â and the

observer gain L are given by

Â =

[

− 1

τ ′

s
− jωk

1

τ ′

s
1−σ
τ ′

r
− 1

τ ′

r
− j(ωk − ω̂m)

]

, L =

[
ls
lr

]

(3c)

If the conventional state variables are preferred, a transforma-

tion of the observer gains given in Appendix A can be used.

The rotor speed is estimated using the adaptation mecha-

nism [1], [2]

ω̂m = −γp ε− γi

∫

ε dt (4a)

where γp and γi are positive adaptation gains and

ε = Im
{(
is − îs

)
ψ̂
∗

R

}

(4b)

is an error term. According (4b), the speed estimation is based

on the component of the current estimation error which is

perpendicular to the estimated rotor flux.

A. Stability

The speed-adaptation law (4) was originally derived using

the Lyapunov stability theory [1] or the Popov hyperstability

theory [2]. However, the stability of the adaptation law is not

guaranteed. The derivation in [1] neglects a term including the

actual rotor flux (which is not measurable) as shown in [5].

The positive-realness condition is not satisfied in [2] as shown

in [8]. A modified speed-adaptation law based on the current

estimation error perpendicular to the estimated stator flux was

proposed in [7], [12]. The behavior and the unstable regions

of the modified adaptation law are virtually the same as those

of (4).

An unstable region encountered at low speeds with regen-

erative loads is well known. An observer gain design reducing

the region was considered in [8]. An observer gain stabilizing

the regenerating mode at low speeds was proposed in [9]. An

alternative approach to stabilize the regenerating mode is to

modify the speed-adaptation law [3], [10]. As shown in Section

V, another instability may occur in the field-weakening region

when typical observer design is used.

It is desired to have a wide speed and torque range with

good dynamic properties. The approach used in this paper is

to design the observer gain especially for nominal and high-

speed operation whereas the problems at low speeds in the

regenerating mode can be handled by modifying the speed-

adaptation law as shown in [10].

B. Relationship to Conventional Model-Reference Adaptive

System (MRAS)

It is interesting to consider the relationship between the

speed-adaptive observer (3) and (4), and the conventional

MRAS1 flux estimator consisting of the voltage model and

the current model [15]. By choosing the observer gain

L =

[
−Rs
RR

]

(5)

the voltage model and the current model are obtained from

(3). The error term (4b) of the adaptation law can be written

as

ε = − 1

L′
s

Im
{(
ψ̂
s
− L′

sis
)
ψ̂
∗

R

}

(6)

based on (3b). Comparison of (6) and the speed-adaptation law

in [15] shows that the adaptation laws are identical; only the

adaptation gains are scaled by L′
s. The factor ψ̂

s
− L′

sis is the

output of the voltage model whereas ψ̂
R

is the output of the

current model. Hence the conventional MRAS is a special case

of the more general speed-adaptive flux observer. Regardless

of operating point, the conventional MRAS is only marginally

stable (poles on the imaginary axis).

IV. LINEARIZED MODEL

The nonlinear and complicated dynamics of the speed-

adaptive observer can be studied via small-signal linearization.

The key factor in the linearization is to use a synchronous

reference frame in order to obtain a steady-state operating

point. In the following, the dynamics of both the motor and

the observer are taken into account. Even though the stator

dynamics are included in the model, the linearized model is

independent of the stator voltage and, consequently, of the

current controller. Accurate motor parameter estimates are

assumed in the analysis.

A. Estimation Error

The nonlinear dynamics of the estimation error e = x − x̂

of the state vector can be written based on (1) and (3)

ė = (A− LC)x−
(
Â− LC

)
x̂

= (A− LC) e+
[

0

jψ̂
R

]

(ωm − ω̂m)
(7)

In the estimated rotor flux reference frame, the linearized

model of (7) becomes (see Appendix B)

ė = (A0 − L0C) e+
[

0

jψR0

]
(ωm − ω̂m) (8a)

Here, the operating-point quantities are marked by the sub-

script 0, and the matrices are

A0 =

[

− 1

τ ′

s
− jωs0

1

τ ′

s
1−σ
τ ′

r
− 1

τ ′

r
− jωr0

]

, L0 =

[
ls0
lr0

]

(8b)

where the stator angular frequency is ωs0 and the slip angular

frequency is ωr0 = ωs0 − ωm0.

The transfer function from the estimation error of the speed

ωm − ω̂m to the estimation error of the current is − îs is

G(s) = C (sI−A0 + L0C)
−1

[
0

jψR0

]

= − jψR0

L′
s

s+ jωs0
A(s) + jB(s)

(9a)

1Even though the speed-adaptive observer can also be considered as an
MRAS, the term conventional MRAS is used here to refer only to the flux
estimator in [15].
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where I = [ 1 0
0 1

] is the identity matrix. The polynomials in

(9a) are defined as

A(s) = s2 + s

(
1

τ ′s
+

1

τ ′r
+
lsd0 − lrd0

L′
s

)

− ωs0ωr0 +
σ

τ ′sτ
′
r

+
ωs0lrq0 − ωr0lsq0

L′
s

+
σlsd0
τ ′rL

′
s

(9b)

B(s) = s

(

ωs0 + ωr0 +
lsq0 − lrq0

L′
s

)

+
ωs0τ

′
s + ωr0τ

′
r

τ ′sτ
′
r

+
ωr0lsd0 − ωs0lrd0

L′
s

+
σlsq0
τ ′rL

′
s

(9c)

where the entries of the observer gain are divided into real

and imaginary components: ls0 = lsd0 + jlsq0 and lr0 =
lrd0+jlrq0. Since the observer gain is allowed to be a function

of the estimated rotor speed, the subscript 0 is used in the

equations. It is to be noted that G(s) is independent of the

speed-adaptation law.

B. Speed-Adaptation Law

In the estimated rotor flux reference frame, the rotor flux

estimate is ψ̂
R
= ψ̂R+ j0 and the adaptation law (4) reduces

to

ω̂m = −γp(isq − îsq)ψ̂R − γi

∫

(isq − îsq)ψ̂R dt (10)

The linearized transfer function from the current error isq− îsq
to the speed estimate ω̂m is

K(s) = −
(

γp0 +
γi0
s

)

ψR0 (11)

where the gains can be functions of the speed estimate.

Based on (10), only the imaginary component isq − îsq of

the estimation error of the current is of interest. Thus the

imaginary component of G(s) is used,

Gq(s) = Im{G(s)} = −ψR0

L′
s

sA(s) + ωs0B(s)

A2(s) +B2(s)
(12)

Using (11) and (12), the closed-loop system shown in Fig. 1

is formed. The closed-loop transfer function

Gcl(s) =
ω̂m(s)

ωm(s)
=

Gq(s)K(s)

1 +Gq(s)K(s)
(13)

corresponding to any operating point can be easily calculated

using suitable computer software (e.g., MATLAB Control Sys-

tem Toolbox).

When calculating the transfer functions, the magnitude of

the rotor flux ψR0 is lowered in the field-weakening region

corresponding to the applied field-weakening scheme. In this

paper, the conventional 1/ω̂m-method is used and the steady-

state flux becomes

ψR0 =

{

ψγ , if |ωm0| ≤ ωγ

ψγ
ωγ

|ωm0|
, if |ωm0| > ωγ

(14)

where the field-weakening point is ωγ and the flux in the base-

speed region is ψγ .

isq − îsq

Gq
ω̂mωm

K
+

−

Fig. 1. Block diagram presenting linearized model of speed-adaptive full-
order flux observer.

V. GAIN SELECTION

The gain selection can be studied using the linearized model

in Fig. 1. A variety of analysis methods of linear systems, e.g.,

pole-zero plots and frequency responses, can be exploited.

Pole locations of Gcl(s) can reveal improper selection of the

gains. A system is stable if the poles are located in the left half

of the complex plane. To obtain good transient behavior (i.e.,

fastness, good damping, low sensitivity to noise), additional

constraints of the pole locations are needed.

Poorly placed poles (e.g., imaginary parts of poles much

larger than the corresponding rotor speed ωm0, or real parts far

away in the left half-plane or too close to the imaginary axis)

may cause an oscillating, noisy, or too slow behavior of the

system. When the speed-adaptation gains γp0 and γi0 approach

zero, the poles approach the poles of the speed-sensored case

(the eigenvalues of (3) when ω̂m = ωm). In addition, there is

a pole in the origin. When the adaptation gains increase, the

poles begin to deviate from the poles of the speed-sensored

case and from the origin.

There are also zeros of Gcl(s) affecting the system. Even

though the poles determine the stability of the system, the

location of zeros may give useful information of the transient

behavior of the system. Furthermore, the bandwidth of the

speed estimation, which limits the bandwidth of the speed con-

troller, can be obtained from the frequency response Gcl(jω).
In the following, a typical way to select the gains is first

described. It is shown that the zero observer gain may lead

to an unstable operation region at higher speeds. Then, gain

scheduling giving well-behaving dynamics in a very wide

speed range is proposed.

A. Typical Gains

The observer gain L is usually chosen to be zero. Since

the current estimation error acts as a feedback through the

speed estimation, zero observer gain does not imply an open-

loop simulation. The speed-adaptation gains γp and γi are

normally constants tuned in the base-speed region. The gains

can be selected experimentally: first γp = 0 is selected and

the maximum value of γi is found, then γp is maximized with

the fixed γi.
An example of variations of the poles and zeros of Gcl(s),

obtained using the zero observer gain and constant speed-

adaptation gains, is shown in Fig. 2. The parameters of a

2.2-kW four-pole induction motor given in Table I were used.

The base value of the angular frequency is 2π · 50 s−1. At

the rotor speed of 1.4 p.u., the dominant complex-conjugate

pair of the poles is close to the imaginary axis. Poor damping

due to this pole location may cause problems in practice. If γp
close to zero were chosen, a part of the locus would even be
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TABLE I
PARAMETERS OF 2.2-KW 4-POLE 400-V 50-HZ MOTOR AND LOAD

Stator resistance Rs 3.67 Ω
Rotor resistance RR 2.10 Ω
Magnetizing inductance LM 0.224 H
Stator transient inductance L′

s 0.0209 H
Rated speed 1 430 r/min
Rated current 5.0 A
Rated torque 14.6 Nm

Total moment of inertia 0.0155 kgm2

Viscous friction coefficient 0.0025 Nm·s

Re{s} (p.u.)

(a)

Im
{s
}
(p
.u
.)

ωs0 (p.u.)

ωs0 (p.u.)

ωs0 (p.u.)

−1.5 −1 −0.5 0
0

2

4

6

0
0

0

1
1

1

2

2

2

3

3

4

5 5

5

Im
{s
}
(p
.u
.)

ωs0 (p.u.)

ωs0 (p.u.)

−1.5 −1 −0.5 0
0

2

4

6

0
0

1

1

2

2

3

4

5

5

Re{s} (p.u.)

(b)

Fig. 2. Variation of (a) poles and (b) zeros of Gcl(s), when typical gains are
used. Stator frequency is ωs0 = 0. . .5 p.u. and slip frequency ωr0 is rated.
Observer parameters are γp = 10 (Nm·s)−1, γi = 10 000 (Nm·s2)−1, and
L = [0 0]T . Due to symmetry, only upper half-plane is shown.

in the right half-plane. If the sign of the slip frequency were

changed (corresponding to the regenerating mode), one real

pole would be in the right half-plane at low speeds.

The dashed line in Fig. 3 depicts an example of the

frequency response Gcl(jω), an operating point corresponding

to the stator frequency 3 p.u. and the rated slip. Based on

Fig. 3, the bandwidth of the speed estimation is 0.81 p.u.

Furthermore, there is a resonant peak having the gain of 1.45.

By examining the frequency response at different operating

points, it can be noticed that the bandwidth of the speed

estimation decreases significantly at high speeds in the field-

weakening region.

|G
c
l(
jω

)|
6
G
c
l(
jω

)

ω (p.u.)
0.01 0.1 1 10

0.01 0.1 1 10

−π

−π
2

0

0.01

0.1

1

Fig. 3. Frequency response Gcl(jω). Stator frequency is ωs0 = 3 p.u. and
slip frequency ωr0 is rated. Dashed and solid line correspond to observer
using typical gains and proposed gains, respectively.

B. Proposed Gains

1) Speed-Adaptation Gains: The field weakening reduces

the loop gain Gq(s)K(s), thus reducing the bandwidth of the

speed estimation. The effect of the field weakening (14) can

be compensated by selecting the gains

γp =

{

γ′p, if |ω̂m| ≤ ωγ

γ′p
ω̂2

m

ω2
γ
, if |ω̂m| > ωγ

(15a)

γi =

{

γ′i, if |ω̂m| ≤ ωγ

γ′i
ω̂2

m

ω2
γ
, if |ω̂m| > ωγ

(15b)

where γ′p and γ′i are the base-speed region values of the

proportional and integral gains, respectively. In other field-

weakening schemes, the compensation can be carried out in a

similar manner. For different motor sizes, the suitable values

of γ′p and γ′i are usually proportional to the corresponding

values of L′
s/ψ

2
γ .

2) Observer Gain: Different observer gains can be easily

studied using the linearized model of the observer. It was

discovered that real-valued gains cannot give enough damping

at high speeds. A simple complex-valued observer gain

L = λ

[
1 + j sign(ω̂m)
−1 + j sign(ω̂m)

]

(16a)

was found satisfying, where

λ =

{

λ′ |ω̂m|
ωλ

, if |ω̂m| < ωλ

λ′, if |ω̂m| ≥ ωλ
(16b)

The positive constants λ′ and ωλ can be selected based on

the linearized model. The parameter λ′ can be considered

as an impedance, which may be helpful when choosing λ′

for different motor sizes. The transformation in Appendix A

can be used for comparing the proposed observer gain with

gains designed previously for the conventional state variables.

It is interesting to note that, at nominal and high speeds, the

proposed gain (16) has similarities (e.g., the same signs of the

real and imaginary components) with the gain proposed in [6].

An example of variations of poles and zeros of Gcl(s),
obtained using the proposed gains (15) and (16), is shown
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Re{s} (p.u.)

(a)

Im
{s
}
(p
.u
.)

ωs0 (p.u.)

ωs0 (p.u.)

−4 −3 −2 −1 0
0

2

4

6

0
0

0

1

1

1

2

2

2

3

3

3

4

4

5

5

5
Im

{s
}
(p
.u
.)

ωs0 (p.u.)

−4 −3 −2 −1 0
0

2

4

6

0
0

1
1

2

2

3

3

4

5

5

Re{s} (p.u.)

(b)

Fig. 4. Variation of (a) poles and (b) zeros of Gcl(s), when proposed gains
are used. Stator frequency is ωs0 = 0. . .5 p.u. and slip frequency ωr0 is
rated. Observer parameters are γ′

p = 10 (Nm·s)−1, γ′

i = 10 000 (Nm·s2)−1,
λ′ = 10 Ω, and ωλ = 1 p.u. Due to symmetry, only upper half-plane is
shown.

in Fig. 4. It can be seen that the problem of poor damping

encountered at higher speeds is removed. Furthermore, it

can be shown that the unstable region in the regenerating

mode at low speeds is slightly reduced as compared with

the zero observer gain case. The unstable region could be

reduced even more by modifying the observer gain or the

speed-adaptation law in the low-speed region. A modified

speed-adaptation law (compatible with the proposed gains)

stabilizing the regenerating mode was proposed in [10].

The solid line in Fig. 3 shows an example of the frequency

response Gcl(jω). The bandwidth of the speed estimation is

1.33 p.u. and there is no resonant peak. By examining the

frequency response at different operating points, it can be

noticed that the bandwidth of the speed estimation at high

speeds is increased as compared with the typical gains.

VI. CONTROL SYSTEM

The speed-adaptive observer was investigated experimen-

tally using the setup shown in Fig. 5. The 2.2-kW induction

motor (Table I) was fed by a frequency converter controlled

by a dSpace DS1103 PPC/DSP board. The control system was

based on the rotor flux orientation. The simplified overall block

diagram of the system is shown in Fig. 6. The digital imple-

PC with DS1103

IM PM
servo

Freq.
converter

Speed for
monitoring

Freq.
converter

Fig. 5. Experimental setup. Permanent magnet (PM) servo motor was used
as loading machine.

mentation of the observer proposed in [16] was used.2 Unless

otherwise noted, the parameters of the observer correspond to

the parameters used in Fig. 4. The field-weakening point was

ωγ = 0.85 p.u. and the flux in the base-speed region ψγ =
0.9 Wb.

A PI-type synchronous-frame current controller including

the decoupling of the back-emf voltages was used [18]. The

bandwidth of the current controller was 8 p.u. The speed esti-

mate used outside the observer was filtered using a first-order

low-pass filter having the bandwidth of 0.8 p.u. The speed

controller was a conventional PI-controller having the base-

speed region bandwidth of 0.16 p.u. In the field-weakening

region, the actual bandwidth of the speed controller was

reduced proportionally to the flux, i.e., the gain from the

reference torque Te,ref to the q-component of the reference

current isq,ref was kept constant, 2/(3pψγ).
The flux controller was a PI-type controller including a

feedforward term [19]. The bandwidth of the feedforward

path was limited to 0.16 p.u. The bandwidth of the feedback

loop was linearly increased from 0.016 p.u. to 0.16 p.u.

corresponding to ω̂m changing from ωγ to 2ωγ. For speeds

higher than 2ωγ , the bandwidth was 0.16 p.u.

The sampling was synchronized to the modulation, and both

the switching frequency and the sampling frequency were 5

kHz. The dc-link voltage was measured, and the reference

voltage obtained from the current controller was used for the

flux observer. A simple current feedforward compensation for

dead times and power device voltage drops was applied [20].

VII. EXPERIMENTAL RESULTS

The base values used in the following figures are: current√
2 · 5.0 A and flux 1.0 Wb. Experimental results obtained

using the typical gains corresponding to those used in Fig.

2 are shown in Fig. 7(a). The speed reference was stepped

from zero to 1.4 p.u. at t = 0.5 s. A rated-load torque step

was applied approximately at t = 1.5 s. It can be seen that

the system becomes unstable after the load torque step. At

slightly lower or higher speeds, similar problems were not

encountered.

The instability is explained by the closed-loop poles shown

in Fig. 2(a). At speed 1.4 p.u., the dominant complex-

conjugate pair of the poles is close to the imaginary axis.

Under the load torque, the actual slip frequency is larger than

2Computationally more efficient digital implementation given in [17] could
also be used.
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| |

6

Curr.
contr.

IM

PWMSpeed
contr.

Flux
contr.

Speed-

adapt.
observer

e−jϑ̂s

ejϑ̂s

is

us,ref
is,ref

ψ̂
R

ψR,ref

ψ̂R

ϑ̂s

ω̂m

ωm,ref

Fig. 6. Rotor flux oriented controller. Electrical variables shown on left-hand
side of coordinate transformations are in estimated flux reference frame and
variables on right-hand side are in stator reference frame.

the rated one since the drive is operating in the field-weakening

region. In the pole plot, the larger slip frequency would shift

the corresponding poles slightly more to the right. Even though

the linearized model remains stable, the real system becomes

unstable due to noise, poor damping of the observer dynamics,

and high bandwidths of the controllers. The system remained

stable when the bandwidths of the speed and flux controllers

were significantly decreased.

Fig. 7(b) shows experimental results obtained using the

proposed gains corresponding to those used in Fig. 4. As

expected, the system behaves stably. The noise in the currents

during the acceleration and under the load torque is caused by

overmodulation. Under the load torque, all voltage available

is used and thus the reference speed cannot be achieved.

High-speed operation is demonstrated in Fig. 8. The speed

reference was stepped from zero to 5 p.u. at t = 1 s. No

external load torque was applied.3 The drive is operating in

the overmodulation region even in the steady state due to

high mechanical losses. Since the speed estimate is obtained

through integration, the noise of the estimate is not a problem

and thus operation at very high speeds is possible.

Experimental results showing zero-speed operation during

the rated-load torque step are shown in Fig. 9. In this experi-

ment, the bandwidth of the speed controller was 0.32 p.u. The

speed reference was set to zero. The rated-load torque step

was applied at t = 4 s, and the load torque was removed at

t = 12 s. It can be seen that both the flux and the speed are

correctly observed. After removing the load, the flux is still

properly estimated and the load torque could be applied again.

The experimental results were also compared to the corre-

sponding simulations carried out using accurate motor parame-

ter estimates. Generally, the simulation results correspond very

well to the experimental results — naturally, the simulated

waveforms are smoother due to the absence of noise and

parameter errors. The only significant difference was noticed

between the experimental results shown in Fig. 7(a) and the

corresponding simulation. When γp = 10 (Nm·s)−1 corre-

sponding to the experiment was used, the simulated system

3Since the PM servo motor acting as the loading machine cannot stand
speeds much higher than 2 p.u., it was replaced with equal inertial mass in
this experiment.
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Fig. 7. Experimental results showing (a) instability phenomenon [corre-
sponding to pole plot in Fig. 2(a)], and (b) its remedy by using proposed
gains [corresponding to pole plot in Fig. 4(a)]. First subplot shows measured
speed (solid), estimated speed (dotted), and speed reference (dashed). Second
subplot shows d and q components of stator current (solid) and their references
(dashed) in estimated flux reference frame. Third subplot presents magnitude
of estimated rotor flux (solid) and its reference (dashed).

was stable. The instability became apparent when γp < 6

(Nm·s)−1, which matches with the linearized model even

better than the experimental results.

VIII. CONCLUSIONS

The linearized model of the observer is a useful tool when

selecting the observer gain and the speed-adaptation gains

of the speed-adaptive full-order flux observer. The linearized

model reveals potential instability problems that are difficult to

find by other means. A simple observer gain and a method to

vary the speed-adaptation gains in the field-weakening region

were proposed. Experimental results show stable operation in

a very wide speed range.

APPENDIX A

TRANSFORMATION OF OBSERVER GAINS

Conventionally, the stator current and the rotor flux are used

as state variables in full-order flux observers [1], [2], leading



7

ω
m

(p
.u
.)

i s
d
,
i s
q
(p
.u
.)

ψ̂
R
(p
.u
.)

t (s)

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

0

0.5

1

−1

0

1

2

0

2

4

6

Fig. 8. Experimental results showing high-speed operation. Proposed gains
were used. Explanations of curves are as in Fig. 7.
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Fig. 9. Experimental results showing zero-speed operation when rated-load
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speed (solid) and estimated speed (dotted). Second subplot shows d and q
components of stator current (solid) and their references (dashed) in estimated
flux reference frame. Third subplot presents real and imaginary components
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to

˙̂z = F̂ ẑ+Gus +K
(
is − îs

)
(17a)

îs = Hẑ (17b)

where the observer state vector is ẑ = [̂is ψ̂
R
]T , the observer

gain is K = [ks kr]
T , and H = [1 0]. The matrices F̂ and

G are given by

F̂ =

[

− 1

τ ′

σ
−jωk 1

L′

s

(
1

τr
−jω̂m

)

RR − 1

τr
−j (ωk−ω̂m)

]

, G =

[
1

L′

s

0

]

(17c)

where τr = LM/RR and τ ′σ = L′
s/(Rs+RR). It can be easily

shown that the transformation

K =

[
1

L′

s
− 1

L′

s

0 1

]

L (18)

gives identical behavior to observers (3) and (17).

APPENDIX B

LINEARIZATION

The linearized model (8) is straightforwardly obtained from

(7) by considering the stator frequency ωs as an input.

However, it is more natural to consider ωs as a function of

the estimated rotor flux due to the coordinate transformations

[13]. In the following, this linearization procedure is briefly

described.

The estimated rotor flux reference frame is chosen, i.e.,

ψ̂
R
= ψ̂R + j0 and ωk = ωs. The state-space representation

(1) of the motor is divided into real and imaginary components

ψ̇sd = − 1

τ ′

s
ψsd + ωsψsq +

1

τ ′

s
ψRd + usd (19a)

ψ̇sq = −ωsψsd − 1

τ ′

s
ψsq +

1

τ ′

s
ψRq + usq (19b)

ψ̇Rd =
1−σ
τ ′

r
ψsd − 1

τ ′

r
ψRd + (ωs − ωm)ψRq (19c)

ψ̇Rq =
1−σ
τ ′

r
ψsq − (ωs − ωm)ψRd − 1

τ ′

r
ψRq (19d)

The observer (3) divided into components in the selected

reference frame becomes

˙̂
ψsd = − 1

τ ′

s
ψ̂sd + ωsψ̂sq +

1

τ ′

s
ψ̂R + usd

+ lsd
(
isd − îsd

)
− lsq

(
isq − îsq

) (20a)

˙̂
ψsq = −ωsψ̂sd − 1

τ ′

s
ψ̂sq + usq

+ lsd
(
isq − îsq

)
+ lsq

(
isd − îsd

) (20b)

˙̂
ψR = 1−σ

τ ′

r
ψ̂sd − 1

τ ′

r
ψ̂R

+ lrd
(
isd − îsd

)
− lrq

(
isq − îsq

) (20c)

where

isd =
ψsd − ψRd

L′
s

, isq =
ψsq − ψRq

L′
s

(20d)

îsd =
ψ̂sd − ψ̂R

L′
s

, îsq =
ψ̂sq
L′
s

(20e)

and the stator frequency is solved from (3) by using the fact

that the imaginary component of ψ̂
R

is zero:

ωs = ω̂m +

1−σ
τ ′

r
ψ̂sq + lrd

(
isq − îsq

)
+ lrq

(
isd − îsd

)

ψ̂R
(21)

The stator frequency is eliminated from the state equa-

tions by inserting (21) into (19) and (20). The result-

ing system having inputs usd, usq, ωm, and ω̂m is lin-

earized. By introducing the new states, i.e., e1d = ψsd − ψ̂sd,

e1q = ψsq − ψ̂sq , e2d = ψRd − ψ̂R, e2q = ψRq , combining

the real and imaginary components, and using the matrix

notation e = x− x̂ = [e1 e2]
T , the linearized model (8) is

obtained.
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