

Copyright ©2023 Jaakko Oskari Mäkinen

3

Author Jaakko Oskari Mäkinen
Title of thesis Improving Software Deployment for Mobile Machinery : A Case Study and
Proof of Concept Implementation
Programme Computer, Communication and Information Sci-
ences

Major Software and Service Engineering
Thesis supervisor Prof. Casper Lassenius
Thesis advisor(s) Tom Hannelius, M .Sc.
Collaborative partner Insta Advance Oy
Date 29.12.2023 Number of pages 85 + 13 Language English

Abstract
To support agile and DevOps practices, continuous integration, delivery, and de-
ployment have emerged as methods to provide a fast feedback loop, improved soft-
ware quality, and rapid delivery of value to stakeholders. The rise of IoT and in-
creasing reliance on software in industrial contexts has evoked the need to adopt
continuous practices in these domains to accelerate R&D and maintain a competi-
tive edge. A gap in research was identified, concerning the adoption of continuous
deployment practices in the context of mobile machinery.

This study assesses the current state of software deployment in industrial do-
mains, using design science research for information systems.

A small-scale interview -based case study was conducted to assess the current
state of software deployment in industrial domains. The findings indicate that de-
ployment and configuration activities currently require a lot of manual work, which
is costly and time-consuming. Adopting continuous practices and automation was
seen as an opportunity to improve the situati on. The interview findings indicate that
while continuous integration ha s been widely adopted, deployment activities are
still done manually in many cases. The identified barriers include organizational
inertia, physical challenges in the operating environ ment, safety issues, and con-
cerns about suspending production during deployment.

A proof -of-concept design and implementation is presented, demonstrating a
deployment solution for a ROS2-based application for use in simulation and auton-
omous mobile machinery. The solution aims to automate the deployment process
of the distributed software architecture, follow ing best practices and addressing rel-
evant issues in the industry. After evaluation, the solution was deemed a promising
design with automation signifi cantly reducing deployment time and manual work.

Keywords software deployment, continuous delivery, continuous deploym ent, DevOps,
ROS2, Docker, containerization, microservice architecture

4

Tekijä Jaakko Oskari Mäkinen

Työn nimi Sovelluksen käyttöönottoprosessin parantaminen liikkuville työkoneille: Ta-
paustutkimus ja konseptitoteutus

Koulutusohjelma Computer, Communication and Infor-
mation Sciences

Pääaine Software and Service Engineering

Vastuuopettaja/valvoja Prof. Casper Lassenius

Työn ohjaaja(t) Tom Hannelius, M .Sc.

Yhteistyötaho Insta Advance Oy

Päivämäärä 29.12.2023 Sivumäärä 85 + 13 Kieli englanti

Tiivistelmä
Jatkuva integrointi, -julkaisu ja toimitus ovat nous seet tärkeiksi ketterän sovellus-
kehityksen ja DevOps-toimintamallin tukijoiksi. Nämä metodit pyrkivät tarjoa-
maan jatkuvaa palautetta, parantamaan sovellusten laatua, ja nopeuttamaan arvon
toimitusta sidosryhmille. Asioiden internet ja yhä kasvava ohjelmistojen hyödyntä-
minen teollisuudessa on synnyttänyt myös tässä kontekstissa tarpeen DevOps-toi-
mintamallien omaksumiselle, jotta kilpailukyky voi säilyä ja tuotekehitys tehostua.
Nykytutkimukse en perustuen on todettu tar ve sovellusten jatkuvien julkaisu- ja toi-
mi tusmetodien nykytilanteesta liikkuvien työkon eiden yhteydessä.
 Tämä tutkimus käsittelee sovelluksen käyttöönoton nykytilannetta teollisuuden
ohjelmistokehityksen kontekstissa. Tutkimusmenetelmänä on IT -alan suunnitte-
lun tutkimus.

Työhön sisältyy suppea haastattelututkimus, jossa kartoitetaan sovelluk sen
käyttöönoton nykytilannetta teollisuudessa. Tulokset osoittavat, että käyttöönotto-
aktiviteetit vaativat nykyisellään paljon käsityötä, mikä lisää ajallisia ja rahallisia
kustannuksia. Jatkuvien menetelmien omaksuminen nähtiin mahdollisuutena tä-
män tilanteen parantamiselle. Haastatteluista kävi ilmi, että jatkuva integrointi on
jo laajasti käytössä, mutta käyttöönottotoimet tehdään usein vielä käsin. Jatkuvan
toimituksen esteiksi mainittiin haluttomuus muutokseen, fyysiset haasteet ajoym-
päristössä, tuotannon keskeyttäminen ja turvallisuuskysymykset.

Konseptitoteutus havainnollistaa jatkuvien käyttöönottomenetelmien toteu-
tusta ROS2-ohjelmistoympäristöön perustuva lle liikkuvien työkoneiden hallinta-
sovellukselle. Toteutus pyrkii automatisoimaan hajautetu n sovellusarkkitehtuurin
käyttöönottoprosessia hyödyntäen suositeltuja menetelmiä. Toteutuksen arvioitiin
vähentävän merkittävästi käyttöönottoaikaa ja käyttöönoton työläyttä.

Avainsanat sovelluksen käyttöönotto, DevOps, jatkuva julkaisu, jatkuva toimitus,
ROS2, Docker, kontittaminen, hajautettu arkkitehtuuri

5

Table of Contents
Preface ... 6

Abbreviations ... 7

1 Introduction ... 8

1.1 Motivation .. 8

1.2 Goals of the Study .. 9

1.3 Scope and Context .. 9

1.4 Structure of the Thesis .. 10

2 Literature Review ... 11

2.1 Software Deployment .. 11

2.2 Agile Methodologies and DevOps in Software Deployment................................... 16

2.3 Tools and Technologies for Continuous Deployment ... 22

2.4 Examples of Deployment in the Industry .. 24

2.5 Summary ...33

3 Methodology .. 36

3.1 Design Science Research .. 36

3.2 Literature Review ... 42

3.3 Interview Case Study .. 43

3.4 Proof of Concept Design and Implementation ... 45

4 Results ... 55

4.1 Current State Analysis Based on Interviews ... 55

4.2 Implementation of a Proof -of-Concept Deployment Solution 62

5 Analysis and Discussion ... 79

5.1 Revisiting the Research Questions ... 79

5.2 Limitations ... 82

6 Conclusion and Future Work .. 84

References ... 86

A. Maturity Model for Continuous Delivery Adoption .. 90

B. Interview Questions Template ... 91

C. Screenshots .. 92

D. Deployment Workflow Diagram ... 98

6

Preface

I want to thank Professor Casper Lassenius and my advisor Tom Hannelius for their guid-
ance and support.

I also want to thank my friends and loved ones for their continuous encouragement and
mental support that helped me finish this thesis .

Meilahti , 29 December 2023
Oskari Mäkinen

7

Abbreviations

CI Continuous integration
CD Continuous delivery or continuous deployment
DDS Data distribut ion service
DSL Domain-specific language
IoT Internet of Things
IS Information Systems
IT Information Technology
R&D Research and Development
ROS Robot Operating System
SCM Software configuration management

12

stantiated and provided with all its dependencies and configured to the specific target envi-
ronment. There is no consensus on the set of activities or their names (Arcangeli et al., 2015),
but generally, they follow these conventions.

Figure 1: Activities of the software deployment process (Carzaniga et al., 1998)

Activity Description Issues and Conce rns

Release The interface between development and
deployment process. Comprises the oper-
ations needed to prepare the system for
assembly and transfer to the customer
(packaging) and informing interested par-
ties of the release (advertising).

Resources necessary for the system to
operate must be determined. Dependen-
cies on other components must be de-
fined. Information on carrying out the
subsequent activities must be included.

Install The initial insertion of a system to the cus-
tomer site. Usually supported by special-
ized tools (e.g., installers). Consists of two
sub-activities: transfer of the product to
customer site; and configuration opera-
tions necessary to prepare for activation

Usually the most complex activity, as all
the required resources needed to use the
system must be properly assembled.

Activate Starting up the executable components of
the system. Can be as simple as running a
single command or may require activation
of supporting systems or services.

May require recursive deployment and
activation of supporting systems, if the
activation of the system depends on
these.

13

Deactivate Inverse of activation. Shutting down the
executable components of a system. Often
required before other deployment activi-
ties.

Update A special case of installation, where a new
version of the software is installed. Usu-
ally less complex than a first install, as
many of the required components are al-
ready in place. Transfer and and configu-
ration activities are needed in this opera-
tion

May require deactivation of the system.

Adapt Like update but initiated by local events.
A corrective action to maintain the opera-
tional correctness of the system.

Deinstall Removing a deactivated system and its
files from a customer site.

May involve reconfiguration of other
systems. Dependency chains must be
considered when deinstalling.

De-release
(Retire)

Marking the system as obsolete and end-
ing support.

Advertising de-release to all known cus-
tomers is important to mitigate possible
issues.

Table 1: Overview of software deployment activities, based on (Carzaniga et al., 1998)

In addition to the concerns related to specific activities, Carzaniga et al. (1998) outline vari-
ous other generalized software deployment issues. The following section identif ies these core
issues.

2.1.2 Issues in Software Deployment

The first issue identified by Carzaniga et al. (1998) is change management . Changes (e.g.,
new hardware components) may occur in the system the software is running on, or addi-
tional features to a software may require installation or updating of additional software.
Thus, this should be considered in the deployment process. Dependency management
is another prevalent issue, and it increases the complexity of the deployment process, espe-
cially when the number of dependencies is large. Thus, the deployment process should ac-
count for the possible problems also in dependency installation. Dependency management
is a central concern in software configuration management, which is discussed in more de-
tail in section 2.1.4.

Deployment activities should also be coordinated so that they have minimal interference
with business tasks. In a distributed system, it might be required to coordinate deployment
activities between different components, so that they are performed in the desired order.
Another issue is the scalability of content delivery . Information transfer can become a
challenge when the number of sites or size of components increases, and when network con-

16

ate. The integration of SCM in deployment strategies, as highlighted by both industry prac-
tices (Humble & Farley, 2010) and academic research (Carzaniga et al., 1998; Conradi &
Westfechtel, 1998), ultimately fortifies the bridge between software development and user
adoption, marking it as a critical discipline in th e software industry.

2.2 Agile Methodologies and DevOps in Software Deployment

This section explores the principles and practices of Agile and DevOps It h ighlight s their
importance in fostering more efficient, responsive, and collaborative environments for soft-
ware development and deployment. The section examines how these methodologies con-
tribute to continuous integration and continuous delivery, key components in modern soft-
ware engineering. This discussion sets the groundwork for understanding the integration of
Agile and DevOps practices in improving software deployment strategies.

2.2.1 Agile M ethodologies and DevOps

Agile methodologies and DevOps practices have become integral to modern software de-
ployment within the software development lifecycle (SDLC). Agile methods, characterized
by incremental development and responsiveness to change, have transformed software en-
gineering by shortening lead times and enhancing software quality (Armenise, 2015;
Sommerville, 2016). These iterative practices require a high degree of collaboration, thereby
influencing deployment activities to integrate continuous practices.

DevOps is a cultural shift drawing from Agile and Lean It aims to unite development and
operations to streamline the deployment process (Ebert et al., 2016). It emphasizes collab-
oration, automation, and monitoring to expedit e delivery and enhance the quality. Contin-
uous Integration (CI) and Continuous Delivery (CD) are central to DevOps, promoting fre-
quent integration, automated testing, and deployment, leading to faster market delivery and
higher product quality (Armenise, 2015). The generic DevOps process is depicted in Figure
2 and the SDLC commonly associated with DevOps is shown in Figure 3.

17

Figure 2: Generic DevOps production and delivery process (Ebert et al., 2016).

Figure 3: Build and Release cycle in DevOps (Gokarna, 2023)

Adopting Agi le and DevOps practices brings substantial benefits, including increased devel-
opment speed, minimized deployment effort, and improved product reliability (L. Chen,
2015; Elazhary et al., 2021; Geurts, 2016; Zhang et al., 2018). Continuous practices such as
prototyping and CD pipelines foster a culture of ownership, ensure consistent deployments,
and enable rapid feedback incorporation, which is critical for maintaining security and re-
ducing the occurrence of critical bugs (Alperowitz et al., 2017; Lier et al., 2016).

In essence, Agile and DevOps not only improve the deployment phase but enhance the entire
SDLC, demonstrating the symbiotic relationship between deployment practices and these
modern methodologies.

18

2.2.2 Achieving Continuous De ployment

In their study, Olsson et al. (2012) explore the transition of IT companies towards continu-
ous deployment, presenting a developmental path from traditional waterfall methods to ag-
ile practices and continuous deployment. This evolution involves integrating continuous in-
tegration and data-driven R&D strategies. The study highlights the necessity of adopting
agile practices organization-wide, addressing barriers, and involving all organizational func-
tions and customers. It emphasizes the objective of achieving rapid feedback, experimenta-
tion, continuous learning, and improvement. The "stairway to heaven", an evolution path
that companies typically follow in their software development practices , is depicted in Figure
4.

Figure 4: "Stairway to heaven". An evolution path for an organization adopting CD. (Olsson
et al., 2012)

The continuous deployment pipeline, as depicted in Figure 5, extends the concept of contin-
uous integration. It aims to enhance visibility throughout the software building, deploying,
testing, and releasing phases, thereby fostering collaboration (Humble & Farley, 2010) . It
also focuses on early problem identification and resolution and empowers teams to deploy
and release any software version in any environment through an automated process. A fun-
damental principle of continuous delivery, as per Humble and Farley (2010), is creating a
repeatable, reliable software release process, primarily through automation and version con-
trol, making deployment as simple as a press of a button.

Figure 5: The Deployment Pipeline (Humble & Farley, 2010)

2.2.3 Motivation for Adopting a CD Pipeline

19

Humble and Farley (2010) emphasize the inefficiencies and risks associated with traditional
manual software release processes, identifying three main antipatterns: manual deploy-
ment, late deployment to production -like environments, and manual configuration manage-
ment. They advocate for continuous delivery and deployment practices, proposing fully au-
tomated deployments to enhance reliability, efficiency, and error reduction. This automa-
tion should extend across all environments to isolate and address environment-specific is-
sues.

The authors (Humble & Farley, 2010) also underscore the necessity of integrating testing,
deployment, and release activities into the development process. This integration, facilitated
by continuous integration and deployment, helps in early detection and resolution of issues,
thereby streamlining the development process. Additionally, they recommend automating
the configuration of testing, staging, and production environments to ensure consistency
and auditable changes. The deployment pipeline approach is highlighted for its ability to
create a predictable, reliable release process, empowering teams, and reducing inefficiencies
and errors.

In summary, H umble and Farley (2010) suggest that an automated deployment process is
crucial for reducing stress, eliminating rushed fixes, and providing easy rollback options,
ultimately benefiting both the project and its stakeholders significantly.

2.2.4 Guidelines and Best Practices for CD Adoption

Automation and Testing: Humble and Farley (2010) emphasize automating as much as
possible in the software delivery process, starting with the biggest bottlenecks. Key objec-
tives include creating a repeatable and reliable release process, achieving a fast feedback
loop, and covering over 75% of the codebase with automated tests. Automated tests should
run on every change, complemented by manual testing, with a focus on testing in produc-
tion -like environments.

Configuration, Integration, and Organizational Involvement: Consistency in the
deployment process across environments is critical, with version control playing a central
role in managing all aspects of building, deploying, and releasing applications (Humble &
Farley, 2010). Continuous integration (CI) should be t he first practice implemented in
DevOps adoption, with every code change treated as a potential release candidate. Involving
all team members, including developers, testers, and operations staff, in regular retrospec-
tive meetings and using visible dashboards for feedback are essential for continuous im-
provement.

Security, Scalability, and Organizational Strategies: Mohan et al. (2018) address
security in DevOps, emphasizing the importance of automated testing for security and main-
taining the separation of duties. Scalability is discussed by Arachchi & Perera (2018), who
recommend a two-level deployment process for performance optimization. From an organ-
izational perspective, assessing the level of CD adoption and having risk management strat-
egies is crucial for effective continuous deployment, with automated pipelines facilitating

20

collaboration and fast feedback (Humble & Farley, 2010) . Elazhary et al. (2021) provide in-
sights into deployment processes across different organizations, highlighting the im-
portance of deployment schedules and fostering a culture of ownership.

2.2.5 Overcoming Transitioning Challenges

Adopting a continuous deployment workflow is complex, requiring multidisciplinary skills
and extensive collaboration. Claps et al. (2015) and L. Chen (L. Chen, 2017) emphasize that
CD adoption is a company-wide effort, necessitating team collaboration, management sup-
port, and a lean mindset. Key challenges identified include system design issues (Laukkanen
et al., 2017), organizational and process difficulties, technical barriers such as vendor lock-
in, and the need for a comprehensive CD solution (L. Chen, 2015; Steffens et al., 2018). Se-
curity concerns and the complexity of network configurations at customer sites are addi-
tional obstacles (Elazhary et al., 2021; Olsson et al., 2012).

L. Chen (2017) suggests several strategies to overcome these challenges, including forming
multidisciplinary teams, maintaining sustained support, demonstr ating CD's effectiveness
to management, visualizing the CD pipeline, and employing expert drops for difficult migra-
tions. Test execution optimization is also crucial due to the increased frequency of releases
in CD. Furthermore, Claps et al. (2015) highlight that employing mitigation strategies can
sometimes create new challenges that need to be overcome.

Overall, adopting CD requires iterative efforts, focusing on smaller subsets of challenges to
create a positive impact and drive further improvements (Laukkanen et al., 2017).

2.2.6 Adoption Challenges in Industrial Do mains

In addition to the challenges described in 2.2.5, adopting continuous deployment practices
in the domain of cyber-physical systems poses even more obstacles.

Applying DevOps in industrial software engineering is more d ifficult than in web domains
because the nature of the operating environment makes implementation much harder . This
is due to challenges like hardware dependency, limited visibility of customer environments,
lack of technology for reliable deployment, and absence of feature usage data (Lwakatare et
al., 2016). Automated testing is a particularly challenging aspect, since creating an accurate
enough testing environment is usually not feasible (da Silva et al., 2023; Lwakatare et al.,
2016). Therefore, due to the lack of robust automated testing, it becomes impossible to have
continuous deployment.

In DevOps, automation of deployment processes relies on tools for managing application
and infrastructure configuration s. Embedded systems face unique challenges in deploy-
ment, such as hardware dependencies, legacy code, and customer-specific configurations.
These systems often have long lifecycles, making updates complex, especially when different
software versions must be maintained across multiple customer sites. Additionally, cus-
tomer reluctance to upgrade functioning systems and the need for high system reliability

23

Figure 7: Tools across DevOps phases.(Gokarna, 2023)

2.3.1 Continuous Integration and C ontinuous Deployment

Jenkins is an open-source automation platform that enables CI/CD practices. Originally de-
signed as a continuous integration tool, the use cases for Jenkins have been expanded by its
plugin architecture, which allows customizing its fu nctionality. Jenkins was one of the first
tools to embrace this new concept and this allowed its transition from just a CI tool to a CD
one. (Armenise, 2015)

Continuous integration and continuous delivery have become essential components of the
agile methodology, with Jenkins being one of the most popular CI tool s. Jenkins' flexibility
and plugins architecture enable automation of the entire product lifecycle, including code
integration, testing, analysis, and deployment. Jenkins plugins allow for chaining jobs and
human intervention, and graphical visualization pl ugins enable monitoring of pipeline exe-
cution. Jenkins pipelines are written in Groovy DSL (domain specific language), which al-
lows defining pipelines in a flexible and version -controllable way. (Armenise, 2015)

Other well -known CI/CD tools include for example Puppet, and Chef (Ebert et al., 2016;
Ferry et al., 2019). However, Jenkins seems to be by far the most popular, especially in the
industrial context of this thesis.

2.3.2 Containerization

Dearle (2007) mentions containers as a way to abstract the execution environment, enforce
policies, enable lifetime management, and discovery and binding of components. Virtualiza-
tion technology provides a more adaptive means of controlling the execution environment
by abstracting the physical hardware, so a uniform virtual hardware platform can be pro-
vided to facilitate deployment and running of applications. Hardware virtual ization, how-
ever, still requires a lot of configuration and system administration work to prepare the vir-
tual machine to the desired state. Running a virtual machine can also incur a lot of overhead

26

Figure 8: The GeneSIS deployment approach. (Ferry et al., 2019).

Continuous Deployment on E dge Devices : Lopez-Viana et al. (2020) explore IoT's
role in revolutionizing sectors like agriculture and manufacturing, necessitating rapid pro-
cessing and real-time responsiveness. Edge computing enhances this by reducing latency.
The authors detail a continuous delivery model (Figure 9) for deploying SaaS on edge de-
vices, enhancing business value and network independence. A precision agriculture case
study showcases the integration of varied technologies and a delivery platform that deploys
updates autonomously from the public network.

27

Figure 9: Process flow and tooling for continuous delivery on edge devices. (Lopez-Viana et
al., 2020)

GUI for IoT Deployments : Tavakolizadeh et al. (2019) address the complexity of soft-
ware deployment across IoT devices with a proposed graphical user interface (GUI). This
GUI simplifies the entire deployment pipeline, streamlining device selection, deployment,
and status monitoring for smart city and building IoT devices. It is designed to reduce th e
time developers dedicate to deployment-related tasks.

While tools like Mender and Eclipse hawkBit offer GUIs for IoT software deployment, they
lack in usability for large -scale systems, especially in geo-positional tracking and advanced
monitoring. Tava kolizadeh et al. (2019) introduce a solution with their application (Figure
10), which integrates device management and deployment management with a map view for
location tracking and a progress tree for real-time deployment status, enhancing the effi-
ciency and monitoring capabilities of IoT deployments.

28

Figure 10: Deployment management panel of the GUI. (Tavakolizadeh et al., 2019)

Software Updates and Monitoring Metamodel: According to Prens et al. (2019), soft-
ware updates for IoT devices are frequently needed and should be done remotely for security
and budget reasons. Monitoring IoT device operation is important for resource consumption
and detecting anomalies introduced by new releases. The continuous delivery of IoT devices
requires selecting devices for deployment, remote and automated deployment, monitoring
resource consumption and downtimes, and interactive visual interfaces to see monitored
data.

Prens et al. (2019) describe a metamodel for an IoT deployment process that includes de-
ployment rules, monitoring, and visualization. The deployment process involves IoT engi-
neers committing software changes to a version control server, which automatically buil ds,
tests, and stores new versions in an image repository. Engineers then set deployment rules
that specify which devices the software should be deployed to, based on performance metrics
and availability attributes. Once deployed, the system monitors the devices for resource con-
sumption and heartbeats and stores this information in a database. Three types of visuali-
zations are available to the engineers to display historical information about device state and
resource consumption. The approach was validated through a hardware prototype of a tem-
perature monitoring system .

Versioning and Complex Architectures : Mikic -Rakic and Medvivovic (2002) present
a custom solution for deploying software on complex, resource-limited architectures. This

29

involves an admin component on each device for runtime architectural adjustments and a
continuous analysis component to validate configurations. The system manages runtime up-
grades, ensuring system-level requirements are met. A multi -versioning approach allows
different versions to coexist, managed by a connector that relays invocations and results to
the system.

Large Scale IoT Provision ing : Vögler et al. (2016) tackle the challenge of managing het-
erogeneous IoT devices in smart city contexts. The LEONORE framework offers a toolset for
provisioning application components on edge devices, accommodating resource constraints,
and supporting large-scale updates. The framework automates artifact provisioning through
a microservice architecture, and its effectiveness is demonstrated by improved provisioning
times and reduced bandwidth usage.

2.4.2 Containerization in IoT Deployment

Containerized Deployment Solution in a Smart Factory : Ha et al. (2017) explore
Industrial IoT implementation in smart factories, focusing on data collection, predictive an-
alytics, and process automation. They discuss the challenges of managing Docker containers
on edge devices and propose a web-based service deployment method with HTTP APIs for
deployment tasks. This method allows factory operators to deploy, update, and terminate
services easily and supports centralized and concurrent deployments across multiple de-
vices.

Figure 11: Service deployment model for a smart factory. (Ha et al., 2017)

32

RobotKube: This solution aims to facilitate complex, large-scale robotic systems' opera-
tion, leveraging the capabilities of Kubernetes and ROS for efficient and scalable orchestra-
tion. RobotKub e is a system for automating the orchestration of software across cooperative
intelligent transport systems. Two key components are highlighted : an event detector for
dynamic application deployment and an application manager for managing Kubernetes
cluster configurations. The approach is demonstrated through a use case involving auto-
mated vehicles, emphasizing automated, data-driven application deployment and manage-
ment. (Lampe et al., 2023)

2.4.4 Key Findings from Industry Cases

The following table (Table 3) provides a consolidated list of the studies referenced in this
chapter and summarizes their key takeaways and contributions.

Study Topic Main findings and contri-

butions
On the deployment of IoT systems: An
industrial survey (Alkhabbas et al.,
2020)

Survey on preferences to deploy IoT
software in the cloud or edge

Cloud deployment is preferred for ser-
vice reliability and processing power,
edge deployment when latency and
bandwidth issues are a major concern.

Genesis: Continuous orchestration
and deployment of smart IoT systems
(Ferry et al., 2019)

A deployment execution engine for
distributed, containerized IoT sys-
tems

A framework for automating deploy-
ment and provisioning of distributed
IoT systems on heterogenous archi-
tectures.

Continuous delivery of customized
SaaS edge applications in highly dis-
tributed IoT systems (Lopez-Viana et
al., 2020)

A case study on continuous delivery to
edge devices in agricultural IoT

Showcases a CD architecture integrat-
ing various technologies. Highlights
include flexibility of the solution and
air -gapping support.

An interactive interface for bulk soft-
ware deployment in IoT
(Tavakolizadeh et al., 2019)

A GUI for managing deployments Existing deployment management
tools have poor usability in large-scale
IoT deployments. Proposes a GUI tool
for managing these types of deploy-
ments

Continuous delivery of software on
IoT devices (Prens et al., 2019)

A metamodel for IoT deployment pro-
cess

Remote deployment is vital in ena-
bling continuous delivery in IoT de-
vices. The metamodel proposes using
deployment rules to automate deploy-
ment decisions. Monitoring is essen-
tial in detecting issues caused by up-
dates

Architecture -level support for soft-
ware component deployment in re-
source constrained environments
(Mikic -Rakic & Medvidovic, 2002)

A custom solution for deploying soft-
ware on complex, resource-con-
strained architectures

The solution addresses version com-
patibility issu es with a multi -version-
ing approach. Admin components are
used to abstract away the complexity
of the underlying architectures. A cen-
tral admin component is used to con-
trol and monitor the deployments.

A scalable framework for provisioning
large-scale IoT deployments (Vögler
et al., 2016)

An infrastructure for provisioning
large-scale IoT deployments

A microservice architecture is utilized
in the system, and deployments are
managed centrally via a custom tool.
The system improved provisioning
time, and the microservice architec-
ture reduced bandwidth usage.

34

activities being version control, system building, change management, and release manage-
ment.

Agile and DevOps practices are pivotal for rapid market delivery and quality improvements.
Agile focuses on iterative processes and team collaboration, while DevOps integrates devel-
opment and operations, emphasizing automation in continuous integration, continuous de-
livery, and monitoring.

Best practices for continuous delivery involve automating the delivery process, augmenting
automation with manual testing, involving all tea m members, and continuously refining
processes through retrospectives. Risk management strategies are crucial for early problem
identification and incremental delivery.

There are many challenges associated with adopting a continuous delivery (CD) workflow in
an organization, including organizational, process, and technical difficulties. The challenges
stem from competing interests and require restructuring and promoting a collaborative cul-
ture. The lack of a comprehensive solution, vendor lock-in, and dealing with applications
that aren't amenable to CD are some of the technical challenges. Mitigation strategies in-
clude identifying pain points and showing how CD can help solve them, establishing a dedi-
cated team for CD adoption, and educating stakeholders. Well-designed application archi-
tecture and testing non-functional requirements are key in successful CD adoption .

Implementing continuous deployment practices in cyber -physical systems, particularly in
industrial software engineering, comes with additional challenges. Key obstacles include
hardware dependency, limited visibility of customer environments, lack of technology for
reliable deployment, and absence of feature usage data. Automated testing is notably diffi-
cult due to the challenge of creating accurate testing environments, impeding continuous
deployment. DevOps in embedded systems faces additional hurdles like hardware depend-
encies, legacy code, and customer-specific configurations. These systems often have long
lifecycles and require maintaining different software versions across customer sites. Chal-
lenges also include customer reluctance to upgrade, the need for high system reliability, and
difficulties in implementing automatic updates in critical systems due to the risk of down-
time and lack of reliable update technology.

Several tools and technologies enable a high level of automation and continuous practices.
These include Jenkins, an open-source automation platform that enables CI and CD;
Docker, an industry -standard tool for containerization that enables packaging an applica-
tion with all its dependencies and execution environment in a self -contained unit, making
CD workflows faster and more abstract; and Ansible, a widely adopted open-source tool for
configuration automation . No tool is a universal solution to any problem, and one should
always consider the specific context when choosing different CI/CD tools and infrastruc-
tures.

Existing studies from the industry indicate that a lot of research and development is being
conducted to adopt continuous deployment practices in IoT and robotics. Some common
themes emerged, such as the use of containerization, microservice architectures, use of cloud

35

resources, central management of fleet deployments, and over-the-air-updates. While exist-
ing solutions address many challenges, further research is needed, especially in areas such
as security, reliability, and efficiency.

37

and technologies. Behavioral science addresses research through theories that explain or
predict phenomena, while design science addresses research through the building and eval-
uation of artifacts designed to meet business needs. The knowledge base provides the raw
materials from which IS research is accomplished, including foundations and meth odolo-
gies. Rigor is achieved by appropriately applying existing foundations and methodologies.

Figure 12: Information Systems Research Framework (Hevner et al., 2004)

3.1.2 Design Science Research Guidelines

The difference between routine design and design science research is, that design science
research addresses important unsolved problems in unique or innovative ways or already
solved problems in more effective or efficient ways. Design science research in IS addresses
so-called wicked problems, that are characterized by unstable requirements and constraints,
complex interactions among subcomponents of the problem and its solution, and a critical
dependence upon human cognitive and social abilities to produce effective solutions. The
key differentiator between routine design and design research is the clear identification of a
contribution to the archival knowledge base of foundations and methodologies. (Hevner et
al., 2004)

Hevner et al. (2004) present seven guidelines that should be adhered to when conducting a
design science research study: Design as an artifact, problem relevance, design evaluation,

38

research contributions, r esearch rigor, design as a search process, and communication of
research. The following describes the essential points of each guideline and how this thesis
aims to adhere to them. Table 4 presents a condensed summary of the guidelines for design
science research and how they have been applied in this thesis.

1. Design as an Artifact
An IT artifact is an instantiation or bundle of cultural properties packaged in some socially
recognizable form such as hardware and software, and includes constructs, models, and
methods applied in the development and use of information systems. Design science re-
search efforts are necessary for the creation of IT artifacts, which are innovations that define
the ideas, practices, technical capabilities, and products through which the analysis, design,
implementation, and use of information systems can be effectively and efficiently accom-
plished. The critical nature of design science research lies in the identification of as-yet un-
developed capabilities needed to expand IS into new realms not previously believed amena-
ble to IT support. (Hevner et al., 2004)

In t his thesis, a deployment solution is designed and implement ed for a ROS2-based plat-
form for controlling and provisioning a distributed fleet of robots. The artifact aims to sim-
plify and automate deployment activities in scenarios involving mobile machinery .

2. Problem Relevance
The objective of IS research is to develop technology-based solutions to business problems.
Behavioral science and design science are two approaches to achieving this goal. Technol-
ogy-based, organization-based, and people-based artifacts are necessary to address issues,
and problem-solving involves reducing the differences between a goal state and the current
state of a system. Business organizations aim to increase revenue or decrease costs through
effective business processes and information systems. The relevance of design science re-
search is determined by its ability to address the problems and opportunities faced by prac-
titioners in the interaction of people, organizations, and technology. Effective artifacts are
needed to address these problems, such as constructs, models, methods, and instantiations.
(Hevner et al., 2004)

The research in this thesis is relevant because many challenges in deploying software on
mobile machinery were identified. Using design science research methods, this thesis aims
to find potential solutions to these issues.

3. Design Evaluation
It is important to e valuate the utility, quality, and efficacy of a design artifact thr ough well-
executed evaluation methods. The business environment establishes the requirements for
the evaluation, which includes the integration of the artifact within the technical infrastruc-
ture. The evaluation of designed artifacts typically uses methodologies available in the
knowledge base, and the selection of evaluation methods must be matched appropriately
with the designed artifact and the selected evaluation metrics. (Hevner et al., 2004)

The design artifact is evaluated both quantitively based on metrics, and qualitatively based
on peer assessments of the strengths, weaknesses, and applicability of the artifact.

39

4. Research Contributi ons
Design science research should provide clear contributions , which can come in the form of
a designed artifact, novel foundations, or evaluation methodologies. These contributions
must be new, and interesting, and provide value to the IS community by solving previously
unsolved problems. The business and technology environments should be represented ac-
curately and the feasibility of implement ing the designed artifacts should be demonstrated.
(Hevner et al., 2004)

This thesis contributes to the research by 1) providing an analysis of the current state of
deployment practices and challenges in industrial domains by means of an interview study,
and 2) instantiating a design artifact addressing these challenges.

5. Research Rigor
In design science research, rigorous methods are needed in the construction and evaluation
of the designed artifact, but an overemphasis on rigor can result in a lessening of relevance.
Rigor is derived from the effective use of theoretical foundations and research methodolo-
gies, and the selection of appropriate techniques is important. Metrics for evaluating arti-
facts must be appropriate and effective. Designed artifacts are often components of a hu-
man-machine problem-solving system, and knowledge of behavioral theories and empirical
work is necessary for constructing and evaluating them. Design science and behavioral sci-
ence researchers must collaborate with one another to understand why an artifact works or
does not work, to enable the construction of artifacts that truly provide novel solutions .
(Hevner et al., 2004)

Rigor in the research for this thesis is achieved by applying design methods and best prac-
tices derived from literature and industry practices. Various methods are used to evaluate
the validity of the research.

6. Design as a Search Process
Design science in information systems is an iterative process. Design is a search process to
find effective solutions to problems, which involves means, ends, and laws. Design-science
research simplifies problems and decomposes them into subproblems, using heuristics to
find satisfactory solutions that work well for specified problem classes. It is importan t to
establish that a design works before attempting to fully explain why it works. (Hevner et al.,
2004)

The artifact was designed and implemented iteratively by implementing subsets of the func-
tionality at a time. Throughout the research process, the design was regularly evaluated, and
the feedback was utilized to revise design decisions, until a satisfactory solution was realized.

7. Communication of Research
Design science research should be presented to both technology-oriented and management-
oriented audiences. Technology-oriented audiences require sufficient detail about the arti-
fact being described to construct and use it within an organizational context. Management -
oriented audiences, on the other hand, require enough detail to determine if the artifact

44

This section provides a brief description of the interviewees and the context of their projects.
Table 5 summarizes the interview cases. To protect the identity of the interviewees , they will
be designated as A, B, C, D, and E.

To set the context, the following paragraphs delineate the industrial setting in which the
interviewees worked, their role and responsibilities, and the platform on which the software
is deployed, including th e machines themselves, site infrastructure, and environment. All
interviewees were in managerial positions, with extensive experience in software develop-
ment and a good understanding of the current deployment process. The interviewees all
worked in industr ial settings, where mobile work ing machinery is extensively utilized. Two
of the interviewees worked in the context of harbor logistics equipment, one in maritime
navigation, one in mining, and one in agriculture.

Interviewee A , a business director at a software consulting firm, discussed a project for an
agricultural tractor manufacturer. The project involved software for tractors equipped with
various electronic devices, such as ECUs and touchscreen interfaces, and connectivity fea-
tures for machine-to-machine and cloud communications.

Interviewee B , heading an automation technology program at a mining equipment manu-
facturer, focused on introducing advanced autonomy to heavy mining machinery like drills
and loaders. The interviewee brought extensive experience in mining industry deployments.

Interviewee C, a project lead, was involved in developing systems for harbor operations, in-
cluding teleoperation for cranes and video streaming. Their current project was an Equip-
ment Control System (ECS) for container movement, with server software running on Linux -
based virtual machines, all on-premises to avoid network outage issues. The harbor's exten-
sive network infrastructure included fiber optics and fluid mesh.

Interviewee D , a director of automation research in harbor cargo handling, described a
multi -layered automation system with a terminal operating system at its core, designed to
move containers efficiently using various software from in -house and equipment manufac-
turers.

Interviewee E, a lead UI software developer for maritime navigation, talked about a system
comprising sensor units and a central processing unit, with interfaces on iPads and PCs.
They used ROS2 for sensor-central unit communication, TCP for UI components, and
Docker containers for non-UI modules, controlled via an MDM system.

45

 A B C D E
Role Business director Head of automa-

tion technology
program

Project lead Director for au-
tomation re-

search

Lead UI software
developer

Experience
in Current

Role

8 years 5 years 6 years 5 years 2 years

Education M.Sc. M.Sc. M.Sc. Lic. BBA, BSCE
Organization

Type
Software con-

sulting for indus-
trial contexts

Mining equip-
ment manufac-

turer

Software con-
sulting for indus-

trial contexts

Logistics solu-
tions provider

for shipyards and
heavy industry

Provider of mari-
time navigation

solutions

Case De-
scription

Software devel-
opment for trac-

tors

Development of
automation ca-

pabilities for un-
derground min-
ing equipment

Harbor equip-
ment operations

development

Automation de-
velopment for
harbor cargo

handling

Mariti me naviga-
tion systems de-

velopment

Interview
Duration

0:58 0:25 0:49 0:29 0:50

Interview
Date

May 2022 May 2022 June 2022 May 2022 August 2022

Table 5: Overview of interview cases.

3.3.2 Codification

After transcription, the conten t of the interviews was codified to thematic categories repre-
senting different aspects of software deployment. First , broad themes were identified , which
were instantiated as code families. Based on the content of the interviews, seven different
code families emerged: Context, current process, challenges, development pipeline, valida-
tion, future opportunities, and keys to successful deployment. Relevant sections from the
transcriptions were then marked to belong in their representative code family. More nu-
anced themes within each code family were further recognized, and the relevant excerpts
classified accordingly. Table 6 discloses the resultant code families and their sub-themes.
The findings from the interviews are presented in section 4.1.

Code
Family

Context Current process Challenges Development
pipeline

Validation Future
oppor-
tunities

Keys to
successful
deploy-
ment

Sub -
themes

Industry
Platform
Role and re-
sponsibilities

Automation
Configuration
management
First install
Updates
Tools & technolo-
gies
Responsibilities
Simulation

Environment
Manual install
Organizational
Portability
Scalability
Standardization
Version compat-
ibility

CI/CD
Deployment
considerations

Automatic tests
Manual checks

N/A N/A

Table 6: Thematic codification of interviews

3.4 Proof of Concept Design and Implementation

49

tion between the central machine and a mobile work machine would also resemble the con-
troller -server relationship; in this case the robot would just be running different, robot -spe-
cific software.

Figure 14: Runtime view of the distributed system

50

Figure 15: Interaction between the central machine and server device

3.4.3 Example Use Case

To further concretize the intended capabilities of MFSP, a simplified scenario of a potential
use case is provided in this section . In this example the platform is a part of a warehouse
environment, where AGVs (Autonomous Guided Vehicles) are utilized to handle goods (Fig-
ure 16). A central computer in e.g., a control room, would be running the System Control
Application, which an operator would use to manage the fleet of machines. There would also
be additional server computers available in the environment providing computational re-
sources to balance the load during operation. Part of the environment would also be segre-
gated to serve as a testing area for performing physical tests before finally releasing to pro-
duction .

62

4.1.5 Futu re Opportunities

The interviewees unanimously recognized numerous opportunities to enhance their deploy-
ment processes. The most advantageous potential improvement identified was further au-
tomation of the deployment process across various facets.

Case C cited the potential benefits of automated tools, like Yocto, to streamline update man-
agement for on-site servers, which could significantly reduce manual efforts.

Several interviewees highlighted the prospects of automating configuration management
and calibration. Case C suggested that an automated process for managing configurations
post-update could alleviate manual workload. Enhancing the automation within the valida-
tion process was also seen as a promising enhancement.

Interviewee B acknowledged the role of collaborative industry forums in mining, which
might contribute to more consistent and standardized practices among organizations in the
future. Nonetheless, motivating organizations to adopt new practices remains a challenge.

Interviewee A discussed the potential for over-the-air updates to eliminate the need for
physical connections during machine updates, thus removing on-site dealer involvement
and facilitating more frequent software updates. A also indicated that containerization could
be an effective strategy to streamline the deployment process.

4.1.6 Keys to Successful D eployment

Interviewee A emphasized the critical role of close collaboration and clear communication
between all organizations involved as a cornerstone for successful deployment.

For C, the crucial factor was extensive software testing prior to deployment, which signifi-
cantly reduced deployment-related problems.

D highlighted that adept configuration management is paramount for success. A centralized
configuration management system could greatly simplify and improve the deployment pro-
cess.

E pointed out the importance of considering deployment from the early stages of internal
research and development. Deployment should be integrated into every phase of the devel-
opment lifecycle and not tacked on as an afterthought. Thorough documentation and clear
definition of each step in the process are also vital for success.

4.2 Implementation of a Proof -of -Concept Deployment Solution

64

Figure 18: The runtime platform model for a provisioned, operational system

4.2.2 Updated Machine Fleet Simulation Platform

The MFSP project is arranged into two repositories: mfsp-pkgs and mfsp-infra . Mfsp-pkgs
contains all the software packages that implement the application components for the plat-
form . Mfsp-infra contains the resources necessary to set up all the infrastructure for contin-
uous integration and continuous delivery that facilitate the deployment activities.

Application Components - mfsp -pkgs

65

Figure 19: Structure of mfsp-pkgs repository

System Control Application : The system control application is the central piece of the
platform. The application is a tool to control the fleet of devices present in the environment.
The features were extended to provide functionality for deployment and provisioning activ-
ities. Currently i ts main capabilities include controlling robots (physical or in simulation),
monitoring devices, and managing the software installations on devices. The application is
divided into three layers, separating the user interface, application logic, and communica-
tion with the rest of the system. The user interface is implemented in Qt Quick (qml), the
application logic is implemented in Qt and C++, and the lowest layer uses rclcpp (ROS2 C++
API) to communicate with the rest of the system.

Figure 20: System control application layers

69

the web app, navigation node, device monitor, can be either run natively or containerized
(native running requires ROS2 installation, container only needs Docker installed). The mi-
crocontroller scripts need to be flashed on the Arduino boards with the Raspberry Pi. This
entails that different types of components require different types of software artifacts and
deployment procedures.

Figure 22: Overview of deployment process design

Based on the preceding requirements, a solution for the deployment workflow was devised
(Figure 22; Appendix D).

Deployment Process : To have software packages running on target machines, various
processes must be performed. First, the source code needs to be built and tested (integra-
tion), then the software artifact must be made available for installation (delivery). On the
other side, the target device needs to be configured correctly to be able to run the software.
Finally, the actual installation and activation of the software must be done.

Figure 23 shows that there are essentially two separate information streams, one comprising
the CI/CD pipeline and the other being the provisioning process (the downloading of APT
packages is related to provisioning, as dependencies are retrieved and installed). These even-
tually flow to the target machine, resulting in the completed de ployment.

70

Figure 23: Deployment flow for Docker containers

At this stage, we have decided to reduce complexity and focus only on delivering Docker
images, as these are considerably more straightforward to implement.

Continuou s Integration : As previously mentioned, the components are organized mod-
ularly in packages so that each component can be built, unit-tested, and run in isolation. The
mfsp-pkgs repository contains all the software components for the platform. There is addi-
tionally a Jenkinsfile, which defines the CI/CD pipeline for building and releasing the pack-
ages (Figure 24).

When the Jenkins job detects changes in the repository, it checks out the new code and exe-
cutes the pipeline job. The pipeline is executed in four parallel stages, each corresponding to
a package we aim to create: System Control App, Device Controller, Web App, and Naviga-
tion Task. The builds are initiated and then tests are run if the build finishes successfully.

To produce artifacts for multiple CPU architectures (x86_64 and arm64 supported for now)
Docker BuildKit (Moby/Buildkit , 2017/2023) and QEMU (QEMU, n.d.) are used.

82

5.2 Limitations

5.2.1 Limitations in the Literature Review

The literature review was conducted in a rather free-form, exploratory manner, using only
two databases (Google Scholar and ieeexplore). It is therefore possible that some relevant
works have not been included in this study.

5.2.2 Limitations of the Case Study

The scale of the case study was relatively narrow, covering only five cases. Therefore, it can-
not provide a comprehensive view of the current state of deployment in general. The results
should be regarded as indicative, recognizing that only a small subset of industries was cov-
ered, and there might be variations within and across industries , organizations, and projects.

5.2.3 Limitations of the Proof -of -Concept Implementation

While the PoC solution demonstrates the validity of applying continuous delivery and de-
ployment ideas in practice, it is not yet a complete solution to be taken into production as
is. This section discusses some limitations and deficiencies currently present in the imple-
mentation , based on the yet unimplemented features, and issues identified in the evalua-
ti on.

Usage in a real -world scenario: In this study, the solution was only used and tested in
a very small scale and a controlled environment. Only virtual machines and a Raspberry Pi
were used as deployment targets. Usage in a real production scenario wit h heterogenous
hardware and environmental constraints would be crucial to better assess the perfor-
mance, usability, and other quality aspects of the solution.

Hardware abstraction level: Deployment is only performed for user -space applica-
tions and containers. The software is high-level, with no need for direct communication
with hardware. Deployment of hardware -specific software could have challenges that the
solution might not be able to address.

Packaging and distribution of binaries : The automated deployment work flow is lim-
ited to only Docker containers within the scope of this thesis. This means that for the central
machine, there needs to be a full ROS2 desktop installation, and the System Controller Ap-
plication must be built locally. However, this was not seen as a major issue for the time being,
as this application is intended to be used only on one machine. The deployment process

83

implemented with Docker images shows a more comprehensive view of all activities and
demonstrates the viability of depl oying a distributed system.

For a more complete deployment, it would be desirable to package and distribute also the
natively run applications. Packaging and distribut ing these application s as Debian- or Snap
packages remains an avenue for future development.

Testing : Since the platform is still in very early stages of its design and implementation,
the testing is minimal. I f the platform were to be deployed in real production use, a com-
prehensive and automated test-suite would be essential. Writing extensive tests or possibly
even adapting a test-driven development workflow will eventually become topical, as the
platform matures, and requirements become more well-defined.

Air -gapped environment : Ideally, the platform should support air -gapped environ-
ments, as this was discovered to be prevalent in the industry. In the current state , all devices
still rely on internet connectivity for the installation of non -local packages. A future target is
that devices could retrieve all required packages from a locally hosted repository. This would
require among other things mirroring packages from apt repositories and configuring de-
vices to use the local repository.

Security : Security concerns might affect the applicability of the solution, particularly re-
lated to the use of ROS2 with containers. Using host networking with Docker is a security
concern. As explained by Wendt and Schüppstuhl (2022) , using the host networking mode
in Docker does not create virtual network interfaces within a contain er, but provides direct
access to the host network interfaces from within the container, opening a potential attack
vector. Host networking is not a universal solution for running ROS nodes in containers
because it removes network isolation and is only available on Linux -based systems, thereby
losing many of the benefits of containerization.

Versioning and configuration management : Currently the versioning of components
is only based on the Jenkins build number. It would be preferable in the future to hav e a
more well-thought -out versioning strategy and to correctly handle breaking changes in in-
terfaces, roll -backs, etc.

90

A. Maturity Model for Continuous Delivery Adoption

Maturity model for continuous delivery adoption. (Humble & Farley, 2010)

91

B. Interview Questions Template

1. Describe your position and the context of your work .
2. Describe the deployment process from your point of view. What are the challenges

and pain points, what could be improved and how?
3. Who is involved in the deployment process? What are their responsibilities?
4. What are the differences between first installation and updating?
5. How is deployment taken into acoount during the software development lifecycle?
6. How are scalability and configuration management taken into consideration?
7. How can the deployment be validated?

92

C. Screenshots

Simulation view of t he control application at the beginning of this thesis project .

93

Provisioning stage 1: Discovery of devices and initial authentication

94

Provisioning stage 2: Selection of targets

96

Simulation view of the controller appl ication. On the top is a view of the active server
nodes that can be used to run navigation tasks. Two robots are running in the simulation,
with robot1 performing SLAM navigation.

97

View of the Gazebo simulation that was running in the previous screenshot.

98

D. Deployment Workflow Diagram

