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Tiivistelmä 

Ihmisen ja robotin yhteistyöllä (human-robot collaboration, HRC) tarkoitetaan tilannetta, jossa robotti 

suorittaa työtä samanaikaisesti ihmisen kanssa. Robottikäsivarsia voisi käyttää erilaisten kokoonpanotöiden 

avustajana. Jotta tämänkaltainen yhteistyö olisi mahdollinen, täytyy robotin pystyä tulkitsemaan ja 

mallintamaan ihmisen käytöstä. Sopivilla mallinnusmenetelmillä robotti kykenee havaitsemaan ihmisen 

käytöstä ja eleitä ja tulkitsemaan niiden perusteella ihmisen aikeita sekä tulevia liikkeitä. Ihmisen seuraavia 

eleitä voidaan arvioida havaitsemalla ympäristöä. Esimerkiksi katsomalla mitä ihminen pitää kädessään. 

Ihmisten käsiä seuraamalla voidaan määrittää mihin pisteeseen käsi on kurottamassa ja ennakoiden ojentaa 

siihen pisteeseen työkalu. Ihmisen katsetta seuraamalla voidaan päätellä, minkä kokoonpanon osan hän 

seuraavaksi tarvitsee. 

Robotin ja ihmisen sujuva yhteistyö edellyttää myös sujuvaa kommunikointia ja työn suunnittelua. 

Kommunikointi voi tapahtua ihmiselle luontaisesti verbaalisti tai muilla tavoin kuten käsieleillä tai 

visuaalisesti lisätyn todellisuuden laseilla. Robotin on tärkeä osata työn vaiheet ja suunnitella suunnitelma 

työnsuoritusta varten ottaen mukaan ihmistyöntekijän rajoitteet, vahvuudet sekä mieltymykset. Robotti 

kykenee mukautumaan ja muuttamaan suunnitelmaa työn edetessä. 

Tämä työ on kirjallisuuskatsaus ihmisen ja robotin yhteistyöstä. Työssä tarkastellaan ihmisen mallinnuksen 

menetelmiä sekä ihmisen aikeiden ennakoimista. Työn aihealueeseen kuuluu myös kommunikointi ihmisen 

ja robotin välillä, joka mahdollistaa ohjeiden antamisen robotille sekä työvaiheista keskustelemisen. Tässä 

työssä tarkastellaan tutkimuksia, joissa ihmisen mallinnusmenetelmiä sekä ihmisen ja robotin 

kommunikaatiota on tutkittu. Työn tavoitteena on tutkia, millä menetelmillä ihmisen ja robotin yhteistyö 

on mahdollista ja miten sitä voi soveltaa teollisuudessa. Työssä selvitetään, mitä etuja ja haasteita ihmisen 

ja robotin yhteistyöllä on teollisuuden sovelluksissa. Työn lopussa esitellään kuvitteellinen 

esimerkkitapausta ihmisen ja robotin yhteistyön hyödyntämismahdollisuudesta. 

Kirjallisuusselvityksen perusteella ihmisen ja robotin yhteistyö tarjoaa monia etuja. Kokoonpanotöiden 

tuotantoa voidaan lisätä samalla vähentäen ihmisen fyysistä taakkaa, edistäen ihmisen jaksamista ja 

hyvinvointia. Ihmisen ja robotin yhteistyö mahdollistaa sellaisen työn automatisoinnin, joka vaatii ihmisen 

luovuutta ja sopeutuvuutta. Kuitenkin haasteena ihmisen ja robotin yhteistyössä on sen vaatima suuri 

laskentatehon määrä. Robotin on laskettava ihmisen liikerata tarpeeksi nopeasti, jotta se voi välttää 

törmäyksen. Suurin haaste on kehittää tarpeeksi turvallinen ja luotettava yhteistyörobottijärjestelmä. 

Ihmisen ja robotin yhteistyön lisääntyvä tutkimuksen määrä sekä nykyisistä tutkimuksista löydetyt teollisen 

käytön hyödyt osoittavat ihmisen ja robotin yhteistyön olevan lupaava ratkaisu moneen teolliseen työhön. 

Avainsanat: ihmisen ja robotin yhteistyö, teollisuuden robotiikka, ihmisen mallinnus, 

yhteistyörobotti, ihmisen ja robotin kommunikaatio 
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Abstract 

Human-robot collaboration can be a powerful tool when applied in industrial settings, 

such as manufacturing. The robot co-operates with the human on the same task and uses 

intention prediction and communication methods to make the collaboration effective. The 

robot can benefit from the same social cues that humans use when collaborating with 

other people. The robot predicts human actions by using human movement modeling, 

gaze, gestures and surroundings as a guide. Using human intention prediction techniques 

increases fluency and makes collaboration seem more natural. Additionally, effective 

human-robot collaboration requires communication between participants. The robot can 

use speech or visual communication like augmented reality, or many communication 

methods simultaneously. Effective communication enables the human and the robot to 

discuss crucial task information like a task completion plan that the robot can generate. 

The robot can create human centered task plans that reduce human physical effort and 

emphasize human skills. This thesis is a literature review that examines human modeling 

and intention prediction methods and communication methods. This thesis also reviews 

human-robot collaboration applied in industrial settings. The review found that human-

robot collaboration offers many benefits in industrial applications by combining human 

creativity and flexibility with robot efficiency. The robot can increase the throughput of 

manufacturing by decreasing work task completion times and reducing human fatigue. A 

major difficulty in human-robot collaboration is implementing a safe collaboration robot 

to use near humans. The study of this field is gaining interest, and many studies indicate 

that human-robot collaboration offers benefits in industrial applications, making the 

potential look promising. 

Keywords: human-robot collaboration, industrial robotics, human modeling, intention 

prediction, collaborative robot, human-robot communication 
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1. Introduction 

Humans can predict the actions of other people by observing them and use effective 

communication to coordinate work. These fundamental skills allow humans to effectively 

collaborate on tasks such as building tables, assembling industrial parts or assisting in 

everyday tasks. Such human-to-human interactions have been found useful in robotics 

when considering human-robot collaboration [1] [2]. Human-robot collaboration can be 

used to enhance manufacturing processes by combining the adaptability of a human and 

the efficiency of a robot. [3]. 

There are many aspects to consider in implementing human-robot collaboration 

systems. Depending on the scenario and the given task, the robot might need to predict 

human actions to better adapt to humans. This is called human intention prediction or 

human modeling. Intention prediction can be used to avoid collisions and to increase task 

fluency [4]. Additionally, the robot can model and predict human actions using gaze, 

gestures and the surroundings. In human-human collaboration, communication plays a 

major role. The same applies to human-robot collaboration where communication can be 

achieved with speech, augmented reality and combining different communication 

methods. Having a clear and shared understanding of a task plan is important before 

collaborating with anyone. The completion of a shared human-robot collaboration task 

requires communication between the human and the robot on the task plan and the current 

task process state [5]. The robot can design a task plan favoring human skills and 

minimizing physically demanding task work from the human. 

This thesis examines human-robot collaboration in industrial applications. The 

study is conducted as a literature review using recent papers to examine human-robot 

collaboration. Specifically, the research focuses on human intention prediction and 

communication methods used in human-robot collaboration. Furthermore, this paper aims 

to get a broad overview of using collaborative robots in industrial applications and to 

point out study gaps and new directions in which the research could proceed. This paper 

looks at different human-robot collaboration systems from different papers to construct 

an idea of what human modeling and communication methods are needed for successful 

human-robot collaboration. This paper will not inspect the methods in major detail. In 

chapter two, this paper examines human modeling and human intention prediction. The 

third chapter looks at communication methods used in human-robot collaboration. The 

third chapter also includes generation and communication of shared task plans. The fourth 

chapter considers human-robot collaboration in industrial applications. The benefits and 

drawbacks of using a collaborative robot are evaluated. The fourth chapter additionally 

includes an example of a human-robot collaboration system that uses multiple 

communication and human modeling methods to achieve successful collaboration. 

Chapter five summarizes the study and points out directions in which the study of human-

robot collaboration could proceed. 
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2. Human modeling in human-robot collaboration 

Accomplishing effective human-robot collaboration requires a robot understanding a 

human partner’s intention from many social cues such as posture, movement path, gaze 

and gestures. A common human intention prediction application can be seen used in self-

driving cars. Self-driving cars use human intention prediction methods to predict whether 

a human is going to pass the street or will come into the trajectory of the car [6]. This 

chapter divides physical human intention prediction into categories of features that are 

modeled. First, we will look at human motion prediction and then move on to gestures, 

context recognition and gaze recognition  

 

2.1. Motion prediction 

Motion prediction is an obvious application of human intention prediction. The 

robot could model the human’s path or limb movements to predict intended walking path 

or next hand position. It has applications in safety when considering mobile robots. For 

example, a study by N. Zapata et al. (2024) [7] applied human intention prediction in 

caregiving robots. The robot estimated a patient’s walking path and when deriving that 

the patient will collide with an object in the room, the robot pointed out the object by 

moving near it.  

Y. Tao et al. (2025) [4] conducted a study where they built a model for safe mobile 

robot manipulation. The robot is a mobile robot with wheels and a robot arm attached to 

it. The robot works in the same space as humans and thus needs to predict human 

movement to avoid collisions. Figure 1 shows the robot delivering a tool to a worker. The 

robot monitors its surroundings with a laser scanner used for determining position and an 

RGB camera which captures information of the surrounding scene. Additionally, the 

work area is monitored with depth RGB cameras. These cameras monitor obstacles and 

human movement. The sensory data is then interpreted using Long Short-Term Memory 

(LSTM) network. LSTM network retains movement data and adjusts attention to 

important parts of the human movement using data history. LSTM network can utilize 

scene data, further enhancing its prediction accuracy. LSTM network was used in the 

study to predict human movement up to one second in the future. This further enhanced 

the robot’s ability to avoid collisions. The model was trained by incorporating data from 

two humans performing repeatable tasks in the workspace. Data from one individual was 

kept as test data. The implemented method accurately predicted human movement with 

an accuracy of 83.1% and simulated work scenario showed a success rate of 90% which 

is significantly higher than the methods the study compared it to. When the robot 
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approaches a human, it drops the speed it moves at and when the robot is working, it 

monitors humans near it to avoid collisions with the robot arm. Four real-world 

experiments were conducted where the implemented method allowed the robot to safely 

complete given tasks. Y. Tao et al. state in their paper that the implemented framework 

could be used in workshops where workstations are clearly defined, such as electronic 

product assembly. However, the study states that for successful implementation of the 

framework, proper configuration is needed, and further study is required. 

 

Figure 1  The mobile robot delivering a tool to a worker [4] (modified) 

 

A study conducted by Y. M. Halim et al. (2025) [8] implemented model to predict 

human upper limb movements. The method focuses on handover tasks of robot arms in 

collaborative task scenarios. The handover task using the right arm can be seen in figure 

2. The model utilizes physics in its predictions, opposed to only learned movement data 

which might lead to the model not taking physics into account. The model is taught by 

applying inverse kinematics to human arms. The model utilizes motion capture data with 

neural networks. Long short-term memory is used to predict joint pose coordinates 

alongside with recurrent neural network. The experiment used an industrial arm robot to 

give objects to human hands. A camera captures human hand joint coordinates and 

velocity. The robot predicts human hand motion and determines whether the human is 

reaching, handing an object or retracting hand. After predicting and planning, the robot 

moves accordingly to make the handout more natural and smoother. Utilizing the 

predictive model decreased handover time from 5.5 s to 5.1 s. Furthermore, users reported 

the interaction using the model as more natural and efficient opposed to without the 

model. The model showed an accuracy of 90.17% in predicting human arm position. 
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2.2. Gesture recognition 

Gestures are an important aspect of human communication. Utilizing gestures in 

human-robot collaboration has been researched increasingly. Allowing humans to use 

hand gestures to point at objects or head nods to communicate simple ideas makes the 

collaboration experience more natural. There are many ways to gather sensory 

information of gestures such as, depth camera, wearable devices and an RGB camera. In 

general, gesture recognition consists of collecting sensory information of the gesture, 

recognizing what the gesture is and then classifying it to infer the meaning of the gesture. 

After gesture recognition the robot can use this information in the human-robot 

interaction. [9] 

Q. Gao et al. (2017) [10]  conducted a study on static hand gesture recognition for 

space human-robot interaction. The study utilizes parallel convolutional neural networks 

CNN. CNN translates images of gestures into gesture classifications that can be 

semantically identified. The gesture classification method utilizes two sets of sensory 

data: an RGB camera and a depth camera. These two sensory inputs are classified parallel 

using CNN and then fused, leading to increased gesture recognition accuracy. Figure 3 

shows the parallel CNNs. The accuracy of this gesture recognition method is 93.3%. The 

experiment was conducted as a simulation with a gesture dataset containing 120000 hand 

gesture images. The paper stated that the given recognition method could be utilized by 

an astronaut to control a space robot. 

 

Figure 2 States of interacting with the robot using the right arm [8] 
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Gestures could also be made by touching the robot. D. Jung. et al. (2024) 

conducted a study [11] where they incorporated touch controls in a HRC assembly task. 

In the experiment a deep learning model called gated recurrent unit was introduced and 

combined with convolutional neural network to learn and detect touch gestures. The 

model was trained with 5 different gestures for all the robots’ 7 links. The gestures are 

dial, shake and tap. Tap has 3 variations: One tap, two taps and taps more times than two. 

The setting with many taps is used as a signal for emergency stopping. Taps are designed 

to be used for simple controls like start or pause. Dial gesture is done by rotating one joint 

to any direction by the joint. It could be used to input a value from a certain range. Shake 

gesture is done by grabbing a robot link and shaking it. The shake gesture could be used 

for example to signal task completion. The touch gestures can be seen in figure 4. In the 

experiment the robot and the user assembled a tiny chair. At the start of a task the user 

would tap to indicate to start the robot to start the task. Taps were used to move the chair 

when the robot was holding it. Shake was used to finish the task. The experiments showed 

an accuracy of 96.94% for the touch gesture recognition model. 

 

Figure 4 Touch gestures of a collaborative robot [11] 

 

Figure 3 The structure of parallel CNNS [10] 
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2.3. Utilizing context recognition in human intention prediction 

Context recognition offers significant improvement in human intention 

prediction. In HRC a contextual image of the surroundings could be formed by 

recognizing objects and how they relate to humans. For example, holding a hammer near 

wood material could indicate that the user is going to hammer a nail. Although, context 

recognition might be inadequate in scenarios where objects and surroundings have many 

purposes, context recognition can be utilized to reduce uncertainty. [12]  

Tong et al. (2025) [13] conducted a study where they built a model to predict 

humans in more common household situations. The model is based on scene graphs, and 

the study focuses on human intention prediction in complex scenes. The presented model 

was trained with videos of humans doing everyday such as watching television, eating, 

cooking, drinking and other common tasks. The videos were cut before the human did a 

certain action to test the predictive ability of the model. To represent the world, the model 

extracts objects and humans and then creates a dynamic scene graph of them. This 

dynamic scene graph uses nodes to represent objects and humans and edges to represent 

relationships. The relationships were categorized into human gaze, positional 

relationships and contact relationships. These relationships were used to determine 

whether the human is interacting or might interact with an object. After constructing a 

view of the world, the conclusions of human intentions must be made. For this purpose, 

Tong et al. utilize Spatial-temporal Graph Attention Informer Neural Network 

(STGAIN). STGAIN is used to analyze the dynamic scene graph. The STGAIN model 

learns the graph nodes and calculates attention coefficients from the relationships which 

are used to extract different likelihoods of prediction outcomes. Figure 5 shows a frame 

of the experiment and the corresponding graph. Tong et al. state in the paper that this 

method was more accurate in human intention prediction than similar counterparts. The 

model presented 81% accuracy rates in predicting what the human is going to do next. 

The model had difficulty telling apart tasks that were similar and had the same objects in 

them such as food when cooking or eating. Overall, the method was capable of 

interpreting complex scenarios of human actions and predicting human intentions. 

Figure 5 A frame from the experiment and the corresponding graph [13] 
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 S. Li et al. (2024) conducted a study [14] in which they utilized a similar context 

recognition model. They demonstrated the model in a disassembly task of electronic 

vehicle batteries. Disassembly of the batteries includes difficult subtasks that require a 

human operator, such as cutting wires and removing glue. However, using a robot in 

certain subtasks that require picking and placing battery cells increases safety. The robot 

is a typical robot arm. The knowledge graphs recognize the human, tools, actions, 

commands and parts and then learns relationships between them. The method was able to 

recognize objects and relationships in 11 different tests with an accuracy over 90%. The 

paper states that the same approach could be additionally used for other HRC scenarios. 

 

 

2.4. Gaze recognition 

When collaborating with others, gaze plays a major part in anticipating the actions of 

others. From gaze humans can see where the other person is looking and anticipate predict 

actions. A study conducted by V. Belcamino (2024) [15] utilized eye movement tracking 

in assembly. The eye tracking was conducted with wearable eye tracking equipment and 

the gaze point was determined in an online simulation in unreal engine. A human had to 

assemble a table, and a robot handed parts for the human. The robot predicted human 

intentions using human gaze. When the humans gaze was focused on the outside of the 

workspace the robot knew to retrieve more pieces and when the focus was on the human’s 

workspace, the robot didn’t have to retrieve more pieces. The eye tracking approach was 

compared to an approach utilizing wearable motion sensors. Both approaches performed 

similarly and the user reports state that experiences are very similar. The paper states that 

human intention prediction using gaze tracking could be utilized as an enhancement along 

already existing human intention prediction methods.  

M. Rakovi´ c et al. (2024) [16] conducted a study where they analyzed gazes of 

two collaborating agents. In the study the agents had to construct a tower from pieces in 

turn. Roles were assigned to the agents and one of them was a leader and one follower. 

The roles switched for subsequent actions. The goal is for both agents to construct their 

tower from pieces in front of them. The leader picks a piece and puts it in their tower. 

When the piece belongs to the follower’s tower the leader gives it to them. Figure 6 shows 

the collaboration setting. The study found that in human-human collaboration the leader’s 

action can be predicted from gaze fixations while followers gaze was fixating on the 

leaders’ actions. A Gaze Dialogue Model was constructed based the human-human 

collaboration observations. The model utilizes hidden Markov models and predicts 
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human intention based on gaze. The model was able to correctly predict actions. 

However, the correct classification happened at 60% task completion for giving and 80% 

completion for placing. The study additionally conducted experiments with human-robot 

collaboration. The used robot is a humanoid robot, and it utilizes the gaze dialogue model 

to predict intentions from human gaze and mimic gaze with artificial eyes. The model 

was able to predict intentions in human-robot collaboration at an average of 75% 

completion of the task. However, this implementation requires humans to wear eye 

tracking glasses and the robot’s arm speed couldn’t keep up with the robot’s gaze leading 

to less natural feeling interaction.  

 

Figure 6 Collaborative setting of a tower building experiment utilizing eye gaze tracking. [16] 
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3. Information sharing in human-robot collaboration 

Effective collaboration requires a shared understanding of what needs to be achieved 

among participants. In this chapter, sharing information between humans and 

collaborative robots is discussed. In the first subchapter, different ways of communication 

among humans and robots are examined. The second subchapter talks about 

communicating and generating shared task plans between humans and robots. 

 

3.1. Human-robot communication 

Apart from human intention prediction and modeling, straightforward communication 

can offer benefits to human robot collaboration. One possible solution is using human 

language as a means of communication. Using speech, a human could give instructions 

to the robot, and the robot could inform the user about the current and the next robot task. 

This kind of communication frees up the human workers’ gaze and hands to continue the 

task while communicating. However, speech communication is ineffective in noisy 

environments. [17] Communication effectiveness can be increased by combining 

different communication methods. For example, clarity of communication can be 

increased using gesture commands alongside speech. When the user asks the robot to give 

an object, the user can point at it and say: “give me that”. [18]  

Martin et al. (2025) [19] conducted a study in which they designed a system for 

multimodal communication and task planning. The system uses a large language model 

(LLM) to interpret task information and to construct task plans. Furthermore, the system 

recognizes speech and gestures as means of communication. The human can interrupt and 

instruct the robot during false operation. The human can talk to the robot and point at 

objects. In the experiment the robot must perform tasks without prior knowledge based 

on human instructions and interpreting images captured by a camera. The robot used is a 

typical arm robot with a gripper and a camera. Robot system performance is evaluated 

using simple sorting and packing tasks that can be seen in figure 7. The evaluation of 

effectiveness of multimodal communication was conducted with task 3 seen in figure 7. 

In the task the human-robot team must sort cans based on color. After the experiment the 

participants filled out a survey regarding the experience of the experiment. The 

experiment showed that using multimodal communication improved collaboration on 

trusting the robot, willingness to use the robot again, feeling of control over the robot 

actions and feeling of successful collaboration. The use of multimodal communication 

also showed a significant increase in correct task completion and correct object 

placement. 
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Figure 7 The experiments used to evaluate the performance of the multimodal communication system [19] 

 

Large language models (LLM) could be used to interpret human commands and 

to give robots a commonsense reasoning, such as in the previous multimodal 

communication experiment. However, further research needs to be conducted for utilizing 

LLMs in human-robot collaboration to increase safety and reliability. [20] This recent 

study [21] used a LLM for communication between human and a robot. The goal of the 

experiment was to determine the effects of a collaborative robot being able to converse 

in small talk while working. The experiment mimicked an industrial assembly scenario 

with a robotic arm that assists a human worker in assembling PVC pipes. The human 

worker verbally asked the robot to deliver different assembly pieces. The experiment was 

conducted in two ways. One implementation only communicated functional information 

and other communicated functional information and small talk. Small talk responses were 

generated with LLM model. The study found that including small talk in HRC increased 

task duration time. However, the paper states that the lengthened duration might be 

because the participants were surprised by a talking robot. Furthermore, some participants 

said that small talk made the experiment more enjoyable.  

Augmented reality (AR) can also be utilized as a means of communication 

between humans and robots. AR has its benefits in providing visual information in the 

real-world environment. Wearable AR head mounted displays can also provide hand and 

eye tracking. [22] A study conducted by R. S. Lunding et al. (2025) [22] experimented 

on incorporating AR in an industrial HRC scenario. The experiment was conducted in a 

real factory task. In the experiment, workers who were familiar with the work task 

collaborated with a robot arm on the task. The task was completed in two ways: a robot 
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helping with some of the subtasks and one where the robot acted as a mount for the 

assembly part. Assembly instructions and a list of parts and tools were imported to the 

AR interface. The interface shows the worker information about the workers’ current task, 

robots planned movement, place where the next part will be inserted and the robot’s 

current task state. The view with the AR gear can be seen in figure 8. The overall 

experience of workers with the robot was positive and all study participants were able to 

complete the tasks with the robot. The study also found that AR assistance can be 

beneficial in training or giving instructions in rare assembly tasks and quality control. 

However, prolonged use of AR head mounted display can be uncomfortable. Longer and 

more broad study must be conducted to determine overall effectiveness of AR assisted 

HRC. 

 

Figure 8 View of the AR interface. A shows a step overview of the current task. B shows the robot’s path. 

C is an animated hologram of the next part to be placed. D is the robot’s status that displays the progress of 

the robot’s task. [22] 
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3.2. Collaborative task execution planning 

Collaborating with humans is not straightforward. Something will likely go differently 

than in the general task plan. Different people like to do the same kind of work tasks 

differently. Completing tasks with humans requires dynamic task planning from the robot 

during the task completion [23]. This way the robot can adjust task plan and sequencing 

during work based on human errors and human working preferences. 

A recent study conducted by Zhao et al (2025) [24] presents an implementation 

of safety aware task planning. The method aims to balance safety and efficiency while 

planning task execution sequences. The algorithm plans the robot and the human to 

execute separate tasks simultaneously or in turn. Some tasks are executed collaboratively. 

The algorithm tries to optimize efficiency of these task sequences while taking safety into 

consideration. Safety is determined by how close the human and the robot operate when 

executing tasks. When closer to the human, the robot must move slower to decrease the 

risk of injury upon collision which slows down the task completion. The paper conducts 

an experiment using the method. In the experiment, a human and a single robot arm 

assembled a desktop computer. Figure 9 shows the experiment setup. They experimented 

with different task sequences where the human and the robot installed different sets of 

parts every time. They found that the use of the task planning method to optimize safety 

and efficiency effectively reduces total assembly completion time. The most effective 

assembly was achieved by planning the robot to operate at tasks farther away from the 

human, allowing the robot to operate at maximum speed. 

 

Figure 9 The setup of task sequencing experiment. The human and the robot collaboratively assemble a 

desktop computer. [24] 
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There are also other aspects to consider in co-task completion such as human task 

completion time and human preferences. For example this paper [25] introduces a method 

which plans robot execution times based on human task execution ability to make 

collaboration more fluent and effective while maintaining safety. The method decreased 

execution time and increased safety distances between the robot and the human. Another 

related paper by C. J. Conti et al. (2022) [26] introduced an experiment in which a robot 

collaborated with a human in vehicle assembly. The goal of the study was to demonstrate 

how common reasoning in robots would benefit human-robot collaboration. The 

knowledge of the robot is used in selecting parts based on their properties to make 

collaborative assembly more effective and more enjoyable for the human. The robot 

knows that humans prefer carrying lighter parts and picking up parts that are closer to 

them. The robot fulfills human preferences by carrying heavier objects and parts that are 

farther away. The robot also handles more fragile parts that are hard to handle for humans. 

Objects have attributes that are used with human preferences to calculate the next part to 

be retrieved. The algorithm was tested in a simulation and in a small-scale real-world 

experiment with a toy car. The experiment setup can be seen in figure 10. The experiments 

concluded that the robot working alongside the human will decrease completion time 

since the human experiences less fatigue with the robot’s help. The solution is stated to 

be viable in long and repetitive assembly tasks. However, wider studies must be 

conducted to get a deeper understanding of the benefits of task planning while taking 

human preferences into account. 

 

 

Figure 10 Experimental setup of assembling a toy car using task planning that considers human 

preferences [26] 
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4. Human-robot collaboration in industrial robotics 

Human-robot collaboration has many benefits in industrial robotics and 

manufacturing. Utilizing collaborative robots in manufacturing can improve the 

adaptability of manufacturing due to a human being able to conduct some of the tasks 

[27]. Collaborative robots could be used in welding where the robot could assist by doing 

the welding itself or holding and handling the weldable part while a human does the 

welding. Collaborative robots could additionally be utilized in assembly for products that 

require customization [3]. In the paper regarding AR assistance in HRC [22], the test 

subjects are factory workers and stated that the collaborative robot could be used in 

assembly training and quality assurance. The robot verifies correct assembly steps while 

the assembly is in progress, saving time. Collaborative robots can increase human 

workers’ physical wellbeing by doing physically hard and demanding tasks in place of 

the human worker. This is achieved with human centric task planning. [28] This kind of 

planning could also enable workers to work longer without getting tired [26]. This could 

increase the throughput of the manufacturing line. Furthermore, opposed to traditional 

industrial robots, collaborative robots do not need to be put in safety cages, saving up 

space [3]. 

 One of the key issues with collaborative robots is the increased need for 

computing power which can be a problem considering scalability of these systems [29]. 

Furthermore, the demanding calculations need to be done within real-time constraints to 

ensure safety and avoid collisions with the human [28]. The robot must calculate human 

intentions and act quickly to achieve smooth and natural feeling collaboration. A current 

major limitation of collaborative robot usage is the concern for safety of the human [3]. 

The experiments reviewed in this paper are conducted with a relatively small arm robot 

to avoid hurting humans upon collisions. Furthermore, the collaborative robots reviewed 

in this paper only utilize only one or a few of the previously presented methods. 

Additionally, many of the experiments test the quality of the prediction and 

communication methods using only one type of work task and are designed for only one 

user. Further study is required to implement a full system which uses many human 

modeling and communication methods. Many of the modeling methods reviewed in 

chapter 2 showed promising accuracies in recognition. However, in a real-life scenario, 

accuracy might be worse due to the lack of model training material and change in scenery 

and personnel. Humans are hard to predict, and something might happen that the robot 

cannot predict, making it hard to implement a robust and safe collaborative robot system. 

 This bachelor’s thesis presents a possible human-robot scenario utilizing 

previously examined collaboration-enabling human modeling and communication 

methods. A possible implementation for collaborative robots is in customized desktop 

computer assembly. The company assembles desktop computers where the parts are 



 

15 

 

chosen by the customer. The robot in question is a mobile robot with a robot arm. The 

robot uses human motion prediction to predict human movement paths and limb 

movements to navigate safely in the workspace while avoiding collisions. The computers 

are customized so they are different every time, which makes the work require human 

adaptability. The robot uses context recognition to recognize components that need to be 

worked with. A worker can communicate with the robot using speech to order it to 

retrieve parts for the assembly or to give an object to the worker. The worker can point at 

objects to clarify which object needs to be given. The gestures are interpreted with gesture 

recognition methods. If the part is visible, the robot could use gaze recognition to predict 

which object is in question. The robot could have a small screen attached to it to show the 

current robot work state to clarify that orders have been received correctly. The 

confirmation can also be done with speech. The robot uses task planning to create task 

plans that emphasize human skills and safety. The human does the subtasks which the 

human is good at, and the robot does the repetitive tasks like retrieving parts from storage. 

While the robot is used to co-assemble computers, the robot inserts parts into the 

computer. The robot can additionally act as a mount, holding parts in place while the 

human screws them in. The robot can be ordered to give nearby parts to the worker or to 

retrieve items and components from the storage. The robot could be used by many 

workers to do small helpful tasks like retrieving items. The robot can speed up the 

assembly process by cutting component retrieval from the workers. The robot could also 

continue to do some tasks which don’t require a human while the human is taking a break. 

Overall, a collaborative robot can be implemented in many ways and for many purposes. 

This was an example of an imaginary scenario using a collaborative robot which utilizes 

methods examined in this thesis. Conducting real world experiments with different 

collaborative robot solutions will reveal overall benefits and feasibility of these systems. 
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5. Conclusions 

This bachelor’s thesis examined human-robot collaboration in industrial applications. 

Chapter two focused on examining human modeling and intention prediction while 

chapter three reviewed the usage of communication and task planning. The goal was to 

achieve an understanding of how a collaborative robot can be effectively implemented 

and used. Furthermore, this paper aimed to evaluate the current use state of collaborative 

robots and problems that need to be addressed in further studies. 

 First, this thesis examined human modeling and human intention prediction 

methods. A collaborative robot can benefit from predicting human movement. The 

trajectory of a human walking is predicted to avoid collisions with humans with mobile 

robots, or human arm movement could be modeled and predicted to seamlessly give 

objects to human hand. Gesture recognition can be used to quickly communicate simple 

ideas to a robot. The user could effortlessly point at objects to communicate to the robot, 

what the robot should fetch or where to place objects. Touch gestures could be used to 

guide the robot or to communicate simple ideas. Furthermore, hand and touch gestures 

could be used to quickly stop the robot in case of faulty task execution. Human eyes reveal 

a lot of information on human intentions. Shifting gaze in the work area could indicate 

where the human is going to operate next. Context recognition is used to derive meaning 

of the environment to see how humans interact with it. Knowing what object the human 

interacts with can offer a major increase in intention prediction accuracy. For example, 

holding a hammer reveals that a human is likely going to do hammer something. 

 Secondly, this thesis reviewed ways of communication between a human and a 

robot. An efficient way of communication gives humans the ability to quickly give 

instructions and commands to a collaborative robot. Speech can be used as a means of 

communication. However, noisy sound input can lead to misinterpretation by the robot 

which can lead to critical errors. Speech could be used alongside many other modeling 

and communication methods. Visual communication such as augmented reality is a way 

to show useful information about the current task. However, augmented reality requires 

the usage of a VR headset during work and the communication is mainly from the robot 

to the human. Multimodal communication uses different types of communication 

simultaneously to make collaboration easier. Humans could tell the robot to pick 

something up and then point to it to clarify which object is meant. Multimodal 

communication increases robustness of the collaboration scenario. The collaboration 

between a human and a robot is dynamic, and the work task steps must be communicated 

before and during communication. For this purpose, the robot uses task planning to divide 

the main tasks into subtasks and divide them between the human and the robot. The robot 

can give tasks for the human in which the human is good at. In turn, the robot can choose 

to do physically demanding tasks to lessen the fatigue of the human. 
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 Using collaborative robots in industrial applications like manufacturing offers 

many benefits. Effective utilization of collaborative robots can increase the throughput of 

assembly by decreasing work task completion times and human fatigue. Collaborative 

robots also enable automation of work that requires human creativity and flexible problem 

solving. Effective use of predictive human modeling leads to workers viewing human-

robot collaboration as natural and effective. However, human modeling and intention 

prediction methods require a lot of computing power, which can be a problem when 

considering safety. The robot needs to think and act quickly, and the computationally 

expensive calculations need to be done fast enough to avoid collisions and to achieve 

sufficient collaboration. 

 The study of human-robot collaboration is an emerging field starting to gain 

popularity. More research is required for robust and safe human-robot collaboration. 

Safety is the biggest concern in collaborative robots. Especially with bigger robot arms, 

collision avoidance and safe task planning need to be reliable. Furthermore, most of the 

studies reviewed in this paper only experiment with collaborative robot systems that are 

designed for one work task. More studies need to be conducted on collaborative robots 

that are designed to perform many work tasks. Additionally, the studies reviewed in this 

paper are experimented with one user only. The use of collaborative robots with more 

than one user present at a time must be studied. To achieve a deeper and more concrete 

understanding of the benefits of collaborative robots in industry, wider research must be 

conducted with real work tasks and larger test groups. However, there is research 

evidence indicating that collaborative robots offer benefits in industrial applications. With 

the current evidence and continuous study in this field, the potential of collaborative 

robots is promising. 
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