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1 Introduction

Approximation of deformation states arising in thin shells by low-order �nite
element methods is known to be a nontrivial task. Di�erent locking modes
degrade the convergence rate of the most basic formulations when approx-
imating bending-dominated or inextensional deformations. However, it is
equally well-known by now that a suitable variational crime can be used to
retain the convergence properties in such cases. This can even be done up to
an optimal order and smoothness requirements for certain shell geometries
as it was shown in Part I of this paper [3], see also [6]. The real challenge
begins when one aims to �nd a formulation that has a satisfactory behavior
also in the membrane-dominated states of deformation. In this case one is
inevitably led to consider the questions of consistency and stability of the
formulation since the approximation properties will rarely be a problem in
such a case, but lack of consistency or stability can yield a very large error
component.

Probably most low-order shell elements aimed to be general in nature
contain the basic ideas of MITC4 by Bathe and Dvorkin [1]. In [4] it was
shown that this formulation is in fact equivalent to a certain variational crime
already considered in [6]. In this paper we extend our analysis of the MITC-
type elements and address their consistency and stability properties. We
show that at least under favorable circumstances, this kind of an element can
indeed approximate well also membrane-dominated deformation. However,
due to the lack of stability in the membrane-dominated case, we can bound
the consistency error in this case only non-uniformly with respect to the
thickness t of the shell. We need also strong assumptions on the problem
setup and on the �nite element mesh as in the previous part [3]. Under such
hypotheses and under certain additional hypotheses on the solution we show
that the consistency error is at most of order O(h+ t�1h1+s) where h is the
mesh spacing and s � 0 is a parameter depending on the degree of smoothness
of the exact solution. As s can be arbitrarily large in principle, one can have
t�1hs = O(1) for reasonable sequences of (t; h) if the solution is very smooth.
In such a case the consistency error is O(h), which is the optimal order
for bilinear elements. The conclusion from the Parts I-II of the paper is
then that at least under extremely favorable circumstances, both bending-
and membrane-dominated smooth deformations can be approximated with
nearly optimal accuracy by the bilinear MITC4 element. To what extent this
holds for more general problem setups, deformation states, and �nite element
meshes, is a wide open problem.

Another topic to be considered in this paper is the asymptotic behavior
of the consistency error in the case of an inextensional deformation. In [3]
we considered the problem of �nding a best �nite element approximation of
a given inextensional deformation. At that point the question of consistency
was deliberately left aside. However, in real computations one is inevitably
faced with the fact that since the reduced inextensional space is not a sub-
space of the corresponding continuous space, the consistency error does not
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tend to zero when the thickness t ! 0, but to some �nite value depend-
ing on h. Here we show that this error term is of the optimal order O(h).
However, to obtain this result we need much stronger regularity assumptions
on the exact solution than in the previous Part I [3] where we bounded the
approximation error. Whether our analysis here is sharp is not clear at the
moment.

The plan of this paper is as follows. In section 2 we describe the problems
to be considered and in section 3 we consider two slightly di�erent FEM
approximations to these. Section 4 is devoted to the consistency error in
the non-asymptotic case (t > 0) whereas section 5 deals with the asymptotic
consistency error in the inextensional deformation state.

In the following we denote by C a generic constant that may take a
di�erent value in di�erent usage. The constants may depend on the geometry
parameters of the problem but are otherwise independent of the parameters,
unless indicated explicitly. The Sobolev norm and seminorm are denoted by
jj � jjk and j � jk respectively on the assumed rectangular domain. Further,
jj � jjL2 = jj � jj0.

2 The shell problem

We use basically the same shell model of Reissner-Naghdi type as in [3] but
with two di�erent scalings. Denoting by u = (u; v; w; �;  ) the vector of three
translations and two rotations we let the (scaled) total energy of the shell be
given either by

FM(u) =
1

2

�
t2Ab(u; u) +Am(u; u)

�
�Q(u)

or by

FB(u) =
1

2

�
Ab(u; u) + t�2Am(u; u)

�
�Q(u)

where t is the thickness of the shell and Q represents the load potential. Here
the subscripts M and B refer to the natural scalings of the total energy in
membrane and bending-dominated deformations, respectively. We assume
that in both cases Q(u) de�nes a bounded linear functional on the corre-
sponding energy space to be de�ned later. The bilinear forms Ab(u; v) and
Am(u; v) arising from the bending and membrane energies are given by

Ab(u; v) =

Z



�
�(�11 + �22)(u)(�11 + �22)(v) + (1� �)

2X
i;j=1

�ij(u)�ij(v)
	
dxdy
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and

Am(u; v) = 6
(1� �)

Z



f�1(u)�1(v) + �2(u)�2(v)gdxdy

+12

Z



f�(�11 + �22)(u)(�11 + �22)(v)

+ (1� �)
2X

i;j=1

�ij(u)�ij(v)gdxdy

where overbars denote complex conjugation. Here � is the Poisson ratio of
the material, 
 is a shear correction factor and �ij, �ij and �i represent the
bending, membrane and transverse shear strains respectively depending on
u as

�11 =
@u

@x
+ aw �11 =

@�

@x

�22 =
@v

@y
+ bw �22 =

@ 

@y

�12 =
1

2
(
@u

@y
+
@v

@x
) + cw = �21 �12 =

1

2
(
@�

@y
+
@ 

@x
) = �21

(2.1)

and

�1 = � �
@w

@x
�2 =  �

@w

@y
: (2.2)

The integration is taken over the midsurface 
 of the shell which we assume
to occupy the rectangular region (0; L) � (0; H) in the xy-coordinate space
satisfying d�1 � L=H � d for some constant d > 0. We are considering the
shell to be shallow and assume that the parameters a, b and c de�ning the
geometry can be taken constants. We further note that if ab � c2 > 0 the
shell is elliptic, if ab � c2 = 0 it is parabolic and if ab � c2 < 0 we have a
hyperbolic shell.

The above two energy formulations lead naturally to two di�erently scaled
variational formulations, the membrane (M) and bending (B) cases:

(M) Find u 2 UM such that

AM(u; v) = t2Ab(u; v) +Am(u; v) = Q(v) 8v 2 UM : (2.3)

(B) Find u 2 UB such that

AB(u; v) = Ab(u; v) + t�2Am(u; v) = Q(v) 8v 2 UB: (2.4)

Here UM and UB are the membrane and bending energy spaces, respectively,
which we take to be subspaces of [H1

p (
)]
5 where H1

p(
) is the usual Sobolev
space with periodic boundary conditions imposed at y = 0; H. In UB no con-
straints are imposed at x = 0; L whereas in UM we assume the constraints
u = v = w = � =  = 0 at x = 0; L. In Case (B) we must also remove the
rigid displacements from UB so as to make (2.4) uniquely solvable. For the
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convenience of our error analysis, we make here somewhat stronger assump-
tions than are needed for the well-posedness of (2.4): We introduce the set
of pseudo-rigid displacements as

Z = fv 2 [H1
p(
)]

5 j v =
5X
i=1

Cieig

where ei is the ith Euclidean unit vector, assume that Q(v) = 0 for every
v 2 Z, and let UB = Z? in [H1

p(
)]
5. Finally we denote the energy norms

on UM and on UB, respectively, by jjj � jjjM =
p
AM(�; �) and jjj � jjjB =p

AB(�; �) = t�1jjj � jjjM .
Letting t ! 0 in (2.4) we obtain the inextensional formulation of the

problem (B): Find u0 2 U0 such that

Ab(u0; v) = Q(v) 8v 2 U0 (2.5)

where U0 = fv 2 UB j Am(v; v) = 0g � UB is the space of inextensional
deformations.

3 The reduced-strain FE scheme

We consider the bilinear MITC4 �nite element formulation of the problems
(2.3) � (2.5). As in [3] we make strong assumptions on the �nite element
mesh so as to allow the use of Fourier methods in the error analysis.

Assume that 
 is divided into rectangular elements with node points
(xk; yn), k = 0; : : : ; Nx, n = 0; : : : ; Ny and a constant mesh spacing hy in the
y-direction and that the aspect ratios of the elements satisfy d�1 � hkx=hy � d
for some d > 0 where hkx = xk+1�xk. To this mesh we associate the standard
space Vh � H1

p(
) of continuous piecewise bilinear functions. We then de�ne
the FE spaces UM;h and UB;h, respectively, as subspaces of V5

h where the
boundary or orthogonality conditions of Problems (M) and (B) are enforced.
The �nite element formulation of problems (2.3) � (2.5) are then obtained
by replacing UM , UB by UM;h, UB;h and by modifying the bilinear form Am

numerically as

Ah
m(u; v) = 6
(1� �)

Z



f~�1(u)~�1(v) + ~�2(u)~�2(v)gdxdy

+12

Z



f�( ~�11 + ~�22)(u)( ~�11 + ~�22)(v)

+ (1� �)
2X

i;j=1

~�ij(u)
~�ij(v)gdxdy

where ~�ij = Rij�ij, ~�i = Ri�i with suitable reduction operators Rij and Ri.
As in [3] we choose these operators for �ii and �i to be

~�11 = �x
h�11;

~�22 = �y
h�22; ~�1 = �x

h�1 ~�2 = �y
h�2 (3.1)
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where �x
h and �y

h are orthogonal L2-projections onto spaces Wx
h and Wy

h

consisting of functions that are constant in x an piecewise linear in y or
constant in y and piecewise linear in x respectively. For the term �12 we
consider two di�erent alternatives

(E1) ~�12 = �xy
h �12

(E2) ~�12 = �12 + S12

where �xy
h = �x

h�
y
h is the orthogonal L

2-projection onto elementwise constant
functions and for every element K

S12jK = a
@

@y
(�x

hw)(x� hkx=2) + b
@

@x
(�y

hw)(y � hy=2) + (�xy
h cw � cw)

is essentially the term introduced in [4].

Remark 3.1. The formulation (E1) was assumed in [3], [6]. This is a straight-
forward interpretation of the MITC4 �nite element formulation, but as shown
recently in [4], (E2) is actually a closer interpretation of MITC4. The two
formulations are practically equivalent when approximating inextensional de-
formations but may di�er in other deformation states, as noted in [4]. Our
error analysis here can only detect a small di�erence when approximating
smooth membrane-dominated deformations, see Theorem 4.4 ahead.

The above de�nitions give rise to two di�erent FE-schemes for solving
(2.3) and (2.4):

(Mh) Find uh 2 UM;h such that

Ah
M(uh; v) = t2Ab(uh; v) +Ah

m(uh; v) = Q(v) 8v 2 UM;h (3.2)

(Bh) Find uh 2 UB;h such that

Ah
B(uh; v) = Ab(uh; v) + t�2Ah

m(uh; v) = Q(v) 8v 2 UB;h (3.3)

Upon passing to the limit t! 0 in (3.3) we obtain a �nite element formulation
of the asymptotic problem (2.5): Find uh 2 U0;h such that

Ab(uh; v) = Q(v) 8v 2 U0;h (3.4)

where U0;h = fv 2 UB;h j A
h
m(v; v) = 0g.

To analyze the discretization errors eM = jjju� uhjjjM;h and eB = jjju�
uhjjjM;h as originating from (3.2) and (3.3) when t > 0, we split eM and eB
into two orthogonal components in both cases, namely the approximation
errors

ea;M (u) = min
v2UM;h

jjju� vjjjM;h

ea;B(u) = min
v2UB;h

jjju� vjjjB;h
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and the consistency errors

ec;M(u) = sup
v2UM;h

(AM �Ah
M)(u; v)

jjjvjjjM;h
(3.5)

ec;B(u) = sup
v2UB;h

(AB �A
h
B)(u; v)

jjjvjjjB;h
(3.6)

where jjj � jjjM;h =
p
Ah
M(�; �), jjj � jjjB;h =

p
Ah
B(�; �). These de�nitions imply

that

e2M = e2a;M + e2c;M

e2B = e2a;B + e2c;B:

(For a detailed reasoning, see [5].) We note that standard �nite element
theory gives the bound ea;M � Chjjujj2 and for ea;B we refer to [3]. Hence,
the main task of this paper is to bound ec;M and ec;B. We aim to analyze
these error terms with both proposed strain-reductions (E1) and (E2).

The asymptotic formulations (2.5), (3.4) lead to a similar error decompo-
sition. We have for u0 2 U0 the asymptotic approximation error

e0a(u0) = min
v2U0;h

jjju0 � vjjjB;h

which was under consideration in [3]. On the other hand, at t = 0 we have
that

Ab(u0; v) = Q(v) 8v 2 U0

for the inextensional solution u0 2 U0, and that

Ab(uh; v) = Q(v) 8v 2 U0;h (3.7)

for the corresponding �nite element solution uh. Let ~uh be the best �nite
element approximation to u0 in U0;h, i.e.

Ab(~uh; v) = Ab(u0; v) 8v 2 U0;h: (3.8)

By (3.7), (3.8) the asymptotic consistency error uh � ~uh 2 U0;h satis�es

Ab(uh � ~uh; v) = Q(v)�Ab(u0; v) 8v 2 U0;h (3.9)

and thus we can de�ne

e0c(u0) + jjjuh � ~uhjjjh = sup
v2U0;h

Q(v)�Ab(u
0; v)

jjjvjjjB;h
: (3.10)

As in [3], the main tool of our analysis will be the Fourier transform where
we write

u(x; y) =
X
�2�

'�(y)��(x) =
X
�2�

#�(x; y);

'�(y) = ei�y; � = f� =
2��

H
; � 2 Zg;
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making use of the periodic boundary conditions at y = 0; H. For functions
in the FE space we write analogously

v(x; y) =
X
�2�N

~'�(y)~��(x) =
X
�2�N

~#�(x; y)

where

�N = f� 2 � j � � � �hy � � when Ny is odd,

or � � < �hy � � when Ny is eveng:

Here ~'�(y) is the interpolant of '�(y), so that we are in fact considering a
discrete Fourier transform of v 2 Uh.

In our forthcoming analysis the following results are also needed.

Proposition 3.1 (Korn's inequality). Let

V = fv = (v1; v2) 2 [H1
p(
)]

2 j v(0; �) = v(L; �) = 0g

or let

V = fv = (v1; v2) 2 [H1
p(
)]

2 j

Z



v1dxdy =

Z



v2dxdy = 0g:

Then there exists a constant c > 0 such that

jjvjj1 � c
�
jj
@v1
@x

jj2L2 + jj
@v2
@y
jj2L2 + 2jj

1

2
(
@v1
@y

+
@v2
@x

)jj2L2
�1=2

8v 2 V: (3.11)

Proof. See [2].

Proposition 3.2. Assume that v = (v1; v2) 2 [Vh]
2. Then

jj
@v1
@y

+
@v2
@x

jjL2 � C
�
jj�xy

h (
@v1
@y

+
@v2
@x

)jjL2 + jj
@v1
@x

jjL2 + jj
@v2
@y
jjL2

�
: (3.12)

Proof. See Theorem 6.1 in [5].

4 The consistency error at t > 0

We start by giving a stability result for UM;h.

Lemma 4.1. Let v 2 UM;h. Then

jjvjj1 � Ct�1jjjvjjjM;h:

Proof. Assume �rst the modi�cation (E1). By (3.3) we have that for v =
(u; v; w; �;  ) 2 UM;h

jj
@�

@x
jjL2 + jj

@ 

@y
jjL2 + jj

@�

@y
+
@ 

@x
jjL2 � Ct�1jjjvjjjM;h
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and thus by the Korn inequality (3.11)

jj�jj1 + jj jj1 � Ct�1jjjvjjjM;h: (4.1)

Also the de�nitions of the membrane strains �ij (2.1) imply

jj
@u

@x
jjL2 + jj

@v

@y
jjL2 + jj�xy

h (
@u

@y
+
@v

@x
)jjL2 � C(jjjvjjjM;h + jjwjjL2)

and by (3.12) we have

jj
@u

@y
+
@v

@x
jjL2 � C(jj�xy

h (
@u

@y
+
@v

@x
)jjL2 + jj

@u

@x
jjL2 + jj

@v

@y
jjL2)

resulting in

jj
@u

@x
jjL2 + jj

@v

@y
jjL2 + jj

@u

@y
+
@v

@x
jjL2 � C(jjjvjjjM;h + jjwjjL2)

where from again by the Korn inequality (3.11)

jjujj1 + jjvjj1 � C(jjjvjjjB;h + jjwjjL2): (4.2)

By (2.2), (3.1) we have that @w
@x

= ~�1 � �x
h� and

@w
@y

= ~�2 � �y
h so that

jj
@w

@x
jjL2 + jj

@w

@y
jjL2 � C(jjjvjjjM;h + jj�jjL2 + jj jjL2) � Ct�1jjjvjjjM;h (4.3)

by (4.1). The claim follows from (4.1) � (4.3) together with the Poincaré's
inequality. Similar calculations imply the result also for the modi�cation
(E2).

Lemma 4.2. Let v 2 UB;h. Then

jjvjj1 � CjjjvjjjB;h:

Proof. By the de�nition of UB;h the Korn inequality (3.11) holds for the pairs
(�;  ) and (u; v), as well as the Poincaré's inequality for w. The result follows
as in Lemma 4.1.

We derive next more speci�c stability results for the low-order discrete
Fourier modes in the FE space.

Lemma 4.3. Let ~#� = ~'�~�� = ~'�(~u�; ~v�; ~w�; ~��; ~ �) 2 UM;h. Then, if b 6= 0
we have for � such that j�jh � c < �,

jj ~'�~u�jj1 + jj ~'�~v�jj1 + jj ~'� ~w�jjL2 � Cj�j1�mjjj~#�jjjM;h; (4.4)

where m = 1 in the elliptic case and m = 0 in the parabolic and hyperbolic
cases.
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Proof. Consider �rst the case (E1). The translation components ~u� and ~v�
of ~#� satisfy the di�erence equation (cf. [3])�

~v�
~u�

�
(xk+1)�

�
~v�
~u�

�
(xk) =

1

2
�kM

��
~v�
~u�

�
(xk+1) +

�
~v�
~u�

�
(xk)

�
+hkx ~F

k
� (4.5)

where �k = 2h
k
x

hy
tan (1

2
�hy),

M = i

�
2c
b

�1
a
b

0

�
(4.6)

and

~F k
� =

1

cos (1
2
�hy)

�
2 ~f�12(x

k+1=2)� c
b
( ~f�22(x

k+1) + ~f�22(x
k))

cos (1
2
�hy) ~f

�
11(x

k+1=2)� a
2b
( ~f�22(x

k+1) + ~f�22(x
k))

�
: (4.7)

Here

~f�11(x
k+1=2) =e�in�hy( ~�11(~#�))j(xk+1=2;yn)

~f�22(x
k) =e�i(n+1=2)�hy( ~�22(~#�))j(xk;yn+1=2)

~f�12(x
k+1=2) =e�i(n+1=2)�hy( ~�12(~#�))j(xk+1=2;yn+1=2)

:

Due to the constraints at x = 0; L we may without loss of generality consider
only the exponentially decreasing solution of (4.5) starting from x = 0. Then
if j�jhy � c < �, the standard theory for A-stable di�erence schemes (see
also [3]) gives us the bound

jj

�
~v�
~u�

�
(xk+1)jj � e��j�jx

k+1

jj

�
~v�
~u�

�
(0)jj

+

Z xk+1

0

e��j�j(x
k+1�t)jj ~F�(t)jje

��j�jtdt

(4.8)

where jj � jj is the Euclidean norm of vectors in R2 and

~F� =

�
2 ~f�12 �

2c
b
~f�22

~f�11 �
a
b
~f�22

�
:

Here � > � > 0 in the elliptic case and � = � = 0 in the parabolic and
hyperbolic cases. Since ~u�(0) = ~v�(0) = 0 we obtain when � 6= 0

jj

�
~v�
~u�

�
(xk+1)jj2 �

(
Cj�j�1e�2�j�jx

k+1 R xk+1

0
jj ~F�(t)jj

2dt in the elliptic case

C
R xk+1

0
jj ~F�(t)jj

2dt in the parabolic and hyperbolic case

and consequently

jj~v�jj
2
L2(0;L) + jj~u�jj

2
L2(0;L) � Cj�j�2mjj ~F�jj

2
L2(0;L): (4.9)
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Also, (4.5) gives the relation�
~v�
~u�

�0

(xk+1=2) =
1

hy
tan (

1

2
�hy)M

��
~v�
~u�

�
(xk+1) +

�
~v�
~u�

�
(xk)

�
+ ~F k

�

from which it follows that

jj~v0�jj
2
L2(0;L) + jj~u0�jj

2
L2(0;L) �Cj�j

2(jj~v�jj
2
L2(0;L) + jj~u�jj

2
L2(0;L))

+ jj ~F�jj
2
L2(0;L)

�Cj�j2(1�m)jj ~F�jj
2
L2(0;L):

(4.10)

Combining (4.9) and (4.10) gives

jj ~'�~u�jj1 + jj ~'�~v�jj1 � Cj�j1�mjjj~#�jjjM;h (4.11)

since jj ~F�jjL2 � Cjjj~#�jjjM;h.
To consider ~w� we note that (cf. [3])

~w�(x
k) =

�2i

bhy
tan (

1

2
�hy)~v�(x

k) +
1

b cos (1
2
�hy)

~f�22(x
k)

and thus
jj ~w�jj

2
L(0;L) � C(j�j2jj~v�jj

2
L2(0;L) + jj ~f�22jj

2
L2(0;L))

leading to
jj ~'� ~w�jjL2(0;L) � Cj�j1�mjjj~#�jjjM;h: (4.12)

The claim for � 6= 0 follows from (4.11) together with (4.12).
When � = 0 we have from (4.8) and from ~w0(x

k) = 1
b
~f22(x

k) that

jj ~'0~u0jj1 + jj ~'0~v0jj1 + jj ~'0 ~w0jjL2 � Cjjj~#0jjjM;h

in any geometry. Similar calculations show that the claim holds also for the
case (E2).

Remark 4.1. The assumption b 6= 0 is not super�uous. This can be seen by
taking b = 0, � = 0, a = �1, c = 1=2 and choosing ~�

0
(x1) = (0; 0; 2; 4=h; 0),

then repeating the sequence

~�
0
(xj) = (h;�h; 0;�8=h; 0);

~�
0
(xj+1) = (0; 0;�2; 4=h; 0);

~�
0
(xj+2) = (�h; h; 0; 0; 0);

~�
0
(xj+3) = (0; 0; 2; 4=h; 0)

for j = 2; 6; 10; : : : and �nally letting

~�
0
(xNx�2) = (h;�h; 0;�8=h; 0);

~�
0
(xNx�1) = (0; 0;�2; 4=h; 0):

For this particular choice we have that jj@~u0
@x
jjL2 � min f 1

h
; h

2

t
gjjj~#0jjjM;h so

the stability is weaker when b = 0.
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With the help of the stability estimates given in Lemmas 4.1 � 4.3 we can
now bound the consistency error.

Theorem 4.4. Assume that b 6= 0, and let m = 1 in the elliptic case and
m = 0 in the parabolic and hyperbolic cases.. The consistency error ec;M
de�ned in (3.5) satis�es

ec;M � C1(u)h+ C2(t; u)h
2 + C3(t; s; u)h

1+s + C4(t; u)h
2; s � 0

provided that

C1(u) =C
X
ij

j�ij(u)j2�m

C2(u; t) =

(
0 for the case(E1)

Ct�1jwj1 for the case(E2)

C3(t; s; u) =Ct
�1
X
i

j�ii(u)j1+s +

(
Ct�1j�12(u)j1+s for the case(E1)

Ct�1(j�12(u)js + jwj1+s) for the case (E2)

C4(t; u) =Ct
�1(
X
i

j�i(u)j1)

are all �nite. The consistency error ec;B de�ned in (3.6) satis�es

ec;B � C1(t; u)h+ C2(t; u)h
2

provided that

C1(t; u) =Ct
�2
X
ij

j�ij(u)j1

C2(t; u) =Ct
�2
X
i

j�i(u)j1

are both �nite.

Remark 4.2. The transverse shear strains �i are typically very small at small
t in smooth deformation states, so the error term of ec;M is very likely neg-
ligible in practice. In the bending-dominated case, ec;B depends strongly
on �ij and �i. For smooth deformations one could assume realistically that
j�ij(u)j1 � j�i(u)j1 � t2 as t ! 0, in which case ec;B = O(h) uniformly in
t. In practice, however, boundary layer e�ects probably cause the growth of
ec;B, via constant C1(u) in particular.

Proof. We consider �rst the membrane case and write u =
P

�2� #� 2 UM
and v =

P
�2�N

~#� 2 UM;h. Then by the orthogonality of the discrete and

13



continuous modes (cf. [3])

(AM �Ah
M)(u; v) = (Am �A

h
m)(u; v) = (Am �A

h
m)(

X
�2�

#�
X
�2�N

~#�)

= (Am �A
h
m)(

X
j�j��0

#�;
X
�2�N

~#�) + (Am �A
h
m)(

X
j�j>�0

#�;
X
�2�N

~#�)

=
X
j�j��0

(Am �A
h
m)(#�;

~#�) +
X
j�j>�0

(Am �A
h
m)(#�; v)

� C
X
ij

X
j�j��0

�
(�ij(#�); �ij(~#�))� ( ~�ij(#�); ~�ij(~#�))

�
(4.13)

+
X
ij;i 6=j

X
j�j��0

�
(�ii(#�); �jj(

~#�))� ( ~�ii(#�);
~�jj(~#�))

�

+Cj�0j
�s1

X
i

X
j�j>�0

j�js1 j(�ii(#�)� ~�ii(#�); �ii(v)� ~�ii(v))j

+Cj�0j
�s2

X
i6=j

X
j�j>�0

j�js2 j(�ii(#�)� �xy
h �ii(#�); �jj(v))j

+Cj�0j
�s3

X
j�j>�0

j�js3 j

Z



(�12(#�)�12(v)� ~�12(#�) ~�12(v))dxdyj

+C
X
i

X
�2�

(�i(#�)� ~�i(#�); �i(v)� ~�i(v))

= I + II + III + IV + V + V I

where we have chosen �0 such that �0h � c < �. We note �rst that in I

(�ij(#�); �ij(~#�))� ( ~�ij(#�); ~�ij(~#�)) =(�ij(#�)� ~�ij(#�); �ij(~#�))

+ (~�ij(#�); �ij(~#�)� ~�ij(~#�))
(4.14)

where the �rst term can be bounded by Lemma 4.3 as

(�ij(#�)�
~�ij(#�); �ij(

~#�)) � Chj�1�m�ij(#�)j1(jj~u�jj1 + jj~v�jj1 + jj ~w�jjL2)

� Chj�ij(#�)j2�mjjj
~#�jjjM;h (4.15)

and the second term in (4.14) is zero in the case of the modi�cation (E1)
since Rij is an orthogonal L2-projection. For the modi�cation (E2) the second
term gives

(S12(~#�); ~�12(#�)) =(S12(~#�); �12(#�)) + (S12(~#�); S12(~#�))

�Chj�12(#�)j1jj ~w�jjL2 + Ch2jw�j1j ~w�j1

�Chj�12(#�)j1jjj~#�jjjM;h + Ch2t�1jw�j1jjj~#�jjjM;h

(4.16)

by Lemmas 4.1 and 4.3. For the term II we can write

(�ii(#�); �jj(~#�))� ( ~�ii(#�); ~�jj(~#�)) =(�ii(#�)� ~�ii(#�); �jj(~#�))

+ (~�ii(#�); �jj(~#�)� ~�jj(~#�))
(4.17)

14



where the �rst term can be treated as in case of the term I. The second term
in (4.17) can be written as

( ~�ii(#�); �jj(
~#�)�

~�jj(~#�)) =(R
ii�ii(#�); (I � Rjj)�jj(~#�))

=((I � Rjj)Rii�ii(#�); �jj(~#�))

�Chj�1�m�ii(#�)j1(jj~u�jj1 + jj~v�jj1 + jj ~w�jjL2)
(4.18)

� Chj�ii(#�)j2�mjjj
~#jjjM;h

again by Lemma 4.3. By (4.14) � (4.18) we have the bounds

I + II �C1h
X
ij

X
j�j��0

j�ij(#�)j2�mjjj~#�jjjM;h

+ C2h
2t�1

X
j�j��0

jw�j1jjj~#�jjjM;h

�C1h
X
ij

j�ij(u)j2�mjjjvjjjM;h + C2h
2t�1jwj1jjjvjjjM;h

(4.19)

where C2 = 0 for the modi�cation (E1). For the rest of the terms in (4.13)
standard approximation theory gives

III � Ch2+s1t�1
X
i

j�ii(u)j1+s1jjjvjjjM;h

IV � Ch1+s2t�1
X
i

j�ii(u)j1+s2jjjvjjjM;h

V �

(
Ch1+s3t�1j�12(u)j1+s3jjjvjjjM;h for the case (E1)

Ch1+s3t�1(j�12(u)js3 + jwj1+s3)jjjvjjjM;h for the case (E2)

V I � Ch2t�1
X
i

j�i(u)j1jjjvjjjM;h

(4.20)

by Lemmas 4.1 and 4.3. The claim for ec;M follows form (4.13), (4.19) and
(4.20) when we take s1 = s2 = s3 = s.

For the case ec;B the claim follows by the same arguments when we note
that

(AB �A
h
B)(u; v) = t�2(Am �A

h
m)(u; v)

and use the stability result given in Lemma 4.2.

5 The asymptotic consistency error

In this section we bound the asymptotic consistency error in an inextensional
deformation state, as de�ned by (3.10). In [3] we showed that the approxi-
mation error in the inextensional state is of order O(h) under nearly optimal
regularity assumptions on u0. Here we �nd that the consistency error is like-
wise of order O(h) at t = 0, but we need a very strong regularity assumption
on u0.
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We also make the additional assumption that the load is given by

Q(v) =

Z



(q1u+ q2v + q3w)dxdy

for some suitable qi 2 L2
p(
), i = 1; 2; 3 where L2

p(
) denotes the usual L2-
space with periodic boundary conditions imposed at y = 0; H and de�ne the
Fourier components of the load by

Q�(v) =

Z



(q�1u+ q�2v + q�3w)dxdy

where for each qi we write qi(x; y) =
P

�2� q
�
i (x; y) =

P
�2� q̂

�
i (x)'�(y). We

de�ne the (semi-) norms

jQjs =

�X
�2�

jQ�j2s

�1=2

where
jQ�js = j�js(jjq�1 jj

2
L2 + jjq�2 jj

2
L2 + jjq�3 jj

2
L2)

1=2

and write frequently jQj0 = jjQjjL2, jQ
�j0 = jjQ�jjL2 and jjQjjk = (

Pk
j=0 jQj

2
j)
1=2.

Theorem 5.1. Assume that b 6= 0, u0 2 [H5
p(
)]

5. Then the asymptotic
consistency error e0c;B(u0), as de�ned by (3.10), satis�es

e0c;B(u0) � C(jju0jj5 + jjQjj1)h:

Proof. Let v 2 U0;h and write v =
P

�2�N
~#�(x; y) =

P
�2�N

A� ~'�(y)~��(x) =P
�2�N

A� ~'�(y)(~u�(x); ~v�(x); ~w�(x); ~��(x); ~ �(x)),

u0 =
P

�2� u
�
0 =

P
�2�(u

�
0 ; v

�
0 ; w

�
0 ; �

�
0 ;  

�
0 ) and Q(v) =

P
�2�Q

�(v). Then by
the orthogonality of the Fourier modes [3] we have that

Ab(u0; v)�Q(v) =Ab(
X
�2�

u�0 ;
X
�2�N

~#�)�
X
�2�

Q�(
X
�2�N

~#�)

=Ab(
X
j�j��0

u�0 ;
X
�2�N

~#�)�
X
j�j��0

Q�(
X
�2�N

~#�)

+Ab(
X
j�j>�0

u�0 ;
X
�2�N

~#�)�
X
j�j>�0

Q�(
X
�2�N

~#�)

=
X
j�j��0

(Ab(u
�
0 ; ~#�)�Q�(~#�)) +

X
j�j>�0

(Ab(u
�
0 ; v)�Q�(v))

=I + II

for any �0 such that �0hy � c < �.
Let us �rst bound the term II. Here we have thatX

j�j>�0

Ab(u
�
0 ; v) � ��10

X
j�j>�0

Ab(j�ju
�
0 ; v) � Chjju0jj2jjjvjjjB;h (5.1)
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for �0 =
c
h
, c su�ciently small and similarly

X
j�j>�0

Q�(v) � ��10
X
j�j>�0

j�jQ�(v) � ChjQj1jjjvjjjB;h: (5.2)

To bound the term I when b 6= 0 we note that for any #� = A�'��� 2 U0
we can write

Ab(u
�
0 ;
~#�)�Q�(~#�) =Ab(u

�
0 ;
~#� � #�)�Q�(~#� � #�)

=A�(Ab(u
�
0 ; ~'�~�� � '���)�Q�( ~'�~�� � '���)):

(5.3)

Integration by parts in the �rst term in (5.3) gives

Ab(u
�
0 ; ~'�

~� � '���) =

Z H

0

����
L

0

��1( ~'�
~�� � '���) + ��2( ~'�

~ � � '� �)dy

+

Z



Æ
�

1( ~'�
~�� � '���) + Æ

�

2( ~'�
~ � � '� �)dxdy

where 8>>>><
>>>>:

��1 =
@2w�0
@x2

+ �
@2w�0
@y2

��2 = (1� �)
@2w�0
@x@y

Æ�1 = � @
@x
�w�

0

Æ�2 = � @
@y
�w�

0

so that

Ab(u
�
0 ; ~'�

~� � '���) � jj��1(L; �)jjL2(0;H)jj ~'�~��(L; �)� '���(L; �)jjL2(0;H)

+jjÆ�1 (L; �)jjL2(0;H)jj ~'� ~ �(L; �)� '� �(L; �)jjL2(0;H)

+jj��1(0; �)jjL2(0;H)jj ~'�~��(0; �)� '���(0; �)jjL2(0;H)

+jjÆ�1 (0; �)jjL2(0;H)jj ~'� ~ �(0; �)� '� �(0; �)jjL2(0;H)

+jj��2 jjL2jj ~'�
~�� � '���jjL2 + jjÆ�2 jjL2jj ~'�

~ � � '� �jjL2

� Cjju�0 jj3
�
jj ~'�~��(L; �)� '���(L; �)jjL2(0;H) (5.4)

+jj ~'� ~ �(L; �)� '� �(L; �)jjL2(0;H)

+jj ~'�~��(0; �)� '���(0; �)jjL2(0;H)

+jj ~'� ~ �(0; �)� '� �(0; �)jjL2(0;H)

+jj ~'�~�� � '���jjL2 + jj ~'� ~ � � '� �jjL2
�
:

Also for Q� in (5.3) we have the bound

Q�( ~'�~�� � '���) �CjjQ
�jjL2

�
jj ~'�~u� � '�u�jjL2

+ jj ~'�~v� � '�v�jjL2 + jj ~'� ~w� � '�w�jjL
2
�
:

(5.5)

To continue we need the following approximation results. The proof will be
postponed to the end of this section.
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Lemma 5.2. For every � such that j�jhy � c < � there exists a '��� 2 U0
such that

jj ~'�~��(L; �)� '���(L; �)jjL2(0;H) + jj ~'� ~ �(L; �)� '� �(L; �)jjL2(0;H)

+jj ~'�~��(0; �)� '���(0; �)jjL2(0;H) + jj ~'� ~ �(0; �)� '� �(0; �)jjL2(0;H)

+jj ~'�~�� � '���jjL2 + jj ~'� ~ � � '� �jjL2

� C(h2j�j5�m + h2�4) + Ch�2jjj ~'�~��jjjB;h

(5.6)

and

jj ~'�~u��'�u�jjL2+jj ~'�~v��'�v�jjL2+jj ~'� ~w��'�w�jjL2 � Ch2j�j4�3m=2 (5.7)

where m = 1 in the elliptic case and m = 0 in the hyperbolic and parabolic
cases.

To complete the proof of Theorem 5.1 we note that since j�j3�m=2 �
Cjjj ~'�~��jjjB;h and j�jh � �0h � c < � we obtain from (5.4) with the help of
Lemma 5.2

Ab(u
�
0 ; ~'�

~� � '���) � Chjj�2u�0 jj3jjj ~'�
~�
�
jjjB;h (5.8)

and from (5.5)

Q�( ~'�~�� � '���) � ChjjQ�jjL2jjj ~'�~��jjjB;h (5.9)

so that by (5.3), (5.8) and (5.9)

X
j�j��0

(Ab(u
�
0 ;
~#�)�Q�(~#�)) =

X
j�j��0

A�(Ab(u
�
0 ; ~'�

~�
�
)�Q�( ~'�~��))

� Ch
X
j�j��0

(jj�2u�0 jj3 + jjQ�jjL2)jjjA� ~'�~��jjjB;h (5.10)

� Ch(jju0jj5 + jjQjjL2)jjjvjjjB;h

and Theorem 5.1 follows from the estimates (5.1), (5.2) and (5.10).

Proof of Lemma 5.2. In [3] it was shown that for every discrete mode ~'�~�� 2
U0;h with j�jhy � c < � there corresponds a continuous mode
'��� = '�(y)(u�(x); v�(x); w�(x); ��(x);  �(x)) 2 U0 satisfying u�(0) = ~u�(0)
and v�(0) = ~v�(0) and such that

ju�(x
k)� ~u�(x

k)j �Ch2j�j3�me��j�jx
k

jv�(x
k)� ~v�(x

k)j �Ch2j�j3�me��j�jx
k

jw�(x
k)� ~w�(x

k)j �Ch2j�j4�me��j�jx
k

j �(x
k)� ~ �(x

k)j �Ch2j�j5�me��j�jx
k
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with � > 0 in the elliptic case and � = 0 in the hyperbolic and parabolic
cases, so that

jj ~'� ~ �(0; �)� '� �(0; �)jjL2(0;H) �Ch
2j�j5�m

jj ~'� ~ �(L; �)� '� �(L; �)jjL2(0;H) �Ch
2j�j5�m

jj ~'� ~ � � '� �jjL2 �Ch
2j�j5�3m=2:

(5.11)

and
jj ~'�~u� � '�u�jjL2 �Ch

2j�j3�3m=2

jj ~'�~v� � '�v�jjL2 �Ch
2j�j3�3m=2

jj ~'� ~w� � '�w�jjL2 �Ch
2j�j4�3m=2

(5.12)

Also, by [3] we have that

1

2
(~��(x

k+1) + ~��(x
k)) =

2

bh2y
tan2 (

1

2
�hy)

�
2c

b
(~v�(x

k+1) + ~v�(x
k))

� (~u�(x
k+1) + ~u�(x

k))

�

=
1

2
(~g(xk+1) + ~g(xk))

so that
~��(x

k+1) = ~g(xk+1) + (�1)k(~��(x
0)� ~g(x0)) (5.13)

and

@~��
@x

(xk+1=2) =
~��(x

k+1)� ~��(x
k)

hkx

=
~g(xk+1)� ~g(xk)

hkx
+

2

hkx
(�1)k(~��(x

0)� ~g(x0)):

(5.14)

Since

��(x
k) =

�2

b
(
2c

b
v�(x

k)� u�(x
k)) = g(xk) (5.15)

it follows from (5.13) � (5.15) that

~��(x
k+1)� ��(x

k+1) =~g(xk+1)� g(xk+1)

+
hkx
2

@��
@x

(xk+1=2)�
hkx
2

~g(xk+1)� ~g(xk)

hkx

and �nally that

j~��(x
k+1)� ��(x

k+1)j �C

�
h2j�j5�me��j�jx

k+1

+ hj
@~��
@x

(xk+1=2)j

+ h�2(j
@~v�
@x

(xk+1=2)j+ j
@~u�
@x

(xk+1=2)j

�
:
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For the values at the endpoints we get similarly

~��(x
0)� ��(x

0) =(�1)k(~��(x
k+1)� ��(x

k+1) + g(xk+1)� ~g(xk+1))

+ ~g(x0)� g(x0)

and

~��(x
Nx)� ��(x

Nx) =(�1)Nx(~��(x
0)� ��(x

0) + g(x0)� ~g(x0))

+ ~g(xNx)� g(xNx):

Thus, we have the following bounds

jj ~'�~��(0; �)� '���(0; �)jjL2(0;H) �C(h
2�4 + h2j�j5�3m=2)

+ C(h+ h�2)jjj ~'�~��jjjB;h

jj ~'�~��(L; �)� '���(L; �)jjL2(0;H) �C(h
2�4 + h2j�j5�3m=2)

+ C(h+ h�2)jjj ~'�~��jjjB;h

+ C(h2j�j5�m + h2�4)

jj ~'�~�� � '���jjL2 �Ch
2j�j5�3m=2

+ C(h+ h�2)jjj ~'�~��jjjB;h:

(5.16)

and Lemma 5.2 follows from (5.11), (5.12) and (5.16) since j�jhy � c < �.
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