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Abstract
Superconducting quantum computers have emerged as a popular field of research
during the recent years, showing rapid improvement in qubit quality and scalability.
As the number of qubits on a quantum processor increases, more attention needs to be
focused on fast and accurate qubit initialization and reasonable power consumption
of the quantum circuits. To address these challenges, the ability of a quantum-circuit
refrigerator to initialize a qubit by providing local cooling to its environment can be
combined with energy harvested from thermal activation.

The operation of this kind of a Brownian quantum-circuit refrigerator is based on
absorption of photons from the refrigerated component promoting photon-assisted
tunneling events through a normal-metal–insulator–superconductor tunnel junction.
Since the activation energy of tunneling is typically large compared to the energy of
photons originating from the component, the remaining energy needed for tunneling
is provided by the photons arising from thermal voltage fluctuations in the circuit.
Thus, the Brownian refrigerator can harness redundant thermal fluctuations for
practical use to cool these components by lowering their photon occupation.

This thesis investigates the effect of a noise-driven quantum-circuit refrigerator
on the coherent and thermal states of a coupled resonator. By exploiting a transmon
qubit as a dispersive probe, we experimentally demonstrate the suppression of the
mean photon number and equivalent temperature of the resonator owing to the
activation of photon-assisted tunneling by artificial noise. Based on these results,
the utilization of noise from a true thermal source arises as a natural step.
Keywords quantum-circuit refrigerator, QCR, noise, Brownian refrigerator
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Tiivistelmä
Suprajohtava kvanttitietokone on noussut suosituksi tutkimusalaksi viime vuosien
aikana, osoittaen nopeaa kehitystä kubittien laadussa ja skaalautuvuudessa. Kvantti-
prosessorien kubittimäärän kasvaessa on kohdennettava enemmän huomiota kubittien
nopeaan ja tarkkaan alustamiseen sekä kvanttipiirien kohtuulliseen tehonkulutuk-
seen. Näihin haasteisiin voidaan mahdollisesti vastata yhdistämällä kvanttipiirijääh-
dyttimen kyky alustaa kubitti jäähdyttämällä lokaalia ympäristöään ja termisestä
alkuperästä juontuva aktivoituminen.

Tällaisen Brownin kvanttipiirijäähdyttimen toiminta perustuu fotonien absorboi-
tumiseen jäähdytettävästä komponentista fotoniavusteisessa tunneloitumisprosessissa
normaalimetalli–eriste–suprajohdetunneliliitoksen läpi. Tunneloitumisen aktivoimi-
seen vaadittavan energian ollessa tyypillisesti suuri verrattuna komponentista peräisin
olevien fotonien energiaan tarvittava jäljelle jäävä energia saadaan fotoneista, jotka
syntyvät virtapiirin termisestä jännitekohinasta. Näin Brownin jäähdytin kykenee
valjastamaan hukkalämmön hyötykäyttöön näiden komponenttien jäähdyttämiseen
alentamalla niiden fotonimiehitystä.

Tämä diplomityö tarkastelee kohinalla ajetun kvanttipiirijäähdyttimen vaikutusta
siihen kytkeytyneen resonaattorin koherentteihin ja termisiin tiloihin. Käyttämäl-
lä hyödyksi transmonkubittia dispersiivistä siirtymää hyödyntävänä ilmaisimena
osoitamme kokeellisten tulosten kautta resonaattorin keskimääräisen fotoniluvun
ja ekvivalenttilämpötilan pienentymisen keinotekoisen kohinan aktivoidessa foto-
niavusteisen tunneloitumisen. Näiden tulosten perusteella aitoon lämpöliikkeeseen
perustuvan kohinalähteen hyödyntäminen toimii luonnollisesti seuraavana askeleena.
Avainsanat kvanttipiirijäähdytin, QCR, kohina, Brownin jäähdytin



iii

Preface

The work resulting in this master’s thesis was carried out in the QCD group at Aalto
University’s Department of Applied Physics during the latter half of 2023. First, I
would like to thank my advisor D.Sc. Arto Viitanen for sharing his vast knowledge
of the QCR, getting me started with the experiments, and always being ready to
help and answer any questions. I would also like to thank M.Sc Timm Mörstedt
for sharing his honorably long-lasting sample for my experiments and for sharing
his experience and knowledge of nanofabrication. Finally, I would like to thank
Prof. Mikko Möttönen for providing me a fantastic learning path via the previous
projects to this point of my academic career in an encouraging and well-resourced
environment.

Espoo, 12.12.2023 Heidi Kivijärvi



iv

Contents
Abstract i

Abstract (in Finnish) ii

Preface iii

Contents iv

1 Introduction 1

2 Theoretical background 3
2.1 Photon-assisted tunneling through an NIS junction . . . . . . . . . . 3
2.2 Quantum-circuit refrigerator . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Circuit quantum electrodynamics . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Circuit Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Diagonalization of the core Hamiltonian . . . . . . . . . . . . 10
2.3.4 Microscopic Hamiltonian . . . . . . . . . . . . . . . . . . . . . 10
2.3.5 Tunneling matrix elements . . . . . . . . . . . . . . . . . . . . 12
2.3.6 Tunneling rates . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.7 Resonator transition rate . . . . . . . . . . . . . . . . . . . . . 14
2.3.8 Characteristic parameters . . . . . . . . . . . . . . . . . . . . 15

2.4 Quantum Brownian refrigerator . . . . . . . . . . . . . . . . . . . . . 16
2.5 Dispersive readout with a transmon qubit . . . . . . . . . . . . . . . 17

3 Sample layout and fabrication 20
3.1 Sample structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Fabrication process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Experimental methods 23
4.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Measurement protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 27
5.1 Characterization of the device . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Analog frequency-modulated drive of the resonator . . . . . . . . . . 35
5.3 Analog frequency-modulated drive of the QCR . . . . . . . . . . . . . 36
5.4 Vector frequency-modulated drive . . . . . . . . . . . . . . . . . . . . 38

6 Summary and outlook 42

References 43



1 Introduction
In only four decades, quantum computing has evolved from a futuristic concept, first
described by Benioff [1] and Feynman [2], into a reality of actual multi-qubit quantum
processors [3, 4], public cloud-based access to quantum computing resources [5, 6],
and an established research field firmly in pursuit of universal quantum advantage
[7]. However, the current state-of-the-art quantum-processor technology is still faced
with unresolved obstacles that hinder the scale-up of the hardware towards solving
practical tasks. Superconducting qubits are currently among the most popular
choices for implementing quantum processors, due to the rapid improvement in qubit
quality and scalability during the recent years, as well as their designability and
simple coupling and control based on circuit quantum electrodynamics (cQED) [8, 9].
Coherence time, the quasi-two-level nature facilitating also undesired transitions, and
the necessity of cryogenic operating temperatures are the essential characteristics
that still require attention to unleash the full potential of scalable superconducting
quantum computing.

Even at cryogenic temperatures, the presence of the electromagnetic environment
inflicts qubit decoherence, leading to computational errors. On the other hand, the
readout and control of superconducting qubits rely on the very same environmental
coupling, thus, a real qubit cannot be completely isolated from its surroundings.
Hence, the use of efficient error correction protocols is necessary, which require fast
and accurate initialization of ancilla qubits [10–12].

In order to reach the usual operating temperatures of superconducting circuits in
the subkelvin range, typically a dilution refrigerator is used. However, transmitting
power from a room-temperature source through a set of room-temperature and
cryogenic attenuators to the millikelvin quantum circuit inside the refrigerator, using
separate cables for the control and readout of each individual qubit, is highly inefficient
from the perspective of both power consumption and space utilization. Realization of
a novel group of devices [13–17] that exploit thermal energy from the environment as
their power source aims to improve the efficiency and scalability of superconducting
quantum circuits.

In this thesis, we consider a Brownian refrigerator [18], an autonomous device
that utilizes thermal noise from a hot source to provide in-situ cooling to its local
environment. Previously, Brownian refrigeration of electrons in hybrid tunnel junc-
tions has been proposed in Ref. [17]. Here, our focus lies on cooling the relevant
modes of a quantum circuit by photon absorption, which is activated by thermal
noise from the environment. To this end, we utilize the extensively studied quantum-
circuit refrigerator (QCR) [19, 20], which has recently been demonstrated to provide
tunable dissipation for resonators [21–24], involve an alternative operating mode as
an incoherent photon source [25], and enable fast initialization of superconducting
qubits [26, 27].

The cooling effect of the QCR is based on the absorption of photons from
the environment in photon-assisted tunneling (PAT) of electron-like quasiparticles
through a normal-metal–insulator–superconductor (NIS) junction [20]. The QCR
allows for various activation schemes, including dc voltage biasing [19, 28], microwave
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pulsing [22, 26, 27], and the driven supportive mode of a coupled resonator [23, 29].
The aim of this thesis is to experimentally study the characteristics of the QCR

powered by noise, mimicking the operation of a quantum Brownian refrigerator (QBR).
This type of device provides auspicious prospects for the future of superconducting
quantum computing by combining the potential of the QCR in fast initialization
with the energy efficiency and scalability arising from the utilization of the thermal
energy of the environment. The thesis is divided into several parts. We begin by
introducing the theoretical background in Sec. 2, needed to understand the physics
behind the experimentally observed phenomena. Section 3 provides an overview of
the sample used in the experimental part of this thesis, followed by a description of
the experimental setup and methods in Sec. 4. The experimental results and their
analysis is presented in Sec. 5, and finally, the main conclusions of this thesis are
summarized together with future prospects in Sec. 6.
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2 Theoretical background
In this chapter, we discuss the relevant theory behind the operation of the thermally
driven QCR. We begin by introducing the concept of photon-assisted tunneling
through hybrid tunnel junctions in Sec. 2.1. A direct application of PAT in refriger-
ating quantum circuits and different biasing schemes of the QCR are discussed in
Sec. 2.2. Next, in Sec. 2.3, we present the general mathematical tools for describing
a QCR coupled to a resonator, as given by the cQED approach. After that, we move
on to discuss the concept and characteristics of QBR in Sec. 2.4. Finally, in Sec. 2.5,
we consider a resonator readout scheme that utilizes a transmon qubit as a dispersive
probe.

2.1 Photon-assisted tunneling through an NIS junction
Tunneling of charged particles is a purely quantum-mechanical phenomenon, in
which a particle has a finite probability to penetrate through a thin potential barrier,
contrary to the total reflection given by the classical approach [30]. In the context of
QBR, we consider tunneling through an NIS junction, comprising a normal-metal
electrode and a superconducting electrode, separated by a thin insulator with a
typical thickness of the order of a nanometer [31, 32].

In the most typical case, the tunnel junction is biased by applying a dc voltage V
between the two electrodes, thus modifying their electrochemical potential difference
by eV , where e is the elementary charge. The superconducting electrode accommo-
dates Cooper pairs as current-carrying particles, as given by the BCS theory [33]. The
quasiparticle density of states of a superconductor is gapped, implying that scattering
within the energy range of 2∆ around the Fermi level, where ∆ is the superconductor
gap parameter, is forbidden. Consequently, in the unbiased case, tunneling of an
electron from the normal-metal electrode requires an additional energy ∆ to reach
available single-particle states, rendering the tunneling particles as electron-like
Bogoliubov quasiparticles. Since the other electrode is in a normal-metallic state,
tunneling of Cooper pairs is suppressed. Figure 1 illustrates the relevant tunneling
processes present in the biased NIS junction.

Typically, the junction is coupled to an electromagnetic environment, such as
a qubit or a resonator, that can provide or receive photons that are absorbed or
emitted during the tunneling event. At low bias voltages the Fermi level of the normal
electrode lies within the superconductor gap, as illustrated in Fig. 1(a). Therefore,
elastic tunneling, in which the energy of the particle is conserved, is suppressed.
Similarly, tunneling that involves emission of photons is suppressed due to the lack
of available states. If the energy and the number of photons in the environment of
the junction is small, tunneling that involves photon absorption is also suppressed,
and the junction is in the off state, passing essentially no tunneling current. The
tunneling processes that involve either photon absorption or emission are referred to
as photon-assisted tunneling.

If the junction is biased sufficiently close to the gap edge, elastic tunneling is
still suppressed, but the electron may absorb a photon from the environment to
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(a) (b) (c)

Figure 1: Schematic illustration of the relevant tunneling processes in an NIS junction
from the normal electrode to the superconducting electrode. The Fermi levels of
the electrodes, separated by a bias-voltage-dependent energy eV , are marked with
dashed lines. The blue (gray) shaded regions indicate filled (empty) states. The three
arrows denote the different tunneling processes: tunneling with photon absorption
(top), elastic tunneling (middle), and tunneling with photon emission (bottom). The
energy of the photon is given by ℏωR. The green (red) color represents a process that
is energetically allowed (forbidden) in the respective bias state. (a) In the non-biased
case, all tunneling processes are suppressed and negligible current is passing through
the junction. (b) When the junction is biased near the gap edge ∆, photon absorption
is required to enable tunneling. (c) In the high-bias case, all three processes are
possible.

reach a total energy eV + ℏωR ≥ ∆, where ℏ is the reduced Planck constant and
ωR/(2π) is the frequency of the photon, enabling its tunneling as a quasiparticle
to the superconducting electrode. This biasing scheme is illustrated in Fig. 1(b).
Consequently, the environment of the junction is cooled in the process owing to the
decrease in photon number.

At high bias voltages eV ≥ ∆, all three tunneling processes described above are
possible, as shown in Fig. 1(c). However, at usual experimental conditions, elastic
tunneling dominates over the inelastic processes [20]. Furthermore, above the gap,
the rate of tunneling that involves photon emission tends to increase faster than
the absorption rate as a function of bias voltage, thus it is possible to reach a bias
configuration, in which the junction acts as a net source of photons [20, 25]. The
transition rates associated with different tunneling processes are further discussed in
Sec. 2.3.

In our calculations, tunneling of charged particles is considered within the first-
order perturbation theory. The transition rates are then straightforwardly obtained
from the Fermi golden rule [34]

Γi→f = 2π
ℏ

⃓⃓⃓
⟨f | ĤT |i⟩

⃓⃓⃓2
δ(Ef − Ei), (1)

where i (f) is the initial (final) state with the associated energy Ei (Ef), ĤT is
the tunneling Hamiltonian, and δ(E) is the Dirac delta distribution. Following the
standard derivation [34], the general form for the total forward tunneling rate from
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the first electrode to the second electrode becomes
−→Γ 1→2(V ) = 1

e2RT

∫︂ ∞

∞

∫︂ ∞

∞
dEdE ′n1(E)n2(E ′−eV )f1(E)[1−f2(E ′−eV )]P (E−E ′),

(2)
where RT is the tunneling resistance of the junction, V = V1 − V2 is the bias voltage
between the two electrodes, fj(E) = 1

exp[E/(kBTj)]+1 is the Fermi–Dirac distribution
of electrode j, and P (E) is the probability density function for the environment
to absorb the amount of energy E > 0. The normalized density of states nj(E) is
defined as nN(E) = 1 for the normal electrode and

nS(E) =

⃓⃓⃓⃓
⃓⃓R
⎧⎨⎩ E + iη√︂

(E + iη)2 −∆2

⎫⎬⎭
⃓⃓⃓⃓
⃓⃓ , (3)

for the superconducting electrode [35–37], where i is the imaginary unit and η is the
Dynes parameter, which expresses, for example, the finite lifetime of quasiparticles.

The physical interpretation of the tunneling rate formula in Eq. (2) is simple. The
term n1(E)f1(E) describes the quasiparticles occupying a state with energy E on the
first electrode, whereas n2(E ′− eV )[1− f2(E ′− eV )] describes the unoccupied states
with energy E ′− eV on the second electrode, to which the quasiparticles may tunnel
after gaining an energy −eV due to the bias voltage. The term P (E −E ′) describes
the probability of absorbing (E < E ′) or emitting (E > E ′) a photon with energy
E−E ′ during the tunneling process. In the limit of low impedance environment, the
probability function reduces to a delta function P (E − E ′) = δ(E − E ′), in which
case only elastic tunneling E ′ = E is possible [34].

2.2 Quantum-circuit refrigerator
As discussed in the previous section, an NIS junction can cool its environment by
absorbing photons in the PAT process. This feature is exploited by a quantum-circuit
refrigerator to locally cool down the critical components of a quantum circuit. In its
original proposal and in most of the previous research, the QCR consists of a double-
junction SINIS-structure, in which a normal-metal island between the junctions is
capacitively coupled to the target component [19, 22, 23, 25–27]. In this configuration,
the voltage biasing of the double-junction and the designability of the coupled circuit
is straightforward. However, the island structure is subject to slow charging dynamics,
degrading the QCR-induced energy decay of the coupled system [38]. In this thesis,
we study a more recently developed type of a QCR [24, 28], in which a quarter-wave
coplanar-waveguide resonator provides a direct-current path to ground for a single
NIS junction. Consequently, the absence of the charge island is expected to improve
the decay dynamics of the system compared to the double-junction design. The
layout of this configuration is discussed in more detail in Sec. 3.1.

The cooling effect on the environment can be demonstrated in a versatile manner
by coupling the QCR to a microwave resonator. In the single-junction configuration,
this coupling is inherently realized. The resonator coupling is advantageous also
in the sense that it can mediate a coupling between the QCR and other circuit
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components, such as qubits. To this end, the resonator was recently demonstrated
to provide further enhancement of the decay rate of a QCR-cooled superconducting
qubit [27].

Typically, the QCR is powered using a dc voltage applied over the junction, as
described in the previous section, to excite the quasiparticles close to the gap edge, so
that photon absorption from the resonator activates the tunneling process. Another
option that has been demonstrated recently utilizes a driven second mode of the
resonator [23]. In this powering scheme, the QCR absorbs two photons: one from the
primary mode which we aim to cool, and one from the driven secondary mode. Thus
the required dc bias voltage is smaller by the secondary photon energy. Moreover,
by increasing the driving power of the secondary mode, we can increase the photon
population of the mode to activate multiphoton-assisted tunneling, in which multiple
secondary photons are absorbed in the tunneling process, replacing an even larger
proportion of the dc bias voltage.

Furthermore, the dc bias voltage can be replaced by a direct rf drive of the QCR
[24]. In this case, the secondary photons are provided by the electromagnetic field
from the QCR side, instead of driving the resonator. An extension of this powering
scheme, and the interest of this thesis, is to drive the QCR using noise. Here, we use
artificially generated rf noise created by a signal generator, which is a step towards
powering the QCR purely by random thermal noise from the environment. This type
of device could be rendered as a quantum Brownian refrigerator, which is discussed
further in Sec. 2.4.

2.3 Circuit quantum electrodynamics
Circuit quantum electrodynamics [39] describes the light–matter interactions and
quantum nature arising from electric circuits. In the context of quantum-circuit
refrigeration, we elaborate the operation of a single-junction QCR coupled to a
microwave resonator by deriving the system Hamiltonian and transition rates for the
corresponding lumped-element circuit, using the general approach of cQED. This
derivation differs from the standard P (E)-theory used in Sec. 2.1, and leads to a
more detailed formulation of the transition rates in terms of the number of photons
involved. Furthermore, the cQED approach presented here is general in the sense that
it considers an arbitrary QCR with a normal-metal island, and, therefore, naturally
extends to describe a double-junction QCR. By applying certain assumptions, the
final result for the island-free single-junction QCR can be obtained as a special case.

2.3.1 Circuit Lagrangian

The analytical formulation of an electric circuit is obtained by considering the circuit
as a network of electric components residing in branches that connect at specific
nodes. The components are characterized by two branch variables, branch voltage
vb and branch current ib. These variables are related to branch flux ϕb and branch
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charge qb via integration [40]

ϕb(t) =
∫︂ t

−∞
vb(τ)dτ, (4)

qb(t) =
∫︂ t

−∞
ib(τ)dτ. (5)

For linear capacitive and inductive components considered here, we also have

ib(t) = ϕb(t)
Lb

, (6)

vb(t) = qb(t)
Cb

, (7)

where Lb is the branch inductance and Cb is the branch capacitance. Here, the
mutual inductances from other branches are neglected [40].

A lumped-element circuit diagram illustrating a QCR capacitively coupled to
a resonator is shown in Fig. 2(a). In the lumped-element approach, the QCR is
modeled as a capacitor Cj in parallel with the NIS junction. Here, we first consider
the normal-metal lead as a charge island, which is coupled to the ground and to
the resonator with capacitances Cm and CC, respectively. In the case of a double-
junction QCR, the effect of the second junction would be included in the value of
island-to-ground capacitance Cm. The resonator is characterized by capacitance C
and inductance L. The coupling of the QCR circuit to a secondary circuit, covering
components such as transmission lines or a qubit, is denoted by capacitance Cg.

The characteristic impedance of a transmission line appears as an effective
renormalization of the resonator capacitance and frequency [20], but does not further
affect the electrodynamics of the circuit. Thus, we consider the renormalization to be
included in the values C and ωR of the resonator. On the other hand, the presence of
a qubit in the secondary circuit will slightly alter the general form of the transition
rates due to the strong dispersive coupling to the resonator [38]. However, here we
only consider the more dominant transition processes, in which the resonator state
may change but the qubit state is fixed. Consequently, the relevant transition rates
simplify into the same form as derived for the non-coupled primary circuit. Thus,
for a secondary circuit comprising only transmission lines or transmission lines and a
qubit, we may neglect the coupling capacitance Cg in the derivation of the relevant
transition rates.

In order to formulate the Lagrangian operator for the QCR–resonator system, we
define a spanning tree for the circuit topology [40], as illustrated in Fig. 2(b). First,
we introduce a reference ground node (Q0,Φ0) = (0, 0), characterized by node charge
and node flux, respectively. Then, we choose two active nodes: the QCR island
node (QN,ΦN) and the resonator node (Q,Φ). In order to simplify the derivation, we
temporarily approximate the voltage source V as a capacitor CV and associate with
it an auxiliary active node (QV,ΦV). The spanning tree is constructed by connecting
each active node to the reference node by a single path defined by the branches. The
remaining closure branches define a set of loops by connecting the paths along the
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(a) (b)

Figure 2: (a) Lumped-element circuit diagram of a QCR coupled to a resonator
characterized by capacitance C and inductance L. The normal metal island of the
QCR is denoted by blue color, and the resonator is denoted by red. The node
charge and node flux are given by QN and ΦN for the island and by Q and Φ for
the resonator, respectively. The capacitance and bias voltage of the NIS junction
are denoted by Cj and V , respectively. The coupling of the island to ground and
to the resonator are characterized by capacitances Cm and CC, respectively. The
capacitance Cg indicates the coupling to a secondary circuit. (b) The spanning tree
(black) of the lumped-element circuit. The closure branches are marked with gray
color. The voltage source is approximated as a capacitor CV. The auxiliary node for
the voltage source and the reference ground node are characterized by charges QV
and Q0 and fluxes ΦV and Φ0, respectively.

spanning tree. In the absence of static fluxes through the loops, the branch flux over
a capacitive or inductive component is given by the fluxes of the two end nodes

ϕn→n′

b = Φn′ − Φn. (8)

Utilizing Eqs. (4)–(8), we obtain the branch current over a capacitor or an inductor
respectively as

in→n′

b,C = Cb(Φ̈n′ − Φ̈n), (9)

in→n′

b,L = Φn′ − Φn

Lb
. (10)

Consequently, the equations of motion for the circuit are obtained by applying
Kirchhoff’s current law. That is, we equate the sum of all coinciding capacitive and
inductive branch currents of Eqs. (9) and (10) to zero for each active node⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2CC(Φ̈N − Φ̈)− CΦ̈ = Φ
L

Cj(Φ̈N − Φ̈V) + CC(Φ̈N − Φ̈) + CmΦ̈N = 0
CVΦ̈V − Cj(Φ̈N − Φ̈V) = 0.

(11)

Utilizing the standard definition of Euler–Lagrange equations, we can show that the
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set of equations (11) correspond to a Lagrangian

L = Cj(Φ̇N − Φ̇V)2

2 + CC(Φ̇N − Φ̇)2

2 + CΦ̇2

2 + CmΦ̇2
N

2 + CVΦ̇2
V

2 − Φ2

2L. (12)

Next, we fix the auxiliary flux back to voltage Φ̇V = V and neglect the irrelevant
constant term to obtain the full circuit Lagrangian [20]

L = Cj(Φ̇N − V )2

2 + CC(Φ̇N − Φ̇)2

2 + CΦ̇2

2 + CmΦ̇2
N

2 − Φ2

2L. (13)

2.3.2 System Hamiltonian

The obtained Lagrangian in Eq. (13) can be transformed into the classical Hamiltonian
by utilizing the Legendre transformation

H0 = −L+
∑︂

i

Φi
∂L
∂Φ̇i

, (14)

where we apply the conjugate node charges QN = ∂L
∂Φ̇N

and Q = ∂L
∂Φ̇ . The Hamiltonian

then becomes

H0 = Cj

2 Φ̇2
N −

Cj

2 V
2 + Cm

2 Φ̇2
N + CC

2 Φ̇2
N − CCΦ̇NΦ̇ + CC

2 Φ̇2 + C

2 Φ̇2 + Φ2

2L. (15)

We then introduce renormalized capacitances for the QCR island and the resonator

CN = CΣ + CC = Cj + Cm + CC, (16)
CR = C + αCΣ = C + α(Cj + Cm), (17)

respectively, where α = CC
CN

is the capacitance ratio imposed by the coupling. Uti-
lizing Eqs. (16) and (17) and the definition of the conjugate charges, the classical
Hamiltonian can be written in the form

H0 = (QN + CjV )2

2CN
+ [Q+ α(QN + CjV )]2

2CR
+ Φ2

2L −
Cj

2 V
2. (18)

After replacing the node charges and fluxes with the corresponding quantized op-
erators and ignoring the irrelevant constant Cj

2 V
2, we finally arrive at the core

Hamiltonian operator [20]

Ĥ0,V = (Q̂N + CjV )2

2CN
+ [Q̂+ α(Q̂N + CjV )]2

2CR
+ Φ̂

2

2L. (19)

Additionally, the constant charge shift caused by the bias voltage can be eliminated
by applying a gauge transformation |ψ⟩ = e i

ℏCjV Φ̂N |ψ⟩V. Utilizing the commutation
relation [Φ̂N, Q̂N] = iℏ we obtain a simplified core Hamiltonian

Ĥ0 = e i
ℏCjV Φ̂NĤ0,Ve− i

ℏCjV Φ̂N

= Q̂
2
N

2CN
+ (Q̂+ αQ̂N)2

2CR
+ Φ̂

2

2L.
(20)
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2.3.3 Diagonalization of the core Hamiltonian

The core Hamiltonian may be divided into two sub-Hamiltonians HI and HR

Ĥ I = Q̂
2
N

2CN
, (21)

ĤR = (Q̂+ αQ̂N)2

2CR
+ Φ̂

2

2L, (22)

corresponding to the energy of the QCR island and the resonator, respectively. The
island Hamiltonian Ĥ I commutes with the island charge operator and thus shares
its eigenstates. We define the eigenstates as Q̂N |q⟩ = eq |q⟩, where q is an integer.
Furthermore, we define the charging energy of the island as EN = e2

2CN
. For the

resonator Hamiltonian ĤR, we label the eigenstates as |mq⟩, where m is positive
integer and q refers to the island charge.

Let us next define another gauge transformation |m⟩ = e i
ℏαqeΦ̂ |mq⟩ to obtain the

plain eigenstates of the resonator serving as a quantum harmonic oscillator (QHO).
In this gauge, the core Hamiltonian becomes

e i
ℏαqeΦ̂Ĥ0e− i

ℏαqeΦ̂ = Q̂
2
N

2CN
+ Q̂

2

2CR
+ Φ̂

2

2L = Ĥ I + Ĥ
′
R, (23)

where Ĥ ′
R is the cQED equivalent of the QHO Hamiltonian [39], and is therefore

equal to Ĥ ′
R = ℏωR(â†â+ 1

2), where ωR = (
√
LCR)−1 is the angular frequency of the

resonator, and â† and â are the bosonic creation and annihilation operators with
Fock eigenstates |m⟩. Thus, we can diagonalize the gauge transformed Hamiltonian
in the product eigenstate basis |q,m⟩ as

e i
ℏαqeΦ̂Ĥ0e− i

ℏαqeΦ̂ =
∞∑︂

q=−∞

∞∑︂
m=0
|q,m⟩ ⟨q,m|

[︃
ENq

2 + ℏωR

(︃
m+ 1

2

)︃]︃
, (24)

from which we obtain the diagonalization of the original core Hamiltonian by trans-
forming back to the original gauge and absorbing the unitary operators to the
resonator states

Ĥ0 =
∞∑︂

q=−∞

∞∑︂
m=0

e− i
ℏαqeΦ̂ |q,m⟩ ⟨q,m| e i

ℏαqeΦ̂
[︃
ENq

2 + ℏωR

(︃
m+ 1

2

)︃]︃

=
∞∑︂

q=−∞

∞∑︂
m=0
|q,mq⟩ ⟨q,mq|

[︃
ENq

2 + ℏωR

(︃
m+ 1

2

)︃]︃
.

(25)

2.3.4 Microscopic Hamiltonian

The microscopic Hamiltonian, Ĥel = ĤN + ĤS + ĤT, of the system describes the
potential energy of the quasiparticles on each electrode and the quasiparticle tunneling
between the quasiparticle energy levels of the electrodes. In the gauge of Eq. (20),
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the electrode Hamiltonians are given by the electron number for the normal electrode
and the BCS mean-field description for the superconducting electrode as [20]

ĤN =
∑︂
lσ

εld̂
†
lσd̂lσ, (26)

ĤS =
∑︂
kσ

(ϵk − eV )ĉ†
kσ ĉkσ +

∑︂
k

(∆kĉ
†
k↑ĉ

†
−k↓ + H.c.), (27)

where d̂lσ is the annihilation operator of spin-σ particle on state l at the normal
electrode, ĉkσ is the respective annihilation operator for the superconducting electrode,
∆k is the gap parameter, and εl and ϵk are the quasiparticle energies on the normal-
metal and superconducting electrode, respectively. The tunneling Hamiltonian is
given by

ĤT =
∑︂
klσ

(Tlkd̂
†
lσ ĉkσe− i

ℏ eΦ̂N + H.c.), (28)

where Tlk is the tunneling matrix element and the term exp(± i
ℏeΦ̂N) induces a

change ±e in the island charge, as seen from the eigenvalue of the transformed charge
operator

Q̂
′
N |q⟩ = e∓ i

ℏ eΦ̂NQ̂Ne± i
ℏ eΦ̂N |q⟩

= (Q̂N ± e) |q⟩
= (eq ± e) |q⟩ ,

(29)

due to the commutation relation [Φ̂N, Q̂N] = iℏ.
In order to incorporate the effect of the bias voltage to the operators, we apply a

time-dependent unitary transformation

ÛV (t) =
∏︂
kσ

e i
ℏ eV tĉ†

kσ
ĉkσ , (30)

yielding a transformed total Hamiltonian [20]

Ĥ
′ = Û

†
V (Ĥel + Ĥ0)ÛV + iℏ(∂tÛ

†
V )ÛV . (31)

Utilizing the anticommutation rules of the fermionic ladder operators ĉ†
kσ and ĉkσ,

we observe that the unitary transformation (31) acts only on the superconductor
and tunneling Hamiltonians, leaving the normal-metal and core Hamiltonians intact.
The transformed Hamiltonians Ĥ ′

S and Ĥ
′
T become

Ĥ
′
S =

∑︂
kσ

ϵkĉ
†
kσ ĉkσ +

∑︂
k

(∆̃kĉ
†
k↑ĉ

†
−k↓ + H.c.), (32)

Ĥ
′
T =

∑︂
klσ

(Tlkd̂
†
lσ ĉkσe− i

ℏ e(Φ̂N−V t) + H.c.), (33)

where ∆̃k = ∆ke− 2i
ℏ eV t is the transformed gap parameter independent of the density

of states. Furthermore, we simplify the tunneling Hamiltonian into

Ĥ
′
T = Θ̂e− i

ℏ e(Φ̂N−V t) + H.c. (34)

by defining the tunneling operator Θ̂ = ∑︁
klσ Tlkd̂

†
lσ ĉkσ.
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2.3.5 Tunneling matrix elements

In order to derive the photon-number-dependent tunneling rates through the NIS
junction, we need to solve the matrix elements ⟨f | Ĥ ′

T |i⟩ appearing in the Fermi
golden rule (1). The possible initial and final states of the system are the product
states |E, q,mq⟩, where |E⟩ is the product eigenstate of the electrode Hamiltonians
(26) and (32). Thus, by applying Eq. (34), the tunneling matrix element can be
written as

⟨f | Ĥ
′
T |i⟩ = ⟨E ′, q′,m′

q′| Ĥ
′
T |E, q,mq⟩

= e i
ℏ eV t ⟨E ′| Θ̂ |E⟩ ⟨q′,m′

q′ | e− i
ℏ eΦ̂N |q,mq⟩

+ e− i
ℏ eV t ⟨E ′| Θ̂

†
|E⟩ ⟨q′,m′

q′| e
i
ℏ eΦ̂N |q,mq⟩ .

(35)

Since the flux operator Φ̂N induces a charge shift e on the island charge, as shown in
Eq. (29), all non-zero core matrix elements must satisfy

⟨q′,m′
q′ | e± i

ℏ eΦ̂N |q,mq⟩ = δq′,q±1 ⟨m′
q±1|mq⟩

= δq′,q±1 ⟨m′
±1|m0⟩

= δq′,q±1 ⟨m′| e± i
ℏαeΦ̂ |m⟩ .

(36)

Due to the Kronecker delta appearing in the matrix element above, the total matrix
element is divided into two separate matrix elements corresponding to forward (N→S,
|q⟩ → |q + 1⟩) and backward tunneling (S→N, |q⟩ → |q − 1⟩)

⟨f | Ĥ
′
T |i⟩N→S = e− i

ℏ eV t ⟨E ′| Θ̂
†
|E⟩ ⟨m′| e i

ℏαeΦ̂ |m⟩ , (37)

⟨f | Ĥ
′
T |i⟩S→N = e i

ℏ eV t ⟨E ′| Θ̂ |E⟩ ⟨m′| e− i
ℏαeΦ̂ |m⟩ , (38)

and consequently, in the form of the Fermi golden rule (1) we obtain⃓⃓⃓
⟨f | Ĥ

′
T |i⟩

⃓⃓⃓2
N→S

=
⃓⃓⃓⃓
⟨E ′| Θ̂

†
|E⟩

⃓⃓⃓⃓2 ⃓⃓⃓
⟨m′| e i

ℏαeΦ̂ |m⟩
⃓⃓⃓2
, (39)⃓⃓⃓

⟨f | Ĥ
′
T |i⟩

⃓⃓⃓2
S→N

=
⃓⃓⃓
⟨E ′| Θ̂ |E⟩

⃓⃓⃓2 ⃓⃓⃓
⟨m′| e− i

ℏαeΦ̂ |m⟩
⃓⃓⃓2
. (40)

Applying the definition of the resonator flux operator Φ̂ =
√︂

ℏ
2CRωR

(â† + â), we can
write

⟨m′| e± i
ℏαeΦ̂ |m⟩ = ⟨m′| e±i√ρ(â†+â) |m⟩

= ⟨m′| D̂(±i√ρ) |m⟩ ,
(41)

where ρ = πα2

ωRCRRK
, RK = 2πℏ

e2 is the von Klitzing constant, and D̂(µ) = eµâ†−µ∗â is
the displacement operator. Utilizing the displacement operator is convenient, since
its matrix elements can be derived as [41]

⟨m′| D̂(µ) |m⟩ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
µle− |µ|2

2

(︄
m!
m′!

)︄ 1
2

L(l)
m (|µ|2), m′ ≥ m,

(−µ∗)−le− |µ|2
2

(︄
m′!
m!

)︄ 1
2

L
(−l)
m′ (|µ|2), m′ < m,

(42)
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where l = m′ −m is an integer and L(c)
n (x) are the generalized Laguerre polynomials

[42]. Consequently, the squared absolute value of the resonator matrix element
becomes

M2
mm′ =

⃓⃓⃓
⟨m′| e± i

ℏαeΦ̂ |m⟩
⃓⃓⃓2

= ρ|l|e−ρ

(︄
m!
m′!

)︄sqn(l) ⃓⃓⃓
L

|l|
min{m,m′}(ρ)

⃓⃓⃓2
.

(43)

2.3.6 Tunneling rates

Insertion of the matrix elements given by Eqs. (39) and (43) into the Fermi golden
rule (1) yields the forward tunneling rate between the initial and final quasiparticle
states |E⟩ and |E ′⟩, respectively, associated with a photon number change m→ m′

in the resonator
−→Γ E→E′

q,m,m′(V ) =2πM2
mm′

ℏ

⃓⃓⃓⃓
⟨E ′| Θ̂

†
|E⟩

⃓⃓⃓⃓2
× δ[EN(2q + 1) + ℏωR(m′ −m) + E ′ − E − eV ],

(44)

where E andE ′ are the energies of the initial and final quasiparticle states, respectively.
Next, we consider a single term Tklĉ

†
kσd̂lσ of the tunneling operator Θ̂

†
. For this

single term, we observe that the matrix element ⟨E ′|Tklĉ
†
kσd̂lσ |E⟩ is non-zero only if

the initial and final states correspond to{︄
|E⟩ = |..., 1lσ, ...⟩N |..., 0kσ, ...⟩S
|E ′⟩ = |..., 0lσ, ...⟩N |..., 1kσ, ...⟩S ,

(45)

i.e., initially the state |nlσ⟩N on the normal-metal electrode must be occupied and
the state |nkσ⟩S on the superconducting electrode must be unoccupied, while the
occupation of any other state is arbitrary but identical between the initial and final
states. Since in the tunneling event a single quasiparticle is transferred from the
normal-metal electrode to the superconducting electrode, the occupation of the state
|nlσ⟩N decreases by one and the occupation of the state |nkσ⟩S increases by one, and
hence the total change in the quasiparticle energy is E ′−E = ϵk−εl. The probability
of the initial state can be expressed using the Fermi function fj(E) as

pE = fN(εl) [1− fS(ϵk)] . (46)
Since the typical change in the quasiparticle energy during the tunneling event is
small compared to the Fermi energy, we may assume that the tunneling matrix
elements are approximately independent of energy. Consequently, by substituting∑︁

klσ |Tkl|2 = |T |2, integrating over all possible quasiparticle energies, and including
the constant terms into the tunneling resistance RT [34, 43], the total forward
tunneling rate becomes

−→Γ q,m,m′(V ) =M
2
mm′

e2RT

∫︂ ∞

−∞

∫︂ ∞

−∞
dεldϵknS(ϵk)fN(εl) [1− fS(ϵk)]

× δ[EN(2q + 1) + ℏωR(m′ −m) + ϵk − εl − eV ]

=M2
mm′

RK

RT

−→
F (eV − ℏωRl − E+

q ),

(47)
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where E±
q = EN(1± 2q), and the normalized forward tunneling rate −→F (E) is given

by
−→
F (E) = 1

h

∫︂ ∞

−∞
dεnS(ε)fN(ε− E) [1− fS(ε)] . (48)

Similar derivation can be applied for the backward tunneling rate, yielding

←−Γ q,m,m′(V ) = M2
mm′

RK

RT

←−
F (eV + ℏωRl + E−

q ), (49)

where the normalized backward tunneling rate ←−F (E) is given by

←−
F (E) = 1

h

∫︂ ∞

−∞
dεnS(ε)fS(ε) [1− fN(ε− E)] . (50)

2.3.7 Resonator transition rate

The tunneling rates derived above correspond to tunneling through an NIS junction.
For the reverse configuration, the SIN rates corresponding to the core circuit transi-
tions |q,mq⟩ → |q + 1,mq+1⟩ and |q,mq⟩ → |q − 1,mq−1⟩ are given by the rates (47)
and (49), respectively, by simply switching the sign of the bias voltage V → −V .
Assuming the electrode temperatures are equal, we obtain a relation between the
normalized forward and backward rates −→F (E) =←−F (−E). Consequently, the total
rate for both adding (+) or removing (−) a charge e from the normal-metal island
via tunneling through the NIS junction can be rewritten from Eqs. (47) and (49) in
terms of the normalized forward rate [20]

Γ±
q,m,m′(V ) = M2

mm′
RK

RT

−→
F (±eV − ℏωRl − E±

q ). (51)

In typical experimental conditions, elastic tunneling is the dominant transition
process, allowing for a rapid thermalization of the island charge. Therefore, it is a
valid assumption to consider the island charge and the resonator to be independent of
each other, and write the charge-independent resonator transition rate as an average
over the thermal charge distribution pq [20]

Γmm′(V ) =
∑︂

q

pq

[︂
Γ+

q,m,m′(V ) + Γ−
q,m,m′(V )

]︂
. (52)

Since the charging energy is typically small compared to other energy scales of the
system, EN ≪ ∆, ℏωR, kBT , we can expand Eq. (52) around q = 0, and note that
the first and higher-order terms essentially vanish due to a factor EN

kBT
≪ 1 [20, 44].

Therefore, only the charge-independent zeroth order term remains, and the resonator
transition rate obtains the form

Γmm′(V ) ≈M2
mm′

RK

RT

∑︂
τ=±1

−→
F (τeV − ℏωRl − EN). (53)

In the case of a symmetric double-junction QCR, the resulting transition rate is
identical up to a constant factor 2 from the contribution of the other junction. For a
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single-junction QCR shunted to ground by a resonator, as used in the experiments of
this thesis, a separate charge island does not exist. Therefore, we can further simplify
the obtained resonator transition rate by considering the limit of large coupling
capacitance and setting EN = 0, yielding

Γmm′(V ) ≈M2
mm′

RK

RT

∑︂
τ=±1

−→
F (τeV − ℏωRl). (54)

2.3.8 Characteristic parameters

Typically, the characteristic impedance of a coplanar waveguide resonator is much
smaller than the von Klitzing resistance, ZR ≪ RK. Therefore, the constant ρ in
Eq. (43) is small, and we can approximate the resonator matrix elements in the
lowest order of ρ as [20]

M2
mm′ ≈

ρ|l|

|l|!

(︄
max{m,m′}

|l|

)︄
, (55)

where
(︂

n
k

)︂
is the binomial coefficient. Consequently, the matrix elements correspond-

ing to transitions between the adjacent resonator states simplify into M2
m,m+1 =

ρ(m+ 1) and M2
m,m−1 = ρm.

Essentially, photon-assisted tunneling can be considered as a route for decay or
excitation of the resonator state coupled to a thermal reservoir. Using the lowest-
order matrix elements derived above, we can define characteristic parameters for the
reservoir by writing the single-photon transition rates as

Γm,m+1 = γTNT(m+ 1), (56)
Γm,m−1 = γT(NT + 1)m, (57)

where γT is the coupling strength that describes the resonator decay induced by the
QCR, NT = 1

exp[ℏωR/(kBTT)]−1 is the mean occupation of the bosonic reservoir, and TT

is the effective temperature of the reservoir. Comparing Eqs. (54), (56), and (57),
we can write the characteristic parameters as

TT = ℏωR

kB

[︄
ln
(︄

Γ10

Γ01

)︄]︄−1

= ℏωR

kB

⎡⎣ln
⎛⎝∑︁τ=±1

−→
F (τeV − ℏωR)∑︁

τ=±1
−→
F (τeV + ℏωR)

⎞⎠⎤⎦−1

, (58)

γT = Γ10 − Γ01 = RKρ

RT

∑︂
l,τ=±1

l
−→
F (τeV − lℏωR). (59)

For the single-junction QCR directly coupled to the resonator, we can take the limit
of large coupling capacitance and use Cc

CN
= 1. Then, applying ρ = π C2

c ZR
C2

NRK
to Eq. (59),

we obtain a simplified expression

γT = 4Z0

RT

∑︂
l,τ=±1

l
−→
F (τeV − lℏωR), (60)

where Z0 = π
4ZR is the impedance of the coplanar waveguide, assuming that the

considered resonator is a quarter-wave coplanar waveguide resonator.
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2.4 Quantum Brownian refrigerator
A QCR that is activated by voltage fluctuations arising from its thermal environment
can be construed as a Brownian refrigerator. Conceptually, a Brownian refrigerator
utilizes random thermal fluctuations to extract heat from the system locally [18]. In
the context of NIS junctions, thermal noise is conveniently produced by a coupled
hot resistor, inducing a heat flow from the normal-metal lead to the superconductor,
as proposed in Ref. [17].

In this thesis, we consider the cooling effect of the QCR on a resonator, mediated
by the absorption of photons from the resonator. Thus, the relevant heat flow occurs
between the resonator and the QCR. Assuming a hot resistor Rr is coupled to the
QCR, with a negligible coupling to the resonator, the thermal voltage fluctuations
generated in the resistor can be considered classically as a time-dependent auxiliary
term in the total bias voltage seen by the QCR, following a similar treatment
as used for an ac-powered QCR in Ref. [38]. Consequently, at a small dc bias
voltage, quantum-circuit refrigeration can be activated if a sufficiently large voltage
is produced by the thermal fluctuations in the resistor.

In the experiments of this thesis, we utilize an rf signal generator to produce
the noise that drives the QCR. We can obtain a connection between the voltage
fluctuations in the transmission line due to this artificial noise and the voltage
fluctuations generated in a hot resistor by considering the approximately 50-Ω
impedance of the transmission line as the coupled resistor. That is, we can determine
an equivalent noise temperature for the critical noise power that is required to
activate the refrigeration process. The root-mean-square voltage of the random
thermal fluctuations of charge carriers in the resistor obeys Planck’s blackbody
radiation law [45]

Vr =
⌜⃓⃓⎷ 4hfBRr

e
hf

kBTr − 1
, (61)

where h is the normal Planck constant, f is the center frequency of the noise
bandwidth B, and Tr is the temperature of the resistor. The root-mean-square
voltage connects to the total noise power seen by the load as Pr = V 2

r
4Rr

. Applying
this relation to Eq. (61), we can solve for the equivalent noise temperature

Tr = hf

kB ln
(︂

1
n̄

+ 1
)︂ , (62)

where n̄ = Pr
hfB

is the mean number of thermal photons. For large photon numbers,
as used in the experiments of this thesis, the above expression simplifies to the first
order into

Tr = Pr

kBB
. (63)

In order to achieve a purely thermal drive, the activation temperature, i.e., the
equivalent noise temperature of the critical artificial-noise power that activates the
refrigeration, should be accessible in the operation regime of the QCR. That is,
heating the resistor to the activation temperature should be achievable without
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significant heating of the quasiparticles, which could degrade the operation of the
QCR. From the above expression (63), we find that the activation temperature can
be reduced by increasing the noise bandwidth seen by the QCR or by elevating the
system impedance to cut down the activation power.

2.5 Dispersive readout with a transmon qubit
In the experimental part of this thesis, we measure a sample that comprises a QCR
coupled to a resonator, which is in turn coupled to a transmon qubit that is equipped
with another resonator used for readout. Although the aim of the experiments is
to observe the effect of the QCR on the resonator and not on the qubit, we can
utilize the dispersive coupling between the resonators and the qubit for reading the
resonator state.

The dispersive readout utilizing a single readout resonator coupled to a qubit is
a typical method used in superconducting-qubit experiments [9]. In this case, the
energy of the resonator-qubit system is typically described by the Jaynes–Cummings
Hamiltonian [9, 39, 46]

ĤJC = ℏωRO(â†â+ 1
2) + ℏωQ

2 σ̂z + ℏg(σ̂+â+ σ̂−â
†), (64)

where ωRO(Q) is the resonator (qubit) angular frequency, g is the coupling rate,
σ̂z = |e⟩⟨e| − |g⟩⟨g| is the qubit phase flip operator, and σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e|
are the raising and lowering operators of the qubit, respectively. In the dispersive
regime |∆ω| = |ωQ − ωRO| ≫ g, the frequency of the resonator is far-detuned from
the qubit frequency, and the Jaynes-Cummings Hamiltonian simplifies into [9, 47]

Ĥd = ℏ(ωRO + χσ̂z)(â†â+ 1
2) + ℏ

2(ωQ + χ)σ̂z, (65)

where χ = g2

∆ω
is the Lamb shift. The eigenstates of the dispersive Hamiltonian (65)

are given by

|1n⟩ ≈ − |e⟩ ⊗ |nRO⟩ , (66)
|2n⟩ ≈ |g⟩ ⊗ |nRO + 1⟩ , (67)

where nRO is the number of photons occupying the readout resonator. Thus, the
eigenstates of the coupled system essentially correspond to the ground state and
excited state of the qubit, with a fixed number of photons occupying the resonator.
Consequently, we can interpret the dispersive Hamiltonian (65) such that the dis-
persive coupling induces a resonator frequency shift by ±χ, depending on the qubit
state. Additionally, the qubit frequency acquires a Lamb shift arising from vacuum
fluctuations of the electromagnetic field [48, 49].

Based on this dispersive coupling, the readout of the qubit is achieved by two-tone
spectroscopy. With the qubit initially in the ground state |g⟩, the readout resonator
is driven at the lower resonance frequency ωRO − χ. Simultaneously, we apply a
qubit drive, with which we perform a frequency sweep around the qubit frequency.
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At ωdrive = ωQ + χ, the drive excites the qubit to the |e⟩ state, and consequently the
resonator frequency shifts by 2χ, resulting in a change in the amplitude and phase
of the measured transmission or reflection signal applied to the resonator. Thus, the
qubit frequency is observed as a peak or dip in the frequency spectrum, depending
on the configuration.

The dispersive Hamiltonian can also be interpreted in an alternative way. By
rearranging the terms, we can write

Ĥ
R
d = ℏωR(â†

RâR + 1
2) + ℏ

2(ωQ + χR + 2χRn̂)σ̂z, (68)

where 2χRn̂ = 2g2
R

ωQ−ωR
â†

RâR is the ac Stark shift. In this formulation, the dispersive
coupling induces a total shift of χR + 2nχR to the qubit frequency. Moreover, this
shift depends on the occupation n of the resonator via the number operator â†

RâR.
Here, we consider another resonator, which we label the reset resonator, coupled
to the qubit that is also coupled to a readout resonator, similarly to the device
presented in Sec. 3.1, see Figs. 3 and 6. The formulation of Eq. (68) is meaningful
in the case where the linewidths of the qubit and the reset resonator are small
compared to the dispersive shift χR. In this case, the occupation on the reset
resonator induces a dispersive shift to the qubit frequency, which we can observe in
a two-tone spectroscopy introduced above, as a shift of the qubit resonance peak on
the frequency spectrum.

Under typical experimental conditions, the reset resonator has a thermal popula-
tion of photons, i.e., the number of photons is not constant, but instead the resonator
state is a weighted combination of all Fock states

ρ̂ =
∑︂

n

pthermal(n) |n⟩⟨n| . (69)

The mean photon number follows the Bose-Einstein distribution [46]

n̄ = 1
eℏωR/(kBT ) − 1 , (70)

where kB is the Boltzmann constant and T is temperature. The probability of
occupation n on the mode is obtained as the probability of the respective microstate
in the canonical ensemble

p(n) = 1
Z

e−βEn , (71)

where Z = ∑︁
n e−βEn is the partition function, β = 1

kBT
, and En is the energy of state

|n⟩. Inserting En = nℏωR and applying Eq. (70), the probability can be expressed
using the mean photon number n̄ of the mode as [46]

pthermal(n) = n̄n

(1 + n̄)n+1 . (72)

From Eq. (72) we observe that for a thermal population, the |0⟩ state always has
the highest probability, and while the few-photon states n = 1, 2 can still have a
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significant probability for n̄ ∼ 1, the probability of larger photon numbers vanishes
quickly.

Similarly, the resonator can be driven with a microwave signal at the resonance
frequency, in the case of which the resonator adopts a coherent state [46]

|α⟩ = e− |α|2
2
∑︂

n

αn

√
n!
|n⟩ , (73)

that corresponds to Poisson distribution of probabilities

pcoherent(n) = e−n̄ n̄
n

n! . (74)

Since in both cases above the resonator state is a combination of all Fock states,
when coupled to a qubit in the dispersive limit, the resonator induces an ac Stark shift
2nχR to the qubit frequency for each n. As a result, the qubit excitation frequency
splits into multiple 2χR-spaced frequencies that each correspond to a different Fock
state |n⟩. If the coupling to the qubit is sufficiently strong, such that the dispersive
shift exceeds the linewidth of the qubit resonance peak, the splitted frequencies can
be resolved in a two-tone spectroscopy as separate peaks [50]. Since the probability
of occupation n links directly to the qubit excitation at the corresponding frequency,
the probability distribution of the Fock states is visible as a relative amplitude
distribution of the measured qubit resonance peaks.

Here, we note that the extraction of photon statistics from the qubit spectrum is
not flawless, since the linewidth of the qubit resonance peaks increases with photon
number, and hence the higher photon number peaks become flattened [50]. For this
reason, the highest photon number peaks are unresolvable even if the value of n̄
increases. Furthermore, the two-tone spectroscopy approach may lead to complex
dynamics that slightly alter the photon number distribution from the initial thermal
state [50]. However, for the purpose of this thesis, the dispersive approach provides
sufficiently accurate photon statistics for observing the decrease in the mean photon
number of the resonator coupled to a QCR.

Utilizing the discussed two-way dispersive coupling for the readout, we can observe
the operation of the QCR in a straightforward manner. As the QCR absorbs photons
from the reset resonator, the mean photon number of the resonator decreases, which
appears as a decreasing or vanishing amplitude of the higher photon number peaks,
whereas the amplitude of the |0⟩-state peak increases.
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3 Sample layout and fabrication
This chapter provides an overview of the sample studied in the experiments of this
thesis. The sample structure and layout is presented in Sec. 3.1, and the fabrication
process is discussed in Sec. 3.2.

3.1 Sample structure
The sample studied in this thesis comprises a single-junction QCR in a direct contact
with a quarter-wave coplanar waveguide (CPW) resonator, which we label the reset
resonator. The layout of the sample is presented in Fig. 3. The reset resonator
couples capacitively to a transmon qubit, the frequency of which can be tuned
by applying a bias voltage to a flux line that induces a magnetic field through a
superconducting quantum interference device (SQUID). The qubit is further coupled
to a readout resonator, which capacitively couples to a transmission line used for
the readout signal. The CPW transmission lines are designed for 50 Ω characteristic
impedance.

The cross-section of the device is shown in Fig. 4. The sample is fabricated on a
six-inch intrinsic-silicon wafer. The material of the ground plane and the resonator
structures is niobium, which is superconducting at the measurement temperature.
The superconducting electrodes of the Josephson junctions (SIS) that define the
SQUID structure are made of aluminum, the main advantages of which include the
availability, a relatively low melting point enabling growth by evaporation, and the
natural formation of a native surface oxide film that acts as a tunnel junction barrier.
Aluminum is used also for the superconducting electrode of the NIS junction, whereas

(a) (b)

Figure 3: (a) False-color optical microscope image of a representative sample. The
readout and reset resonators are highlighted by red and blue, respectively, and the
QCR and the qubit are denoted by orange and green, respectively. (b) Close-up
scanning electron microscope image of a single-junction QCR of a similar sample.
Here, the orange-colored normal-metal electrode (N) overlaps with the oxidized long
superconducting electrode (S) to vertically form the NIS tunnel junction.
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(a)

(b)

Figure 4: Off-scale schematic cross-section of the junction area for (a) SIS junction
(b) NIS junction. A thin aluminum layer is evaporated below the copper electrode
for the NIS junction to enhance the adhesion.

copper is used for the normal-metal electrode. Compared with other low-temperature
normal-conductors, copper has a very high electric and thermal conductivity, and it
adheres more strongly to silicon substrates than the other typical high-conducting
materials gold and silver.

3.2 Fabrication process
The ground plane and the resonators are created by sputtering a 200-nm film
of niobium on top of the silicon wafer, and defining the structures using optical
lithography and plasma etching. Next, the SIS junctions and the NIS junction are
deposited in two respective lithography steps.

The tunnel junction lithography process is illustrated in Fig. 5. First, we spin
coat the wafer with roughly 700 nm of copolymer methyl methacrylate (MMA)
and 200 nm of poly(methyl methacrylate) (PMMA), to form a bilayer resist stack.
The junction area is then defined by electron-beam lithography (EBL), in which a
high-energy electron beam exposes the desired pattern on the resist, making the resist
soluble in a developer in these regions. After exposing the electrode structure, we
apply a small extra dose over the whole junction area, in order to form an undercut
to the copolymer layer. Since the copolymer resist is more sensitive to electrons than
the top PMMA layer, this small dose does not ideally affect the pattern on the top
layer, but only clears the bottom layer in that area.

After the EBL, the resist pattern is developed by consecutively submerging
the sample in methyl-isobutyl-ketone:isopropanol (MIBK:IPA) (1:3), methylgly-
col:methanol (1:2), and isopropanol (IPA), for 20 seconds in each. Mainly, the top
PMMA layer dissolves in the MIBK:IPA solution, whereas the purpose of methylgly-
col:methanol is to enhance the undercut. Since the MIBK:IPA solution also dissolves
the copolymer MMA, the development process can alternatively be performed by a
single soak in MIBK:IPA for a slightly longer time, followed by a rinse in pure IPA
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Figure 5: Off-scale schematic illustration of the tunnel junction lithography process
for NIS junctions. The process is similar for SIS junctions, except that the second
evaporation step after the oxidation only includes the deposition of aluminum.

to interrupt the development.
The junctions are fabricated by physical vapor deposition (PVD) in an electron-

beam evaporator. The electron beam heats up the metallic target material inside
a vacuum chamber, emanating vaporized material particles that enter through the
holes in the resist, defined in the EBL step, and solidify on top of the substrate
surface. Since a native oxide layer forms on the surface of the niobium structures
when exposed to air, we use argon milling on the sample, prior to the evaporation. In
this process, the oxide layer is removed by a beam of high-energy argon ions, which
enhances the electric contact between the junction electrodes and the niobium leads.

In order to create the SIS or NIS structure, we utilize a two-angle Dolan shadow
evaporation technique. After the EBL exposure, development, and argon cleaning
steps, here we first tilt the sample to a 20◦ angle with respect to the direction of the
incident particles. Due to the bilayer resist structure with an undercut, the vapor
hits the substrate at a position, which is slightly shifted in x direction, with respect
to normal incidence. At this tilt angle, we deposit a 30-nm layer of aluminum to
create the first electrode. Next, we let oxygen into the deposition chamber, to reach
an oxidation pressure in the few-millibar range, and let the sample sit for at least
five minutes, to allow the thin native oxide layer to form on the aluminum surface.

After pumping the oxygen out of the chamber, we tilt the sample to a −20◦ angle
and deposit the second electrode. At this angle, the pattern shifts in the opposite
direction compared to the first deposition. Thus, the junction is formed in vertical
direction by two overlapping fingers with an insulating oxide in between. For the SIS
junctions of the SQUID, we evaporate 30 nm of aluminum for the second electrode.
For the NIS junction, we first evaporate 3 nm of aluminum, and then 60 nm of copper
at the second tilt angle to create the normal-metal electrode. The purpose of the thin
aluminum layer below the copper layer is to enhance the contact to the aluminum
oxide layer. Since the aluminum film is very thin, it remains normal-conducting, due
to the inverse proximity effect [24].

After the deposition process, the sample is submerged in acetone for overnight, to
lift off the remaining resist and the extra metal deposited on top of it. After rinsing
with IPA and drying with N2, the sample is wirebonded to a printed circuit board
(PCB) which is integrated to a gold sample holder.
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4 Experimental methods
In this chapter, we discuss the experimental methods used in this thesis. The
experimental setup is presented in Sec. 4.1, and the measurement protocols are
covered in Sec. 4.2.

4.1 Measurement setup
The experimental setup is illustrated in Fig. 6. The sample is installed in a
dilution refrigerator, which reaches a temperature of 35 mK during the measurements,
well below the superconducting transition temperature of both niobium (9 K) and
aluminum (1.2 K) bulk. The filtering and attenuation configurations of the different
input lines of the sample are collected in Table 1.

The setup comprises four rf drives: readout (RO) drive, qubit drive, reset drive,
and QCR drive (SG396). The readout drive consists of an rf-signal source combined
with an arbitrary-waveform generator (AWG) through an in-phase–quadrature-phase
(IQ) mixer. The attenuation of the readout signal can be tuned by a room temperature
digital attenuator, which also adds an insertion loss of 8.5 dB at the readout frequency.
The signal is further attenuated and filtered at cryogenic temperatures inside the
dilution refrigerator (see Table 1), and guided to the readout transmission line in
the sample. The signal reflected from the readout resonator is amplified with a
traveling-wave parametric amplifier (TWPA) and measured at the readout card,
which compares the output signal with the input signal.

The reset resonator is driven from the qubit side, utilizing the qubit driveline. In
principle, the reset resonator could also be driven from the QCR driveline, however,
in this setup, the low-pass filter on the QCR side with a 3.4-GHz cutoff frequency
strongly attenuates the drive signal at the resonator frequency, which would require
a very large driving power. At room temperature, the attenuation of both the reset

Table 1: Filtering and attenuation of the input lines of the sample. Cryo refers to
filters and attenuators placed inside the dilution refrigerator, and RT refers to those
outside the refrigerator at room temperature. In the filter model name, VLF(X)-
and BLP-types are low-pass filters, and VHF refers to a high-pass filter. The number
in the model name roughly corresponds to the cutoff frequency of the filter in MHz.

QCR dc QCR rf Flux dc

Filter Cryo VLFX-80+ VLF-3400+ –
RT 2×BLP-1.9+ – BLP-1.9+

Attenuation Cryo – -60 dB –
RT – – 1 kΩ resistor

Qubit drive Reset drive RO drive

Filter Cryo VHF-5500+ VHF-4400+
RT – –

Attenuation Cryo -40 dB + -20 dB dir.coupl. -80 dB
RT Digital att. + -10.3 dB Digital att. + -8.5 dB
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Figure 6: Schematic illustration of the experimental setup. The temperature stages
of the dilution refrigerator are highlighted with different colors. The components
residing on the sample according to Fig. 3 are within the region denoted by the
yellow dashed line. The model names that are given next to the filter symbols are
specified in the caption of Table 1.
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drive signal and the qubit drive signal are modified with the digital attenuator. At
the operation frequency of the qubit and the reset resonator, the insertion loss of the
digital attenuator is approximately 7 dB. After the digital attenuator, the reset and
qubit drivelines are combined to a single driveline using a splitter. The insertion loss
of the splitter is 3.3 dB at the relevant operation frequencies. The combined drive
signal is further attenuated and filtered at cryogenic temperatures.

The QCR driveline is filtered and attenuated at the cryogenic temperatures. We
use the noise generated by SRS SG396-model signal generator to drive the QCR. The
QCR is also connected through a cryogenic bias tee to a Keithley 6430 source-measure
unit (SMU) that acts as a dc bias-voltage source, and also enables measuring the
current through the NIS junction.

The resonance frequency of the qubit is tuned with the SQUID by applying a
dc bias voltage to the flux line. Since the flux line is a plain coplanar waveguide
connected to ground at the other end, a 1-kΩ resistor is inserted between the voltage
source and the flux line input at room temperature to restrict the current.

In Sec. 5, we use the terms drive power and noise power to express the input
power from the microwave or noise source, entering the system after the possible
digitally controlled attenuation, excluding the insertion loss of the digital attenuator
and any further attenuation from cryogenic attenuators and filters that is listed in
Table 1.

4.2 Measurement protocol
The primary measurement protocols used to characterize the sample include current-
voltage (IV) measurements and two-tone spectroscopy. In IV measurements, we
utilize the SMU connected to the QCR to simply sweep over a range of voltages,
while measuring the tunneling current passing through the junction. Due to the
superconducting gap involved in the tunneling process, as discussed in Sec. 2.1, we
observe a low-current plateau in the obtained IV curve, around zero bias voltage.
When the bias voltage is increased beyond the superconductor gap, current through
the junction increases as a function of bias voltage, eventually reaching an ohmic
dependence well above the gap.

Multiple characteristic parameters can be extracted from the IV curve. A quick
estimate for the tunneling resistance RT can be obtained by fitting the resistance
given by Ohm’s law in the ohmic regime above the gap. By comparing the resistances
in the subgap and ohmic regimes, we can extract the Dynes parameter η expressing
the smearing of the IV curve. The relation between the subgap current and voltage
is obtained by linearizing the expression for the elastic tunneling current through
the junction as [51]

Isub(V ) ≃
√︄

η2

η2 + 1
V

RT
. (75)

In the usual experimental conditions, the Dynes parameter is small, η ≪ 1, in which
case we can solve for the Dynes parameter from the simple relation

η ≃ RT

Rsub
, (76)
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where Rsub = V
Isub

is the subgap resistance given by the fit of Ohm’s law in the subgap
regime.

To obtain more detailed characteristics of the NIS junction, we can utilize Eq. (2)
to extract an expression for the tunneling current as a function of bias voltage. In
the characterization measurements, we assume that the PAT processes are negligible
in the absence of driving applied to the resonators and the qubit. Thus, assuming
only elastic tunneling, P (E −E ′) = δ(E −E ′), and using the definition of tunneling
current I1→2(V ) ≡ −e

[︂−→Γ 1→2(V )−−→Γ 2→1(−V )
]︂
, we obtain

I(V ) = 1
eRT

∫︂ ∞

−∞
dεnS(ε− eV ) [f(ε− eV )− f(ε)] . (77)

By fitting Eq. (77) to the data of an IV measurement and utilizing Eq. (3) and the
definition of the Fermi function f(E) = 1

exp[E/(kBTel)]+1 , we obtain estimates for the
tunneling resistance RT, Dynes parameter η, gap parameter ∆, and the electron
temperature of the electrodes Tel = TN = TS as the fit parameters. In practice, the
integration limits at infinity are replaced by a much smaller cutoff energy, since for
large arguments, the two Fermi functions in Eq. (77) approach each other, and thus
the contribution of high-energy states is negligible.

To characterize the two resonators and the qubit, we utilize the two-tone spec-
troscopy. In this method, we drive and measure the signal reflected from the readout
resonator near its resonance frequency, while using another tone to sweep over the
qubit or reset resonator frequency. When the second tone reaches the resonance
frequency, the readout frequency shifts slightly, due to the dispersive coupling dis-
cussed in Sec. 2.5, which results in a change in the measured amplitude and phase
of the readout signal. Depending on the sensing point used for probing the readout
resonator, either a dip or a peak can be observed in the frequency spectrum of the
second tone.

The effect of various tunable parameters on the resonance dips or peaks can be
investigated by combining a sweep of the parameter to the two-tone measurement.
The result of this 2D sweep can be visualized as a color map, presenting the probe
frequency on the y-axis and the parameter on the x-axis, with the color scale expressing
the phase or amplitude of the readout signal. From this 2D-sweep spectrum, we
can search for a sweet spot of the parameter that enables optimal sensing of the
state of the reset resonator. By driving both resonators and sweeping over the qubit
frequency, we can observe the splitting of the qubit resonance into evenly spaced
Fock spectral lines, the amplitude distribution of which approximately corresponds
to the photon-number distribution of the quantum state of the reset resonator.

To obtain a strong response in the readout amplitude or phase signal from the
dispersive shift, the sensing point, i.e., the drive frequency of the readout resonator is
chosen to be roughly at the half-maximum point of the resonance peak. The two-tone
spectra are averaged over a large number (typically 10000–80000) of traces to reduce
the noise level in the images. To further enhance the clarity of the 2D-sweep spectra,
we subtract from the data the average background response of the system to the
sweep of the x-axis parameter.
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5 Results
Here, we present and discuss the experimental results obtained for the QCR sample
and setup introduced in Secs. 3 and 4. Section 5.1 presents the results of various
characterization measurements that yield useful information about the operation of
the device and the effect of the experimental parameters. In Sec. 5.2, we study the
quality of analog frequency-modulated (AFM) noise generated by the SG396 signal
generator by applying it as a drive for the reset resonator and measuring the power
spectral density of the noise. Next, we apply the AFM noise to the QCR to induce
damping of a coherent state of the reset resonator in Sec. 5.3, in close resemblance
with the operation principle of the QBR. Finally, in Sec. 5.4, we explore another
noise type generated by SG396, namely vector frequency modulation (VFM), and its
properties as a drive for the reset resonator and the QCR.

5.1 Characterization of the device
The relevant characteristic parameters of the sample are collected into Table 2. The
characterization of the sample starts by searching for the offset bias of the QCR. If
the offset is large, the QCR can pass current even when biased at 0 V. Thus, to
ensure that the QCR is not operating and interfering with the other characterization
measurements, we find and set the offset bias voltage to keep the QCR in the off
state. Figure 7 shows an IV measurement of the NIS junction. Here, we obtain a
voltage offset of −1.12 mV from the midpoint of the low-current plateau. A quick
estimate of the tunneling resistance of the junction is obtained from the slope of
a linear fit to the curve in the ohmic regime above the gap for both positive and
negative biases. The average tunneling resistance from the two fits shown in Fig. 7
is thus RT = 22.1 kΩ. Inserting this value of tunneling resistance and the subgap
resistance Rsub = 5.95 MΩ, obtained from another fit in the subgap regime into
Eq. (76), yields a Dynes parameter of η = 3.7× 10−3.

A more detailed characterization of the NIS junction can be obtained by fitting
the current–voltage relation of Eq. (77) to the data in Fig. 7. From the fit parameters,
we obtain slightly different values for the tunneling resistance RT = 29.4 kΩ and

Table 2: Summary of the system parameters extracted from the characterization
measurements. RT is the tunneling resistance of the NIS junction, η is the Dynes
parameter, ∆ is the gap parameter of the superconductor, Tel is the electron tem-
perature of the normal-metal and superconducting electrodes, fRO, fR, and fQ are
the resonance frequencies of the readout resonator, reset resonator and the qubit,
respectively, and χR is the dispersive shift due to the coupling between the qubit
and the reset resonator.

RT η ∆ Tel
29.4 kΩ 5.0× 10−3 203 µeV 248 mK
fRO fR fQ χR/(2π)

7.437 GHz 4.671 GHz 3.953 GHz −2.2 MHz
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Figure 7: Current through the NIS junction as a function of voltage (blue circles),
averaged over 10 measurements. The voltage offset obtained from this plot is
−1.12 mV. The linear estimate of the tunneling resistance of the junction is obtained
as the average of the two fits far from the current plateau, denoted by the red dotted
line and orange dashed line. The subgap resistance used for calculating the Dynes
parameter is obtained from the fit denoted by black dash-dotted line. More detailed
characteristics are obtained from the theoretical fit (green solid line) of Eq. (77), from
which we obtain Tel = 248 mK, ∆ = 203 µeV, η = 1.96× 10−3, and RT = 29.4 kΩ as
the fit parameters.

the Dynes parameter η = 2.0 × 10−3. This value of tunneling resistance is likely
more accurate compared to the one obtained from the linear fit, since the measured
voltages are still relatively close to the gap region, and thus the ohmic approximation
is not completely valid. Based on qualitative observations on the fitting procedure,
the Dynes parameter seems to be rather sensitive to the approximations made in
the numerical calculations, such as the density of integration points and the choice
of integration limits. Furthermore, for the tunneling resistance RT = 29.4 kΩ from
Eq. (76), we would expect the Dynes parameter to be greater than that from the
linear fit. Thus, to obtain a more reasonable estimate for the Dynes parameter, we
insert the refined resistance value to Eq. (76), yielding η = 29.4 kΩ

5.95 MΩ ≈ 5.0 × 10−3.
From the fit parameters, we also obtain the gap parameter ∆ = 203 µeV and the
electron temperature on the two leads Tel = 248 mK, assuming equal thermalization.

During other characterization measurements, in which the effect of the QCR is
not examined, we apply the offset voltage found from the IV curve to the QCR to set
it to the off state. Figure 8 shows the effect of the flux bias voltage on the resonance
frequencies of the system. Primarily, the flux bias tunes the qubit excitation frequency
by inducing an external flux through the SQUID. Since the qubit is dispersively
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Figure 8: Readout response as a function of flux bias voltage and probe frequency
swept near the resonance frequencies of the (a) qubit, (b) reset resonator, and
(c),(d) readout resonator. In (a), (b), and (d), the phase of the readout signal is
shown, whereas (c) presents the measured reflection amplitude from the readout
resonator. The characteristic frequencies extracted here are fRO = 7.437 GHz,
fQ = 3.953 GHz, and fR = 4.671 GHz, for the readout resonator, qubit, and reset
resonator, respectively.

coupled to the two resonators, tuning the flux bias produces a shift also in the
resonator frequencies. From these plots, we obtain the sweet spot of the flux bias
as the value corresponding to the maximum qubit frequency, which also coincides
with the resonator frequency maxima. Here, the resonance frequencies are the least
sensitive for fluctuations in the magnetic flux. Furthermore, we extract the resonance
frequencies corresponding to the sweet spot fRO = 7.437 GHz, fQ = 3.953 GHz, and
fR = 4.671 GHz for the readout resonator, qubit, and the reset resonator, respectively.

In Fig. 8(a), we can observe a second spectral line below the actual qubit frequency,
which suggests that the reset resonator is already weakly excited by thermal photons
without any external drive, and induces a dispersive shift to the qubit frequency.
The dispersive shift obtained here is χR/(2π) = −2.5 MHz. We can also observe a
parasitic mode in the reset resonator sweep in Fig. 8(b), which is weakly dependent on
the flux bias. However, here we are only interested in extracting the main resonance
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Figure 9: (a) Reflection amplitude and (b) phase response of the readout resonance
frequency to the onset of the QCR. When the QCR is dc biased well above the gap
voltage ∆/e = 203 µV, the readout resonance frequency shifts slightly towards a
lower frequency.

frequency to enable coherent and thermal driving of the resonator.
In the reflection amplitude response of Fig. 8(c), the readout resonance frequency

corresponds to the maximum dip at 0 V flux bias, visible as the bright feature, i.e.,
the minimum reflection amplitude. Above the resonance frequency, the amplitude
shoots up, indicating a Fano-type resonance arising from the coupling between the
readout resonator and its environment [52]. Comparing with the phase response of
Fig. 8(d), we note that the resonance peak in phase is more symmetric and slightly
higher in frequency compared to the amplitude response. Thus, the optimal sensing
points are determined separately for phase and amplitude to roughly correspond to
the respective maximum gradients above the resonance frequencies.

Figure 9 presents the amplitude and phase response of the readout resonator to
the onset of the QCR. Above the gap voltage ∆/e = 203 µV, obtained from the
IV measurement in Fig. 7, the QCR induces an approximately 1-MHz shift to the
resonance frequency of the readout resonator. This effect is possibly a consequence
of QCR-induced Lamb shifts on the various resonance frequencies of the coupled
system or excitations due to photon-emission-assisted tunneling [24]. Thus, the
state of the system slides out from the optimal sensing point, which inflicts the
disappearance of the Fock spectral lines into the background, when the QCR is
biased above the gap voltage in the two-tone spectroscopy measurements. In order
to retain a clear readout signal throughout this bias regime, the induced frequency
shift should be compensated during the measurement. However, regarding the aim
of these experiments, the relevant phenomena occur slightly below the gap voltage,
thus the current measurement protocol suffices for the purposes of this thesis.

As discussed in Sec. 2.5, the quantum state of the reset resonator can be observed
by utilizing the two-way dispersive coupling present in this experimental setup,
i.e., using the qubit as a probe of the resonator Fock states. The appearance of
the Fock spectral lines is demonstrated in Fig. 10(a). Here, the reset resonator is
driven with a coherent tone at a drive power of 5 dBm, while sweeping the qubit
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Figure 10: (a) Readout phase response as a function of the qubit probe frequency and
the frequency of the coherent drive applied to the reset resonator, at a drive power of
5 dBm. The green dashed line indicates the resonance frequency of the resonator fR.
Three dispersively shifted Fock spectral lines, with a spacing slightly changing with
the drive frequency, can be distinguished below the base frequency of the qubit fQ
corresponding to an empty resonator. (b) Qubit probe frequency spectrum taken at
the resonance frequency fR. The dips coincide with the Fock states |0⟩, |1⟩, |2⟩, and
|3⟩ of the resonator, from right to left respectively. The amplitude distribution of the
dips is consistent with a Poissonian distribution of photons occupying the resonator.
The dispersive shift is extracted from the dip splitting as χR/(2π) = −2.2 MHz.

probe frequency and the resonator drive frequency near the resonance frequencies
fQ and fR, respectively. Below the spectral line at the qubit frequency fQ that
corresponds to empty occupation on the resonator, three equally spaced spectral
lines can be observed, corresponding to photon occupation numbers from 1 to 3.
The spacing of the spectral lines varies slightly as a function of drive frequency.
Taking into account the second excited state of the transmon qubit, the dispersive
shift is given by 2χR/(2π) = − 2g2

2π∆ω

α
α+∆ω

, where α = ω12 − ω01 < 0 is the transmon
anharmonicity [9]. From this expression, we observe that the dispersive shift is
inversely proportional to the detuning between the electromagnetic field and the
qubit frequency, so the splitting would be expected to decrease towards larger drive
frequencies for negative detuning fQ < fR. The opposite behavior suggests that
tuning of the reset resonator drive frequency may induce nontrivial Lamb shifts or
ac Stark shifts to the qubit–resonator system, leading to an effective decrease in
detuning or increase in anharmonicity. Furthermore, the background phase involves a
sudden shift above the resonance frequency, the origin of which remains unidentified.

The subsequent two-tone spectroscopy measurements are carried out with the
reset resonator drive frequency tuned at the resonance fR. Figure 10(b) presents
the qubit probe frequency spectrum for the coherently driven reset resonator. The
Poisson-distributed shape of the dips is readily observed for the Fock states |0⟩,
|1⟩, |2⟩, and |3⟩. The mean occupation of photons on the resonator can be visually
estimated from the relative depths of the dips to be larger than one.

The mean occupation of the coherently driven resonator can be tuned by adjusting
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Figure 11: (a) Readout phase response as a function of qubit probe frequency and
the drive power of the coherently driven reset resonator. Here, the drive power is
varied by tuning the attenuation of the room temperature digital attenuator, see
Sec. 4.1. The relative amplitude of the spectral lines corresponding to higher photon
occupation increases with the drive power. (b) Mean photon number n̄ and equivalent
temperature Teq of the reset resonator as a function of the drive power, obtained by
fitting a Poissonian distribution to the amplitude distribution of the dips in (a). A
distinct increase is visible in both quantities when the drive power is increased.

the drive power, as demonstrated in Fig. 11. For a weak drive, only the first two
spectral lines are well visible, the distribution of which would ultimately reduce to a
thermal state at a vanishing drive power. When the drive power is increased, the
third and the fourth spectral line also appear with increasing amplitude, while the
amplitude of the |0⟩ line decreases. Increasing the drive power further initiates a shift
in the readout phase, detuning the readout resonator out from the optimal sensing
point, and thus, the spectral lines disappear into the background at the largest drive
powers in Fig. 11(a).

The increase in the photon number on the reset resonator due to the increased
drive strength is further highlighted in Fig. 11(b), which shows the mean photon
occupation and equivalent temperature of the reset resonator as a function of the
drive power. Here, the data is obtained by fitting the Poisson distribution of Eq. (74)
to the minima of the spectral dips in Fig. 11(a), and applying the Bose-Einstein
distribution of Eq. (70) to calculate the temperature corresponding to the mean
photon number. For a coherent state, this equivalent temperature does not necessarily
match with the actual temperature of the system. Within the attainable range of
the drive power, the mean occupation of the resonator can be varied by more than
one photon, and the equivalent temperature by more than 300 mK.

The effect of a dc-biased QCR on a coherent resonator state is demonstrated in
Fig. 12. In the two-tone spectrum of Fig. 12(a), we observe four spectral lines with a
Poissonian distribution. The performance of the flux bias source is slightly unstable
during the lengthy measurements needed to obtain high-resolution spectra, which
inflicts the small fluctuations in the qubit frequency visible here.

When increasing the QCR bias voltage towards the gap voltage ∆/e = 203 µV,
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Figure 12: (a) Readout phase response as a function of qubit probe frequency and QCR
bias voltage, for the coherently driven reset resonator. At 5-dBm drive power, four
spectral lines corresponding to the resonator Fock states can be distinguished, with
mean spacing 2χR/(2π) = −4.39 MHz. The dip at the base frequency corresponding
to the state |0⟩ of the resonator is weaker than the dips of the states |1⟩ and |2⟩,
which distinctly indicates a coherent state rather than a thermal distribution. (b)
Mean photon number n̄ and equivalent temperature Teq of the reset resonator as
a function of QCR bias voltage obtained by fitting a Poisson distribution to the
amplitude distribution of the dips in (a). Photon-assisted tunneling through the
QCR is activated near the gap voltage ∆/e = 203 µV, which leads to a drop in both
the photon number and temperature of the reset resonator.

we observe that the relative magnitude of the three dips corresponding to states |1⟩,
|2⟩, and |3⟩ decreases, while the magnitude of the |0⟩ dip increases. Above the gap
voltage, the QCR also initiates a shift to the readout frequency, as shown in Fig. 9,
and consequently also the |0⟩-state dip disappears to the background. However, the
occupation of the higher-photon-number states starts to suppress already below the
gap voltage, which is a clear signature of damping of the resonator state by the
absorption of photons in a PAT process through the QCR.

The damping effect of the dc-QCR is further elucidated by examining the mean
photon number and equivalent temperature in Fig. 12(b). Evidently, the mean photon
number and the temperature of the reset resonator remain essentially constant, when
the QCR is in the off state, well below the gap voltage. With the bias voltage
approaching the gap voltage, the mean photon number decreases quickly to well
below the single-photon occupation. Similarly, the equivalent temperature of the
resonator drops significantly and remains at a low level for the bias slightly above
the gap voltage.

It has been shown in Ref. [25] that the QCR can act as a microwave-photon
source that heats the resonator when biased above the gap, due to the onset and
domination of the photon-emission-assisted tunneling process, see Fig. 1. In our
experiments, up to the bias voltages used here that exceed the gap only slightly, this
kind of heating of the resonator state is not visible. Since at higher voltages the
spectral lines disappear to the background, observing the heating effect would at
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Figure 13: (a) Readout phase response as a function of qubit probe frequency and
QCR bias voltage, for a non-driven thermal state of the reset resonator. Three
spectral lines can be distinguished with a mean spacing 2χR/(2π) = −4.65 MHz.
The state |0⟩ of the resonator corresponds to the base qubit frequency with the most
pronounced dip, consistent with the thermal distribution of the Fock states. (b)
Mean photon number n̄ and equivalent temperature Teq of the reset resonator as
a function of QCR bias voltage obtained by fitting a thermal distribution to the
amplitude distribution of the dips in (a). Photon-assisted tunneling through the
QCR is activated near the gap voltage ∆/e = 203 µV, which leads to a drop in both
the photon number and temperature of the reset resonator.

least require a compensation to the shift in the readout frequency to preserve the
signal-to-noise ratio (SNR).

Figure 13 shows the effect of the dc-biased QCR on a thermal state of the reset
resonator. Here, we can distinguish three spectral lines, corresponding to states |0⟩,
|1⟩, and |2⟩. The dip corresponding to state |0⟩ distinctly has the largest depth, which
is consistent with the thermal probability distribution given by Eq. (72). Again,
we can observe that the two other dispersive lines disappear near the gap voltage,
indicating a decrease in the mean photon number and temperature of the resonator.

Similarly as for the coherent state, by fitting the thermal probability distribution
to the minima of the dips extracted from Fig. 13(a), we obtain the mean photon
number and equivalent temperature of the resonator as a function of QCR bias
voltage, presented in Fig. 13(b). Well below the gap voltage, the mean photon
number of the thermal state fluctuates more strongly than in the coherent state in
Fig. 12(b). Since the data is measured over the course of multiple hours, it is possible
that the temperature background of the setup changes slightly between different
bias voltage steps, leading to spurious fluctuations that survive the averaging of the
frequency sweep traces. On the other hand, the thermal probability distribution is
also rather sensitive to small inaccuracies in the extracted dip minima, which may
arise during the fitting process or from the random noise remaining in the averaged
readout response.

Regardless, for the QCR bias increased towards the gap voltage, we can observe
a distinct decrease below the minimum level of the off state for the mean photon
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number and the equivalent temperature. Thus, Figs. 12 and 13 clearly demonstrate
that both a coherent and a thermal state of the reset resonator can be suppressed by
a QCR biased with dc voltage.

5.2 Analog frequency-modulated drive of the resonator
In order to investigate the properties of the noise signal generated by the SG396
source, we first analyze its effect on the resonator state. Figure 14 shows the power
spectra of the signal generator configured for analog frequency-modulated (AFM)
output. That is, the frequency of a sinusoidal carrier signal is modulated by applying
additive white Gaussian noise (AWGN) with the largest possible deviation, to obtain
maximal noise bandwidth. From Figs. 14(a) and 14(b) we observe that this type of
modulation leads to a Gaussian-like shape of the spectrum, with the center frequency
corresponding to the respective carrier frequencies 4.671 GHz and 3.600 GHz. For
ideal white noise, the power spectrum is expected to be flat over the bandwidth of
interest. Here, the flat region is rather concise, however, the spectrum still differs
drastically from that of a coherent signal, which would essentially span only a single
frequency. In the following experiments, the center frequency of the applied noise is
different for the resonator drive and the QCR drive, due to the differences in the
filter passbands of the drivelines. However, since the shapes of the respective power
spectra are very similar, we can assume that the noise characteristics presented in
this section generalize for the QCR drive as well.

Figure 15 presents the effect of the AFM noise on the reset resonator state. In
Fig. 15(a), we can observe that a third spectral line appears when noise power is
increased around −50 dBm, indicating that the occupation of the resonator increases.
However, at high values of noise power, also the qubit linewidth and the dispersive
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Figure 14: Power spectral density (PSD) of the generated AFM noise, measured
by a spectrum analyzer, for carrier frequency (a) 4.671 GHz and (b) 3.600 GHz.
The data is averaged over 100 traces, with a resolution bandwidth of 20 kHz. The
nominal output power of the signal is −9 dBm. The carrier is frequency-modulated
by additive white Gaussian noise with the highest attainable deviation.
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Figure 15: (a) Readout phase response as a function of qubit probe frequency and
noise power incident on the reset resonator. The AFM noise has identical configuration
parameters to those in Fig. 14(a), but is attenuated and filtered according to the
reset driveline parameters, see Table 1. (b) Mean photon number n̄ and equivalent
temperature Teq of the reset resonator as a function of noise power obtained by fitting
a thermal distribution to the amplitude distribution of the dips in (a).

shift increase, which may arise from the strong noise field introducing a secondary
ac Stark shift that modifies the observed dispersive shift between the qubit and the
reset resonator. The mean photon number and equivalent temperature of the noise-
driven resonator, obtained by fitting a thermal distribution to the dips, are shown in
Fig. 15(b). Here, we observe a steady increase in both quantities as a function of
noise power, suggesting that the AFM noise can be used for heating up the resonator.
We also note that the obtained minimum photon number at low noise powers, i.e.,
a weak noise drive, is smaller than the initial mean occupation of the non-driven
thermal state in Fig. 13(b). This might be due to a minor broadening of the Fock
spectral lines in the noise-driven case, caused by the readout probe power being
slightly increased from the non-driven case. Since the mean photon number given by
the thermal distribution is sensitive to small variations in the relative depths of the
Fock dips, the small changes in the depth caused by the inhomogeneous broadening
of the Fock spectral lines may become significant. Another potential factor for the
difference in the initial mean occupation between the two figures is a change in
the thermal background during the long time period between the corresponding
measurements.

5.3 Analog frequency-modulated drive of the QCR
Following the noise characterization measurements of the previous section, we apply
here the noise profile of Fig. 14(b) to the QCR driveline. The center frequency of
3.6 GHz is chosen, since it is the largest applicable frequency that is not significantly
attenuated by the cryogenic low-pass filter installed on the driveline.

Figure 16 presents the effect of increased AFM-noise power on the IV curves. Here,
we can see a distinct suppression of the gap for drive powers −7 dBm and 0 dBm
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Figure 16: Current through the QCR as a function of its bias voltage for different
noise powers of the applied AFM noise. The data are averaged over 10 measurements.

compared to the reference curve. At 0 dBm drive power, the gap has essentially
vanished and tunneling is activated without any dc bias.

The effect of AFM-noise-driven QCR on a coherent resonator state is presented
in Fig. 17. Besides the offset voltage, no additional dc bias voltage is applied here.
In Fig. 17(a), at approximately −1-dBm noise power, an abrupt suppression can be
observed for the dips corresponding to finite photon occupation. A similar suppression
is visible in Fig. 17(b), in which the mean photon occupation is significanlty reduced,
from approximately 1.4 photons to below n̄ = 0.1. Thus, we conclude that the
QCR can be activated purely by noise, with a cooling capability well comparable
to the conventional dc-biased QCR. To compare the activation noise power of the
QCR with the thermal noise produced by a hot resistor, we insert the full noise
bandwidth B = 47 MHz and activation power PN ≈ −1 dBm extracted from Figs.
14(b) and 17, respectively, and the subsequent nominal attenuation on the QCR
line -61.09 dB from Table 1 into Eq. (63), yielding an equivalent noise temperature
Tr ≈ 0.95 MK. Obviously, this value is infeasible for any practical purposes. In order
to realize a Brownian noise drive arising purely from thermal voltage fluctuations, the
activation temperature should be minimized by significantly increasing the impedance
of the reset resonator and the bandwidth of the noise. For comparison, with a noise
bandwidth of B = 5 GHz and resistance Rr = 5 kΩ, reaching a root-mean-square
voltage equal to the gap voltage Vr = 203 µV would require a more feasible value of
Tr ≈ 30 K for the temperature of the resistor.
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Figure 17: (a) Readout phase response as a function of qubit probe frequency and
noise power, for coherently driven reset resonator cooled by AFM-noise-driven QCR.
The AFM noise has identical configuration parameters to those in Fig. 14(b), but
is attenuated and filtered according to the QCR driveline parameters, see Table 1.
No additional dc bias voltage is applied to the QCR. (b) Mean photon number n̄
and equivalent temperature Teq of the reset resonator as a function of noise power
obtained by fitting a Poisson distribution to the amplitude distribution of the dips
in (a).

5.4 Vector frequency-modulated drive
In order to achieve a more thermal-like spectrum for the driving noise, we try
another noise configuration given by the SG396 generator, namely vector frequency-
modulation (VFM), that modulates the in-phase and quadrature components of the
signal, rather than the scalar frequency parameter of the carrier signal as in AFM.
Here, the carrier signal is frequency-modulated by a digitally generated pseudo-
random binary sequence (PRBS) waveform. The power spectrum of the VFM signal
applied in the experiments is shown in Fig. 18. Comparing with the AFM spectra
in Fig. 14, the VFM spectrum is flatter around the center frequency, rendering the
VFM signal closer to ideal thermal noise. On the other hand, the VFM spectrum
has smaller bandwidth compared to AFM and, thus, represents thermal noise in a
strongly bandlimited system. The dependence of the shape of the VFM spectrum
on the center frequency is negligible, and hence we expect that the essential noise
characteristics are retained between the resonator and QCR drive configurations.

Figure 19 presents the effect of the VFM drive on the resonator state for different
center frequencies fN of the VFM noise. Due to the limited bandwidth of both the
resonator and the noise spectrum, far from the resonance frequency fR the overlap
between the two bands is essentially zero, hence the occupation of the resonator is
low and the resonator is in a non-driven thermal state. Accordingly, the occupation
increases when the resonance frequency enters the noise window and the resonator
becomes excited by the additional thermal photons from the drive. This can be
observed in Fig. 19(a) as an increase in the amplitude of the second and third
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Figure 18: Power spectral density of the generated VFM noise, measured by a
spectrum analyzer, for carrier frequency (a) 4.671 GHz and (b) 3.200 GHz. The data
is averaged over 100 traces, with a resolution bandwidth of 20 kHz. The nominal
output power of the signal is −9 dBm. The carrier is modulated by a PRBS-noise
waveform with the highest attainable deviation.

spectral line. The heating effect of the noise is not perfectly symmetric about the
resonance frequency fR, which is possibly related to the asymmetry of the resonance
dip of the resonator, see Fig. 8(b). That is, the resonance has a sharp edge on the
low-frequency side but a longer tail on the high-frequency side, so thermal excitation
is allowed for a larger detuning in the positive direction. The mean photon number
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Figure 19: (a) Readout phase response as a function of qubit probe frequency and
the normalized center frequency of the noise, for VFM noise incident on the reset
resonator at −43-dBm noise power. The noise has identical configuration parameters
to those in Fig. 18(a), but is attenuated and filtered according to the reset drive line
parameters, see Table 1. (b) Mean photon number n̄ and equivalent temperature Teq
of the reset resonator as a function of normalized noise frequency obtained by fitting
a thermal distribution to the amplitude distribution of the dips in (a).
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Figure 20: Current through the QCR as a function of its bias voltage for different
noise powers of the applied VFM noise. The data are averaged over 10 measurements.

and equivalent temperature in Fig. 19(b), obtained by fitting a thermal distribution
to the dips, show a similar increase near the resonance frequency.

The effect of the VFM noise on the current–voltage characteristics of the QCR
is shown in Fig. 20. Similarly as for the analog modulation in Fig. 16, we observe
a suppression of the superconductor gap with increasing noise power. Thus, we
conclude that also VFM noise can activate the photon-assisted tunneling without
additional bias voltage. The small jumps in current at |V | > ∆/e are likely related
to grounding instabilities in the system, since they occur across the complete bias
voltage range, and can also be observed to some extent in some other QCR samples
not presented here.

Figure 21(a) presents the two-tone spectroscopy of a non-driven thermal resonator
state cooled by VFM-noise-driven QCR. Here, the digital attenuation of the qubit
drive is slightly decreased compared to the configuration in Figs. 15 and 19, resulting
in a small increase in the background thermal occupation of the resonator. In contrast
to the other two-tone measurements presented in this thesis, here we have measured
the amplitude response instead of phase, due to issues with the flux bias voltage
source, inducing fluctuations that corrupt the phase signal. The amplitude signal
involves a frequency-dependent background, which slightly degrades the third and
fourth spectral lines, inducing some error to the fit of the thermal distribution. Since
Fig. 21(a) is already obtained without applying any drive on the resonator, measuring
only the background separately from the spectral lines sets a challenge that is not
explored further in this case.

Despite the effect of the frequency-dependent background, we can observe in
Fig. 21(a) the suppression of the second and third spectral line near 0-dBm noise
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Figure 21: (a) Readout amplitude response as a function of qubit probe frequency
and noise power, for non-driven reset resonator cooled by VFM-noise-driven QCR.
The VFM noise has identical configuration parameters to those in Fig. 18(b), but
is attenuated and filtered according to the QCR line parameters, see Table 1. No
additional dc bias voltage is applied to the QCR. (b) Mean photon number n̄ and
temperature Teq of the reset resonator as a function of noise power obtained by fitting
a thermal distribution to the amplitude distribution of the peaks in (a).

power. The suppression of the mean photon number and equivalent temperature is
visible in Fig. 21(b), in which n̄ ≈ 1 at low noise powers, but decreases below n̄ = 0.5
at 0-dBm noise power. Thus, these results suggest that also a thermal non-driven
state of the resonator can be cooled by a noise-driven QCR, which is the essence of
the QBR concept. Similarly as found for the AFM-noise case, replacing the artificial
noise drive with a Brownian source, such as the hot resistor introduced in Sec. 2.4,
would require a high-impedance circuit to obtain a sufficient noise power to activate
the QCR. Since the artificial noise used here is strongly bandlimited, adjusting the
filtering and utilizing wide-band Brownian noise would allow for a lower activation
power.
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6 Summary and outlook
In conclusion, we have demonstrated the damping and cooling of a coherent and a
thermal resonator state by a noise-driven quantum-circuit refrigerator. The composi-
tion of the resonator state was conveniently accessed by exploiting a transmon qubit
as a dispersive probe. The amplitude distribution of the ac-Stark-shifted spectral
lines was utilized for extracting information on the distribution of the Fock states
and the mean number of photons in the resonator.

To enhance the accuracy of the fitting of photon distributions in the future, it
may be beneficial to consider extracting the area of the spectral dips to compensate
for the inhomogeneous broadening and flattening of the dips that depends on the
photon number. Furthermore, the setup can be optimized in such way that it allows
for the observation of higher-photon-number states, so that more datapoints can
be obtained for the fit. To obtain a better visualization of the resonator state well
above the gap voltage, the observed shift in the resonance frequency of the readout
resonator should be compensated for.

By applying analog and vector frequency-modulated noise signal to the resonator,
we showed an increase in the mean photon occupation, equivalent to the heating
of the resonator. Identical noise waveforms, apart from the center frequency, were
then applied to the QCR, resulting in the activation of photon-assisted tunneling
in the absence of any additional dc bias voltage. This activation was observed as
the suppression of the zero-current plateau arising from the superconductor gap in
the current–voltage characteristics, and as the evident decrease in the mean photon
occupation of the resonator to well below a single photon as a function of noise
power.

A natural step following the demonstrated cooling by the noise-driven QCR
would be to replace the artificial noise generator used here by a passive noise source,
such as a hot resistor. In the current setup, the equivalent noise temperature of a
resistor required to activate the QCR is well beyond the practical limits of the setup,
implying that significant modifications to the impedance and bandwidth parameters
of the system are necessary, in order to lower the equivalent noise temperature to
reasonable values.

The potential of the QCR–resonator combination in Brownian quantum-circuit
refrigeration is not limited to the configuration studied in this thesis. As we demon-
strated here, driving the resonator instead of the QCR by noise results in an increase
in the thermal population of the driven resonator mode. By utilizing two modes
of a resonator, the secondary mode can assist in the cooling of the primary mode
by supplying high-energy photons to the QCR that partially replace the dc bias
voltage. Combining the Brownian noise from a hot resistor as the drive with a
high-impedance resonator that provides high-energy photons to the QCR, this type
of system would constitute a promising platform for the realization of a quantum
Brownian refrigerator operating purely by thermal power.
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