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Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses
were altered by changing the gate voltage. At the open channel state (negative gate voltage), humidity pulse resulted in the decrease
of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This
effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to
be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was
found to depend on the previous state of the gate electrode (positive or negative voltage, respectively). Those characteristics were
explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect
transistor.

1. Introduction

Single-walled carbon nanotubes (SWCNTs) have a great
promise for many applications due to their unique electronic
and optical properties [1]. Depending on their chiral struc-
ture, the properties of the SWCNTs can vary from semicon-
ducting to metallic [2]. At the moment, controlled synthesis
of SWCNTs with uniform chirality is still a challenge. As a
result, the reproducibility of the single tube devices due to
their chirality deviations has not been achieved. Also, the
alignment and positioning of SWCNTs are very complicated
and require time and resource-consuming electron beam
lithography. Nevertheless, in random SWCNT networks, the
properties averaged over a large number of tubes suppress
the effects of the SWCNT chirality variation and allows
reaching reproducible results [3]. These networks can be

easily prepared by various methods: by a direct growth on a
catalyzed substrate [4], by depositions onto substrates either
from a solution of the suspended SWCNTs [5], or from the
gas phase synthesised by an aerosol method [6, 7]. The
SWCNT networks are of low cost and exhibit good trans-
parency and high conductivity, making them ideal candi-
dates for various potential applications such as thin film
transistors [8, 9], solar cells [10], displays [11], transparent
conducting coatings [12, 13], and sensors [4]. The latter is
very promising, however, little explored application of the
SWCNT films, especially for humidity sensing.

Humidity sensors based on CNTs can be classified
according to the change in the network resistivity, capaci-
tance, or current in a field effect transistor (FET) configura-
tion [14]. Most of the CNT humidity sensors are based on the
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resistivity change [14, 15], which can be explained by relative
simplicity in the sensor fabrication and measurements. The
humidity sensors were mainly prepared from the oxidised
multiwalled carbon nanotubes (MWCNTs). It was observed
that after the MWCNT treatment in a HNO3-H2SO4 mixture
and ultrasonication the sensitivity of the sensors increased by
4 times [15]. Arrayed MWCNTs utilized for relative humidity
(RH) sensing in the range from 11 to 85% showed a resis-
tance change of 362% with the response and recovery times
of 64 and 51 min, respectively [16]. The oxidized MWCNTs
were also tested in alternating current (AC) devices in the
frequency range from 500 Hz to 100 kHz. The sensor stability
behavior was found to be 10 times better at 100 KHz [17].
Vertical MWCNT arrays showed 6 times increase in the
capacitance for the same humidity range at 50 kHz [18].

Only a few papers have investigated humidity sensors
based on CNT network FETs, which is apparently explained
by the difficulties associated with the sensor fabrication,
processing, and measurements. Individual CNTs covered by
Na+, K+, and Ca2+ ion-exchanged Nafion polymer as sensi-
tive and barrier material were used for water vapor detection
[19]. Significant changes in source-drain current (∼10 times)
in the RH range from 13 to 93% were observed, but a
complete understanding of the back-gated FET was missing.
Liu et al. [20] utilized carboxylated MWCNTs aligned by
AC pulses between FET electrodes. It was found that the
interaction between water vapor and MWCNT networks is
mainly determined by a weak physisorption. Several studies
showed that water molecules acted as electron donors to the
carbon nanotubes [21, 22].

In this work, we fabricated FETs based on random net-
works of SWCNTs synthesised by an aerosol (floating cata-
lyst) chemical vapour deposition (CVD) method based on
CO disproportionation at 1000◦C on iron particles produced
by ferrocene vapour decomposition [13, 23]. The SWCNTs
were directly deposited on to the FET substrate after the
reaction and utilized without any additional treatment. In
this work we show the effect of water vapour on the
properties of pristine SWCNT in a FET circuit. The effect
of humidity on the source-drain current of FET and its
dependence on the gate voltage was investigated. It was found
that the FET operation and sensitivity was determined by
the charge traps due to water adsorption in the SWCNT film
layer and gate insulator oxide.

2. Experimental Methods

The SWCNT random network FETs were fabricated on a
heavily doped p-type Si substrate with 100 nm SiO2 layer on
top acting as a back-gate insulator. The whole Si wafer acted
as a back-gated electrode, and 100 nm Al layer was sputtered
on the bottom side to improve the contact to the gate
electrode. Our samples were 1 × 1 cm2 size chips obtained
after dicing a 4-inch silicon wafer. The schematic view of
transistor fabrication process is shown in Figure 1. First,
SWCNT deposition areas were prepared by lithographically
patterning AZ-5214 photoresist using a mask aligner (Karl
Suss MA6/BA6) as shown in Figures 1(a), 1(b), and 1(c). The
aerosol-synthesized SWCNTs were deposited at the outlet of

the CVD reactor directly from the gas phase onto the chip
by using an electrostatic precipitator described elsewhere
[24]. SWCNT channel was obtained by lift-off technique:
removing photoresist in acetone with subsequent rinsing in
iso-propanol and water (Figure 1(d)). The process of the
chip’s fabrication did not include ultrasonication or any
other treatments that could lead to the structural defects
in the SWCNTs. Second lithography determined the source
and drain electrode areas (Figure 1(e)). Electrical contacts
were made from Cr/Au (5/50 nm thick layers, resp.) layers
deposited by electron beam evaporation (Figure 1(f)) and
patterned by liftoff (Figure 1(g)). FETs with different channel
sizes (length × width) were fabricated on the same chip:
from 5 × 5µm2 to 50 × 50µm2. The fabricated transistor
chip was connected to the Au-contact pads by bonding wires.
To determine the reproducibility of the fabricated FET, we
measured the ON/OFF ratio and charge carrier mobilities
for 10 identical devices with the channel size 50× 50µm2. It
was found that the mobility varied from 5.5 to 20 cm2 V−1 s−1

while the ON/OFF ratio changed from 101 to 102 [25].
The humidity responses of the samples were measured

in a gas control system shown in Figure 2. The clean dry
compressed air provided by clean room facilities was used as
a carrier gas. In the gas system, the air was split into two
separate lines each controlled with a Celerity IN3XP mass
flow controller (MFC). The MFCs were operated by a
LabVIEW program. A gas-washing bottle with deionized
water was used as a humidifier in one of the gas lines. After
the humidifier, the gas lines were combined. The humidity
and the temperature of the resulting gas mixture were
measured with a Vaisala HUMITTER 50Y humidity probe.
In the experiments the temperature of the air mixture was
20–23◦C. The produced gas mixture was connected to the
test chamber at a gas flow rate of 0.4 L/min. Relative humidity
(RH) of 78% with a 67 min exposure time was used in most
of the experiments unless otherwise mentioned.

Source-drain current (Isd) was measured by sweeping the
gate voltage from−10 to 10 V and back. A constant voltage of
600 mV was applied between source and drain electrodes. For
the electrical measurements, an HP 4155A semiconductor
parameter analyser was used.

3. Experimental Results and Discussion

Usually, the synthesis of SWCNTs results in a mixture of
metallic and semiconducting tubes. For the transistor’s chan-
nel of SWCNT network, with a density below the metallic
nanotube percolation level, the current is determined by the
semiconducting nanotubes. The metallic SWCNT conduc-
tivity is almost independent of the gate voltage, while that of
the semiconducting SWCNTs strongly depends on the gate
voltage and usually exhibits a p-type channel behaviour of
the transistor (Figure 3) [26]. Hence, at negative gate volt-
ages, holes are accumulated in the CNTs, and the depletion
barrier is decreased, reducing the source drain resistance
and thus increasing the source-drain current (Isd) through
the channel. At positive gate voltages, due to the depletion
of holes the channel resistance increases, and, therefore, Isd

decreases. Figure 3 shows the results of the measurement of
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Figure 1: Schematic diagram of the fabrication process.
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Figure 2: Schematic view of measurement setup (MFC—mass-flow controller, transistor chip is placed into the test chamber).

Isd-Vg (hereinafter I-V) dependence at different humidity
conditions. As one can see after the humid air is introduced
for 17 min, the on-current (at negative gate voltage) is
remarkably decreased. After switching the humidity OFF
(closing the humid air valve) and keeping the chamber with
the device in a dry air flow for 23 min, the measured I-V
curve shows some recovery but does not completely return to
its initial value. The possible explanation is that some of the
water is not fully desorbed from the surface of the SWCNTs.

In order to investigate how fast the source-drain current
Isd responds to the humidity changes at different gate
voltages, we kept dry air flow inside the chamber for 67 min,
after which we introduced the humid air into the chamber for
the same period of time. Without applying the gate voltage

(Vg = 0 V), upon exposure to the humidity for 67 min a
decrease of source-drain current, Isd was observed as shown
in Figure 4(a). At negative gate voltages a larger current Isd

passes through the nanotube network. But at the same time,
charge carriers are trapped in the dielectric layer of the
FET. These charge traps are responsible for the hysteresis in
the SWCNT transistor [27]. Considering the large area of
trapping sites in the dielectric layer and the large number
of SWCNTs in the random network transistors, the effect
of charge trapping is more pronounced compared to an
individual nanotube transistor. Positive charges are injected
into the dielectric oxide traps at negative gate voltages and
vice versa. The trapped charge is localized at the gate
dielectric and SWCNT surface, and the charge is increased
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Figure 3: Source-drain current versus gate voltage measured in
dry air (initial), after exposure in 78% humid air for 17 min, and
recovery after 23 min in dry air. The gate voltage is swept from
−10 V to +10 V back to −10 V at Vsd = 600 mV.

with increasing the gate voltage. Due to the applied negative
voltage, positive charge traps were formed. These charge
traps act as a positive electric potential at SWCNT surface
and reduced the effective negative gate voltage. This results
in the increase of the depletion region, and hence to the Isd

decrease. At higher negative gate voltage (Vg = −10 V), more
charge traps were formed compared to Vg = −6 V, which
led to larger decrease in the effective gate voltage, hence
to a larger decrease in Isd. By exposing the FET device to
humidity, free holes in the SWCNT network channel were
neutralized (or compensated, [21, 22]) with the electrons
donated by the water molecules, and, thereby, a decrease
in Isd current was observed at zero gate voltage. At higher
negative gate voltages, this effect of charge carrier neutral-
ization is stronger: therefore, the sharper decrease in the
current was observed. Na et al. reported an inversion of the
conductivity into n-type by increasing the relative humidity
over 65% [22]. We have not observed this change, which
can be likely explained by different nanotube type, density,
and defectiveness. From the current dependence we can also
evaluate the current decay time due to the humidity effect:
about 30–50 min, decreasing at larger negative gate voltages.

At positive gate voltages, the current Isd is low due to
the increase of the depletion region, and the transistor is in
OFF state (Figure 4(b)). At the same time, negative charge
carriers can be trapped in the dielectric layer close to nan-
otubes. Keeping gate voltage constant in the initial dry air
region results in the negative charge accumulation in the
dielectric layer. The trapped negative charge can function
as a negative potential reducing the effective positive gate
bias. The reduction in the positive gate bias decreases the
depletion region and as a result increases Isd (opposite to
the effect described for the negative gate voltage). After
switching the humidity on, we observed an increase in the
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Figure 4: Source-drain current change of the FET sensor in dry and
humid air (RH = 78%): at (a) negative and 0 gate voltages, and (b)
positive gate voltages.

current Isd. The rampup of the current is larger at higher
gate voltages. The current increase can be explained by
water molecule adsorption. Since at positive gate voltage the
transistor channel is closed, the hole transport is suppressed.
Therefore, electrons donated by water molecules increase
both the number of charge carriers and current.

We have also studied the FET behaviour with a shorter
exposure and recovery times. The humid air flow was intro-
duced for 3 min followed by 4 min recovery time in dry
air. The measurement results for negative and positive gate
voltages are shown in Figure 5. At negative gate voltages we
observed the largest absolute value of the current (since the
transistor was in ON state), but the recovery was slower
in this case (Figure 5(a)). In OFF state, that is, at positive
gate voltage, the signal was lower, but the current pulses
were sharper and almost symmetrical, with the recovery
time of about 2 min (Figure 5(b)). At zero gate voltage we
observed an intermediate shape of the current pulses due
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to the humidity change (Figure 5(a)) with practically no
background current drift. The current drift during the
measurements at shorter exposure times can be explained by
the diffusion-limited penetration and adsorption/desorption
of water molecules in the space between the SWCNTs, that is,
inside bundles. Obviously, these structural changes affect the
electrical contact between the tubes.

Comparing the above-mentioned current responses to
the humidity pulses obtained at negative and positive gate
voltages, let us discuss two different parameters of the sen-
sors: sensitivity and speed. At negative gate voltage, the
measured current pulses were about one order of magnitude
higher compared to those measured at the positive gate
voltage due to the fact that the transistor was in ON and OFF
state, respectively. However, the relative levels of Isd changes
were 8.2 and 8.7%, respectively, confirming the identity of
the observed phenomenon. At the same time, the recovery
after closing the humid air was about three times faster when
operating at positive gate voltage (less than 2 min), compared
to the negative gate (more than 3 min). Most likely, this
can be explained by larger charge trapped at negative gate
voltage resulting in longer recovery. Thus, depending on
the demand, different operation options for the humidity
sensors based on SWCNTs can be proposed. If a larger signal
is required, a FET humidity sensor based on the SWCNT
networks should be operated at the negative gate voltages;
if the sensing speed is important, then the FET should be
utilized at the positive gate voltages.

It is worth noting that when the gate voltage is switched
either from positive or negative gate to zero gate voltage,
trapped charges still remained in the charge trapping sites
resulting in the hysteresis of Isd-Vg curve (Figure 3). This
charge trapping mechanism was effectively used in the
fabrication of memory devices [28–31]. Therefore, at Vg = 0,
transistor can be in ON or OFF state, depending on the direc-
tion of the gate voltage change. This kind of memory effect of
previous gate voltages can affect the response to humidity, as
shown in Figure 6. The device was kept in dry air at negative
(Figure 6(a)) or positive (Figure 6(b)) gate voltages, and after
switching to Vg = 0, either a current drop or increase hap-
pened, respectively (current values are corresponded to the
solid dots shown in Figure 3). After the humid air was
introduced, depending on the previous gate polarity, positive
or negative current change was observed. Actually, the
current changes to humidity seen in Figure 6 have the same
polarity as current pulses presented in Figure 5. To conclude,
the humidity FET device response at the gate voltages close
to zero can be rather different, depending on the “history” of
current-voltage sweeps. Therefore, it could be more reliable
to operate the humidity sensors at higher gate voltages.

It is worth noting that compared to traditional sensors
(e.g., based on metal oxides), the nanotube networks,
especially random networks consisting of pristine high-
quality SWCNTs, have several features: inert outer walls, very
small sizes (high specific surface area), and the presence of
intertube contacts and intertube spaces, which apparently
determine the conductivity and therefore the sensing
properties of the transistors. In particular, the reversible
adsorption/desorption of air components on/from the
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Figure 5: Current response to shorter humidity pulses monitored
at: (a) Vg = 0 and −10 V, (b) Vg = 10 V. Sequence of 2 min
humid air flow (H) with 3 min recovery in dry air flow (NH).
Vsd = 600 mV.

surface and in/from the space between the tubes leads to
longer stabilization time. For this reason, we believe that the
SWCNT sensor performance can be significantly improved if
aligned networks, preferably consisting of individual tubes,
will be utilized between the electrodes.

4. Conclusions

We have fabricated SWCNT random network FETs and
investigated the humidity effect on their source-drain current
at different gate voltages. When exposed to humidity, the
increase of the current at positive gate voltages and its
decrease at negative gate voltages can be explained by the
electron-donating nature of water molecules to SWCNTs.
The open transistor circuit exposure to humidity at higher
negative gate voltages suppressed the signal due to holes
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Figure 6: Monitoring current response to humidity at zero gate
voltage: inversion of current change depending on previous gate
voltage polarity (a) from Vg = −10 to 0 V, (b) from Vg = 10 to
0 V.

compensated by electrons. At higher positive gate voltages
upon exposure to humidity the transistors exhibited the
current increase. Investigating the current response to short
(2 min) humid air pulses, we found that operation at negative
gate voltages resulted in higher signals. Nevertheless, keeping
the device at positive gate voltages allows about 2-3 times
faster operation, but with a lower signal amplitude. The gate
voltage can be adjusted in order to get the maximum sensing
speed and recovery or amplitude and desired direction of the
current pulses.
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