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Exact and efficient discrete random walk method
for time-dependent two-dimensional environments
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IHelsinki Institute of Physics and Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT,
Espoo, Finland
2Department of Physics, Brown University, Providence, Rhode Island 02912-1843
(Received 2 August 2002; published 30 December 2002

We present an exact method for speeding up random walk in two-dimensional complicated lattice environ-
ments. To this end, we derive the discrete two-dimensional probability distribution function for a diffusing
particle starting at the center of a square of linear siZehis is used to propagate random walkers from the
center of the square to sites which are nearest neighbors to its perimeter sites, thusOfat)ngteps in
numerical simulations. We discuss in detail how this method can be implemented efficiently. We examine its
performance in the diffusion limited aggregation model which produces fractal structures, and in a one-sided
step-growth model producing compact, fingerlike structures. We show that in both cases, the square propagator
method reduces the computational effort by a factor proportional to the linear system size as compared to
standard random walk.

DOI: 10.1103/PhysReVvE.66.066706 PACS nun)er02.70—c, 05.40.Fb, 05.16-a, 46.65+¢

[. INTRODUCTION models, one releases a particle far away from the seed, lets it
walk until it sticks to the structure, and continues then with a
Random walk(RW) based methods constitute one of the new particle. The main technical problem in this approach is
most useful tools in the study of various physical systemghat the random walkers will occasionally escape the finite
[1]. Such methods have been employed to study random m&imulation box. In this case if the particle steps beyond a
terials, including glasses, polymers, and amorphous materfarge, predefined distance from the seed, it is usually re-
als, and on larger scales porous media, composites and su§cted, and a new particle is released. To avoid this problem,
pensions(a thorough review of the applications of RW is More sophisticated methods have been developed in the con-
given by Weisg1]). In particular, many transport processest!nuum I|m|_t [13]. The basic idea is that instead of _the par-
in disordered media can be analyzed with RW mod2)8]. ticle stepping only a shor(tcor_15tar_1): distance at a time, a
Examples include problems in polymer physjés, various random step as large as possible is taken. Also, if the particle

diffusion processe$s,6], crystallography[7], and reaction exits a circle around the seéd the case of circular DLA it

L : . is projected back with the “first hit” probability distribution
kinetics[1]. RW techniques have also been applied to the(lsee the Appendix of Ref13]).

stuo!y of biological phenomena, such as modeling of bacteria Similar methods have also been used in lattice simula-
motion [8]. o _ tions. Meakin and Tolmafl4] used a method, where one
_ A particularly useful application of RW methods in con- ¢5es the largest empty hypersphere around the diffusing par-
tinuum is based on the analogy of the diffusion equation Qicje and moves the particle to a randomly chosen position
an electrostatic problem where one wants to know the charggy, its surface. Ball and Braj10] calculated the Laplacian
density on a boundary surrounding a point charge. Namelygreen's function for a hypercube, and projected the particle
the Green’s function of the Laplace’s equation equals theo the boundary of it. However, both of these methods intro-
probability density of diffusing random walkers at the duce approximations. In the first case, there is a systematic
boundary[9,10]. When the underlying geometry is simple, error in mapping of a hypersphere onto the lattice sites, and
standard numerical or analytical methods for electromagnetiin the latter case error is induced by mapping continuous
problems are applicable. However, for complicated geomeoordinates onto lattice sit¢$0]. Such errors are most pro-
etries or in particular when the boundary evolves in time,nounced at small length scales. If an exact method is used
using a RW algorithm may turn out to be much more effi-one does not need to concern oneself whether any of the
cient. properties of the growing structures are influenced due to the
An important example of a problem with complicated, approximations.
time-dependent boundary conditions is diffusion limited ag- In this work, our aim is twofold. We will derive and
gregation(DLA) which is a model of irreversible growth to present arexactmethod for speeding up random walkers in
generate fractal structurg¢&l]. It has been used to study a complicated lattice environments. To this end, we calculate
great variety of processes, including dendritic growth, vis-the completediscretetwo-dimensional probability distribu-
cous fingering in fluids, dielectric breakdown, and electro-tion function for a diffusing particle to enter a site around a
chemical depositiofil2]. The DLA is a model defined con- square of linear size. This is used to propagate random
ventionally on a lattice, where fractal structures are grown bywalkers starting from the center of the square, to any of the
particles that diffuse and stick to an initial seed particlea  4s sites that are nearest neighb@xN) to the 4—4 perim-
line of seed particlesIn standard simulations of DLA lattice eter sites(see Fig. 1, thus saving?(s?) steps in the simu-
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distribution functionPpH(X) is given exactly by17]

”

k — Fourier transform of the corresponding spatial probability
0

b1 |

B =

Prpe(q) =2—cosq—(2—cosq)? -1, 1)

TN whereq=27n/L, with n=0,1, ... L—1. The general for-

\ mula for nonzero drift can be found in RéfL7].

I @ : T Although the HPP method makes it possible to simulate

systems of infinite size in thgdirection exactly, with grow-

R ni T T) ing spatial structures the random walkers spend more and

more time in trying to find available growth sites. Indeed, we

expect that the time grows typically d4s® in self-similar

) systems of sizé&. The additional idea here is to speed up the

/ RW process at every possible step. This can be achieved with

the so-called square propagat&QP which we here define
FIG. 1. lllustration of the transition matriX,, for a square of 0 be the probability distribution for a particle released at the

size s=5. Absorbing sites are shown as shaded. The produc€enter of a square of linear sigeto appear at any site which

(TsT4Ts)mk gives the probability for the walker starting at the is @ NN to the perimeter sites of the square. When the par-

center row site if1,3) to end up in any of the absorbing sites at the ticle moves from a lattice site one checks the largest empty

bottom (,6).The random pathdenoted by the dashed linis re-  gq,ar6 around the site(see technical details on how this is
placed by a single SQP leap. efficiently done in Sec. Illand propagates the particle in-
stantaneously to its perimeter with the appropriate probabil-
ity distribution. This way the particles can be very efficiently
é:gropagated to available growflabsorbing sites, as shown
Schematically in Fig. 1.

To define the SQP, we consider a square of siz&¢
+1, where thgump index{ =0,1,2 . . ., andwhere the par-
ticle initially sits at the center row+1. LetT, be the trans-
efer matrix that gives the probability to move from tiné¢h

—

T

bl
= e
&3
.—

lation. In the limit of larges, our solution agrees with the
known continuum casg¢l5]. Second, we discuss in detalil
how this discrete square propagator method can be impl
mented efficiently and examine its performance in two
growth models. The first one is the DLA lattice model. In
spite of its apparent simplicity, an analytic solution is still
unavailable, and thus numerical work provides most of th
current understanding of the model. The model exhibits ver .

slow approach to the asymptotic linjit3,16], and efficient ¥OW. to the _(n+1)t_h row (see Fig. 1 Thus, the elemer_n
simulation algorithms are crucial in the study of DLA. The .T”(' ,J) of this m_atrl_x is the probability to jump from the site
second model is that introduced by Heinonenal. [17] | on rown, to sitej on r_own+1. In the Appendix A we
(HBAK) to study kinetic roughening in one-sided, aniso_de_rlve a recursion relation for the matrTF(n_ and solve |t_
tropic step growth. The HBAK model produces compact fin-UsSing the qlscrete transform. What follows is thg probabil-
gerlike structures, with growth rules exactly the same as irty distribution Psopfor the'walker to enter theth site at, f'or
DLA, except for a sliding-down condition at the boundary of example, the b°“°”? row just _oth|d_e to the bottom perimeter
the growing aggregate. For both models, we demonstrate thg{ the squarésee Fig. ], and it is given by

the square propagation method reduces the computational
effort by a factor proportional to the linear system sizas K o1
compared to the standard RW approach. We note that the F’SQF(k):nZ:1 Xnf(Nn)Xn "7, @)
implementation and conclusions presented here can also be

applied to the continuum cas$#&5] for off-lattice problems. where f()\)=()\ﬁ+l+)\€_+1)’l, N = N2+ V221, xﬁ
=+/2/s+1sin(mnk/s+1), and N\ =4—2 cosrk/s+1), with
k=1,2,...s.

We consider here systems on a 2D rectangular geometry, In analogy with the HPP distribution, it is fast to calculate
where initially the bottom of the system wt=0 comprises and tabulate the required SQP at the beginning of the simu-
the growth (sticking) sites, and diffusive particles are re- lation [17].
leased fromy=<. The system size in the lateraldirection The displacemenk can be found efficiently from the
is L, with periodic boundary conditions. Such systems wereprobability distributionP(k) using two arrays with indices
also considered by Heinonenal [17] who devised an exact n=0,1,... N—1, where the lengthN=1/A, is chosen such
half plane propagatiofHPP) method to speed up diffusion thatA ,<minJP(k)]. With such a small\,, each interval of
limited growth. It is based on releasing each walker at heighthe random numberA < £<(n+ 1)A, belongs to the range
Yuep Which is defined to be one lattice site higher than theof one or two displacements at most. To distinguish between
highest point of the growing substrate. If the particle crosseshe two displacements in the latter case, we find the smallest
the line again in ther y direction while performing RW, itis displacemenk in the cumulative distribution which is still
immediately returned to the ling=ypp with a newx coor-  larger than the lower boundanyA,. For this purpose, we
dinate chosen from the appropriate spatial distribution. Thelefine two arrays as follows:

S

Il. PROPAGATORS
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A(n)=kKn, (a) 64
Kn
B(n)=2, P(2), 3) m
where k,=0,1, . .. Knax is the smallestk for which nA,
<=¥_oP(2). For each random number<¢<1, the dis- ~132

placemenk is found as

B A(INt ENT), E<B(int[£éN])

“lAGngeN)+1, e=Bangeny, P 0

where infy] is the largest integer which is smaller thgn
This is a fast method for any fixed probability distribution
P(k) such as SQP and HPP here.

When using the square propagator, we choose to tabulate
only one half of the probability distributioRsoHz) because
the size of the search arrays grows rapidly with the range of
the distribution. We utilize the symmetry by dividing the
square into eight segments and use two random numbers to 48
find the final position on the perimeter of the square. The first
random number is used to find the displacemdnt " ]
=1,2,...£+1inEq.(2) using Eq.(4). The second random

(b) 64 - . . . ;

number is used to choose one of the eight segments. AT |
To illustrate the large distances that can be covered within L _
a single propagation step to bring the particle to the NN sites
of the growing aggregate we show in Fig. 2 sample configu- 16~ -
rations of both the DLA and HBAK models in the early time
regime. I H i
oLt AL L) L
ll. INDEX SEARCH ALGORITHMS Is 3% 48 64

While the use of the square propagator clearly gives a FIG- 2. (@) A sample DLA cluster in the growth regimeb) A

significant advantage in simulation efficiency, it is of no useSample configuration generated by the HBAK model. In both fig-

if findina the proper square size takes too much time. Thus res: the diffusing particle denoted by a cross can arrive at any of
g prop d e sites denoted by open circles by a single SQP leap. In both

the crucial aspect in the actual implementation of the SQ fiaures the axes are in Units of lattice Spacin
method is how to find the jump indekcorresponding to the g pacing.
largest possible free square around the position of the walker.
To this end, we have compared two different algorithms in  First, the sticking site is set = —2 and its vacant NN's
the DLA simulations, which we call the Array Index search, are set tof = —1. The corresponding negative square sizes
and the Multigrid Index search. For the case of the HBAKs=2¢+1<0 indicate that no jump is possible from these
model, the search can be further simplified using a lineasijtes. Then, a directed walk is started on the shell with
index search algorithm. In this section we discuss all these-(0. At each site the walker steps on the indéxof the site
algorithms in detail, and present theoretical arguments fofs checked against the shell numierif ¢<¢', the index is
the performance of their implementations. changed tof. If any of the indices on shell is changed, a
walk is started on the next sheélb-1. This process is con-
A. Array index search tinued until no sites are updated on shéll or until ¢

The first algorithm that we implemented is based on stor= {max, the largest index value that is allowed. A further
ing the indices in a 2D array corresponding to the sites of th&€onstraint for the indices to be taken into account is that
underlying lattice. After the walker sticks to one of the pos-direct jump to sites for whicly>yppt+ 1 is not allowed to
sible growth sites of the substrate, one has to update thensure that no approximations are made with the half plane
index configuration around the sticking site. propagator. This algorithm needs about ldg,,,) bits for

Let us define a shell around an occupied site as the set @fach site but in practice, 32-bit integers are an appropriate
neighbors of the sticking site which possess the same jumgphoice.

index ¢ (in the absence of other occupied sjtas shown in A similar idea has been used by Meakit8], but in an
Fig. 3. Now the local, incremental index updating is per-approximate way combined with off-lattice walks. We denote
formed as follows. this the array index seardil) algorithm.
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IERERERE!

1l1]ofolol1]1 :

1lolol=1]o]o]1 _

1| o|-1]=2[-1] 0| 1 __

1lolol=1]o]o]1

1 l1]ololo]1]1 o v 0
111 1]1 jump et . oyindrical DLA. The dathed ine ndioates the

slope—2. System size in the simulation whs=512.

FIG. 3. lllustration of the shells used in the incremental index . .
updating. The gray occupied site at the center has the ifdex L€t P(¢,L) denote the probability of using the SQP cor-

=2 and its vacant nearest neighbors possess the Vatie1, ~ responding to jump index in the simulation of a lattice of
ete. sizeL. We have calculated the index distribution numerically

from our simulation, and the result is shown in Fig. 4. From

In the case of the DLA clusters, the free space betweethe figure we see th&(¢)~¢~2. The cutoff visible in Fig.
the growing structures can become very large. In fact, sincé is due to the finite system size and it scales linearli.in
the empty area grows proportional to the square of the sysfhus,P(¢€,L) can be approximated as
tem size, one expects that the index updating with no con-
straints can for large enough systems become the dominant P(¢,L)=Ce20(rL—¢), (6)
part of simulation. This could be circumvented by setting a
constraint to the maximum step size. However, in this casevhered is the Heaviside step function, the constai# close
additional time must be spent due to the larger number ofo 1/2, and the normalization fact@is practically indepen-
diffusion steps. Since it is not obvious which way is better,dent ofL. Then,tsqp A Can be written as
we present here a detailed analysis of these two cases.

The total CPU time per particlgy 5 can be split into *
three parts: Letsgp o denote the average time per particle tsop,alL)= E P(f,L)t’SQP,AM), (7)
needed to perform the accelerated SQP walk with the Al (=1
algorithm and lett, 5, denote the index updating time be-
tween the walkers. Thely, 5 can be written as wheretgqop a(€) is the time needed to take a step of size
Let us consider the first case where no restrictions are
tior, A= Nsoi sop, art tu,ait Nupd pp, (5)  imposed on the indices. We denote the constant tigpg 4,

. o by asgp a Which is independent of, and Eq.(7) gives
wherenggpis the number of SQP leaggVe will discuss the simply thattsop A= asqp,a is constant iri_.
behavior ofnggp in Sec. V), tsqp Al is the average time In the second case let us impose a restriction to the indi-
needed to take a single SQP leap and the number of HPEys i the following way: let s be the largest value that
steps is expected to scale roughly @sp=aype (arpr  will be updated and used. The average number of stggs
=const). The timelsgp 4 IS composed of two parts: First, remains the same if we consider fictitious steps for larger
the index¢ is found and then, using and the current posi- i4dices. Now a SQP step with>¢,,, actually consists of

tion of the particle, the final position is calculated. The timeg,ccessive SQP steps of si¢& ¢y, The time needed to
needed for a single HPP ledppp is found to be constant (546 4 step of sizé can thus be grrr\i/xen as

with L (see Sec. V.

Next, we consider the behavior of the first two terms in
the RHS of Eq.(5) for two possible implementations. First, tISQP A=
we examine the case where all the possible indices in the ’
lattice are updated. As noted above, the updating timng
will in this case be proportional tb?. Second, we impose a SubstitutingthP'AM) into Eq. (7) and approximating the
constraint on the indices so that no indices larger than aummation with an integral yields
pre-defined valué ., are updated. This reduces the contri-

asqgp,Al if €$€max

. (8)
aSQP,A(elemax)zi if €>€max-

bution of index updating time t@(L) (see Sec. V. Below tsop. Al L, €max) =asgp, aC[(1— 1/ may
we show how the average SQP walk tit@p 5 behaves in )
the two cases. +(rL = €mad/ € nad- 9

066706-4
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The idea now is to minimize the dominant scaling exponent, \,c<O(InL) at most. Another advantage of this approach
of tior,ar iN EQ. (5) with the system sizé&. As will be dis- s that at each level one can describe the state of 32 sites
cussed in Sec. IMisgp=a,L (a,=const) quite accurately. using one 32-bit integer only. At the lowest level, each lattice
Sincetu,A,zau,A,«?Zmax(au,A,zconst) one obtains the optimal sites requires one bit but only 1/4 bits at the next lestel
dominant scaling of Eq(5) if one choosed ,.,\L, and  Therefore, each site requires about 4/3 bits in total. This
then bit-packing saves a lot of memory, and in the large system
size limit increases efficiency due to reduction of cache mis-
matches. We refer this approach as the multigkid) algo-
rithm here. One should note that also the length of the HPP
search arrays in Eq3) is of the order oL.?. However, when
becomes constant (3/@3qp o With largeL. The same scal- the interest is in the large time properties of the aggregate as
ing of €, is obtained by minimizing the total CPU time in the present study, vertical lattice size is very large as com-
with fixed L. In addition, a prefactor comes out from the pared to the horizontal lattice sizg and thus the memory

3
tsqp A= 5 asqp,alC(1— 1NL) (10

minimization. For case$,,,<L we get requirement of the lattice dominates.
1a To analyze the performance of the MG algorithm let
e Andsgp,Al L2 (11) tsop,mc denote the average time per pgrticle to perform the
ay Al accelerated SQP walk within MG. Similarly to E(), this

. . ) can be written as
In terms of Eq.(21), the optimal maximum index can be

given ast ¢~ (b3/b,)¥4JL. The simulation results in Sec. ”
IV show that p3/b,)** is close to unity and the minimum tSQP,MdL):(Zl P(€,L)tsgp,md €), (13
CPU time can therefore be obtained with = VL. .

Collecting these results together, we thus find that th%heretéqp,mde) now is the time needed to take a step of

total simulation time behaves as size €. Most of the time is consumed in finding the jump
1 index € corresponding to the largest available empty square
Nsorsop. At Zau,AIL2+aHPFL if €a=L12 around the present position. The lardeis, the higher level

N of the hierarchical tree must be checked. By construction,
tot, Al ’
' 3 ) tsop.md ) scales as
EnSQFaSQP,Ar" agaltagpd  if €L,

(12) tsop md €)In € +const, (14

where the constant term counts for the time needed to calcu-
late the final position in the step of siZe Taking this into
ccount, the average step time can be written as

whereaggp a1, @y,ai, @andagypp are constants. The RW algo-
rithm is actually identical to the Al algorithm witki,,,=0
although we have implemented a separate RW algorithm foft

efficiency. In Sec. IV we show thatgqp scales essentially o
linearly with L, which means that using the index cutoff, tsopmd L) = 2 ¢=2In(£)6(rL —€)+const.  (15)
which is between the RW and the unrestricted Al algorithms, ’ =1

is the preferred way here. _ _ ]
We also note that simulation of, e.g., diffusion in static ThiS Sum can be approximated by an integral, whose upper

porous structure with arbitrary distribution of pore sig#§]  IMitis tsopmd L) <tsop,ud*) =asqp,mciS constant. Thus
can be efficiently done by applying the Al method. One firstWe get the final scaling df, v as
calculates the index configuration and then uses the SQP for

speed up of the diffusion proce@®o updating of the indices tot, MG = Nsersqp,met tume ™ NhpetHpp
needs to be done here =Ngosop. Mt @umaln L+ aypd-, (16)
B. Multigrid index search whereasop ve, aumc, andaypp are constants. Comparison

- ) o . with Eq. (12) shows that both the optimal Al and the MG
Amore ;ophlst|ca§ed way to update the jump |nd_|c_es IS toalgorithms have the same asymptotic scaling for large sys-
coarse grain the lattice in such a way that one divides they 5 anqg they both reduces the CPU time by a factor pro-

lattice into 2<2 blocks that are mapped onto one site at &y ional to the system size as compared to the RW algo-
higher level, continuing the mapping to as high level asginm

neededthis hierarchical mapping algorithm was also used in
Ref. [10]). If any of the four sites is occupied by the sub-
strate, the site at the higher level becomes occupied, other-
wise it becomes vacant. At each step, when one wants to In the HBAK case the index search can be further simpli-
know the largest empty square around a given site, onéed since only a one-dimensional vectofx) is needed to
checks from the hierarchical structure level by level if thekeep track of the occupied sites at eackivhen the walker is
site has occupied neighbors. Updating in this way after thet point ,y), the proper jump indeX can be found using
walker sticks is fast and simple, and the time scales asimple linear search. One starts at the poinwith initial

C. Linear index search

066706-5
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index set to zero and checks if the corresponding square at32 768 in our worl{19]) must be used to avoid finite size
heighty fits betweerh(x), h(x+1), h(x—1), and the line effects. Simulation of such systems with conventional RW
y=yupp- This procedure is continued by increasifigat  algorithm is very tedious.

each step by one until the square thus drawn (atdeast

one of the constraints. This will be referred to as the linear A. Application to DLA

index (LI) algorithm. Within it, the scaling of the total time

per particle behaves as To quantitatively compare the performance of the differ-

ent algorithms in the DLA case, we measured their perfor-

tiot, L= Nsort sop. L NHPRHPP: (177 ~ mance in the saturated regime. This is the_ worst case sce-

nario in the sense that the fractal structure is sparse, and the

. ) empty area where diffusion occurs is large. In particular, we
wherensgp, s the number of SQP steps per partitigye 11 concentrate on the scaling of the relevant parts of the differ-
is the average time needed to take a single SQP step withight 51gorithms with the system size. We note that within the
LI, and we expect thalsop . depends only weakly ob (see  gop method, the scaling ofoHL) does not depend on the
Sec. V). algorithm usedAl, MG, LI), and than,pH(L) always scales
aslL.

IV. RESULTS
1. Simple random walk method

As a first check on our algorithm, we calculated the frac- | this case, only thing to update after the walker has

tal dimension of a DLA cluster in a cylindrical geometry. roacheq the aggregate is the status of the corresponding lat-
The initial configuration was such that the bottom line of a;j.a site. Since we also utilize the use of HPP in all of our

lattice of widthL was filled by the aggregate particles, while iy ations, it is included in the scaling of the total CPU
the rest of the lattice was empty. Periodic boundary condis; ; .
. . ; ! S time per particleto; rw:
tions were imposed in the horizontal direction. ’

The scaling of the magdd of the DLA structure was mea- tiot rv=Nr( L) tre( L) + Npype( L) thpe(L)
sured in the saturated regime, i.e., in the regime where the '
surface roughness of the growing fractal has saturated in = b L“RW+ b, “HPP, (19

time. This was done in order to avoid the influence of the

initial line source. The surface roughness, or global width ofWherebl a_ndbz are constants. The subscripts RW and HPP
efer to (simple random walk and half plane propagator,

the surface, is measured as the standard deviation of Singlréespectively Our numerical estimates for the scaling expo
lued interf height(x,t) [19]: ' - )
valued interface heigt(x,t) [19] nents arexgy=2.00=0.02 andappp=1.03+0.01. The time

_ tupp is found to be constant ih. The fit to the total CPU
w(t,L)={([h(x,t)—h(t)]?)¥?, (18  time per particle gives

tiot, Rw L 194 (20

where the overbar denotes spatial averaging over the system
of sizeL and angular brackets denote configuration averagln the limit L— oo we thus expedt rw to be proportional to
ing. The global width satisfies the Family-Viscek scaling an-L? as also expected from simple scaling arguments for dif-
satz [20] w(t,L)~t#f(t/L?), where the scaling function fusion.
f(u—0)=const andf(u—x)xu #. Here, B defines the _ )
(globa) growth exponent. The dynamic exponemtescribes 2. Square propagator method with Al algorithm
the scaling of saturation timg with system size{s~L? and In the SQP walk with the Al algorithm, the time to take a
B andzare connected through the global roughness exponesingle SQP leap is essentially constant.irHowever, it is on
x as B=x/z [21]. The regime of our measurements corre-the average about 2.5 times larger than the time needed for
sponds to surface roughnesgt,L)=LX independent of taking a single RW step. The index updating after each
time. walker has stuck to the aggregate, on the other hand, in-

The lateral system sizes used in the calculation rangedreases rapidly with the system size, as the empty area where
from L=16 to 512. Afit to the data on a logarithmic scale the change in the indices propagates increases. The total
yielded the estimat® =1.66=0.01 for the fractal dimen- CPU time per particle in Eq12) is written as
sion, which is in excellent agreement with previous studies
[22-25. In our recent wor19] we have used the method  tiora= Nsor L)tsgp,alL) +ty a(L) + Nppe L) thpe(L)
described to measure some quantities characterizing interface _ o w
dynamics in growth of DLA structures. An example is the =Dl “5ePHbyL 7A bl “HPF, (21)
time-dependentith order height-height fluctuation correla- whereby, b,, andbs are constants, andsopis the scaling
tion function Cqy(to,t)=([Sh(x,to) = sh(X,to+1)])™,  exponent for the number of step. Here we have to include the
where sh=h—h is the deviation from the average height time t, =LA to describe the scaling of index updating
(the over bar denotes averaging owgrand the brackets between walkers. Numerical estimates giveqgp=0.97
denote configuration averaginghe function is evaluated in  =0.01 andaypp=1.03+0.01. Again,typp does not depend
the saturated regime and large enough systems (102%h L. When €, is of the order of the system sizey,
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=1.94+0.07. This clearly shows that in this case index up- 102
dating between the walkers will eventually dominate the
scaling. On the other hand, as also expected from theoretical
considerations of Sec. Ill A sincg, > €3, We measure 1071
ya=0.97+0.06 when ,=1L.

As discussed in Sec. I, this bottleneck can be avoided by
imposing a maximum indeX, .« SO that indices larger than
€max @re not updated. Taking,o\/L yields theoretically

t [(L) (sec)
=
T

! ’ . ) - | o RW; slope=1.94
optimal behavior. Our final numerical estimates for the effec- 5| A MG; slope=1.12 ]
tive scaling of our algorithnibased on fits to total CPU time 10 o ALI =L/2;slope=1.26
per particlé with index cutoff€ ., in both cases is given by o ALl =L""; slope=1.07
L12 when €= L/2 1055 00 1000
max (22) L (lattice units)

Lot A1) | 1.07
' L~ when €= VL,
max= L FIG. 5. Scaling of the total CPU timg,, per particle with the

system size in the DLA model with different algorithrisee Egs.

which shows that, in the unrestricted casg,=L/2, we are (19, (21), and(23)].

not yet in the scaling limit. — of Eq. (12) wheret a
« L2, The latter casé .= L is close to the predicted linear
scaling behavior of Eq12) wherety o >L.

However, even if one uses the Al algorithm without a
cutoff € . in Which case it scales ds°, its prefactorb, in
Eqg. (21) is much smaller than that of the simple RW algo-
rithm, by in Eq. (19), thus yielding better efficiency.

Our numerical results for the scaling of the total simula-
tion time per patrticlé,; for the different algorithmsRW, Al,
MG) are shown in Fig. 5. Both the optimal Al and the MG
algorithm scale almost with the same exponent but in the
former case, the prefactor is smaller. In our implementation,
the Al algorithm is roughly twice as fast as the MG algo-

3. Square propagator method with multigrid algorithm rithm.

Within the multigrid version of the SQP method the time
needed to update the structure is negligible between each
walk. On the other hand, the time to take a step is larger due In the HBAK model, we examined performance of the
to the greater effort needed in finding the proper square inSQP method in the growth regime. The HBAK model is

B. Application to HBAK

dex. The CPU time given in Eq16) scales as implemented with a 1D vectadn(x,t), whereh(x,t) is the
height of columnx at timet. The diffusing particle walks
tior, mc=Nsor L)tsop,md L) +ty ma(L) + Nype( L) tpe(L) until it steps on a site that is a nearest neighbor to an occu-
pied site. Then the height of the corresponding column is
:bGLQSQFf*BSQFq_ b, L "MG+ bgl “HPP, (23

increased by one unit. Note that if the particle arrives to the
) . side of the step, this definition implies that the particle in-
wherebg,b7,bg are constants. Here, there is an additionalsiantaneously slides down until it reaches a corner site. This
scaling termtsop ud L) L5 describing the time needed «gjiging-down” rule guarantees that the height profiles

for finding the proper index using MG. In this case, we eX-jy(x t) obey the solid-on-solid restriction, and the steps form
pect it to depend ok rather weakly due to the efficiency of compact structures.

the index search, and indeed we find numerically Batp
=0.37=0.04. Theoretically, one expects this dependence to 1. Simple random walk method
be bounded from above by lo( by construction. The same

conclusion applies to the updating between walkgfgs(L.) the number of walks and the time needed to take a step.

that depends Iogar_lthm|cal_ly oL, so t_hat tumc(L) Since we also utilize the use of HPP in our simulations, it is
~O(In(L)), although in practice it is negligible when com- . -
included in the scaling:

pared to the other terms. The other estimates for the scaling
exponents arersop=0.89+ 0.01 andapp=1.02+0.01, and
typpis again independent df. tiot, rw= Nrw( L) trw(L) + Niypp( L) typp(L)

To summarize, the asymptotic scaling in the- o limit — ¢, L@Rwt ¢, L PP, (25)
from our numerical estimate by fitting tq,; v iS given by

The simulation time can be expressed solely in terms of

o« 112 (24)  Wherec; andc; are constants, and the time needed to per-
form a single step is independentlof Our estimates for the

When compared to our theoretical discussion in Sec. Il B itS¢aling exponents arevgy=2.10+0.02 and aypp=1.08
is apparent that we are not yet in the asymptotic scalin +£0.02. !n the infinite system size limit the fit tg; gy gives
regime. We expect the scaling gf e to be a weak bounded he scaling

function of L so that the asymptotic dependencelLofould

be linear. Lot RW™ 207 (26)

ttot, MG
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10" ; . . discrete 2D probability distribution, which can be used to
o RW: slope=2.07 propagate walkers t@absorbing sites outside of the periph-
o SQP; slope=1.06 ery sites of a square of linear sizein one step, with no
approximations. The method generalizes the previously used
continuum propagation methdd5] which is not exact for
lattice systems. We have presented a detailed analysis of the
performance of the square propagdt®@QP method as com-
pared to traditional simulations of random walks. Two differ-
ent types of growth models were considered to test the scal-
ing of the CPU time consumption with system size, namely
the fractal diffusion limited aggregation modgll] and a
1075 ; o - 00 model for anisotropip groyvth of isolated stefdk7] which
L (lattice units) produces compact fingerlike structures. For both cases we
have shown that with proper implementation of the SQP

FIG. 6. Scaling of the total CPU timg, per particle with the  method, the speedup with respect to straightforward random
system size in the HBAK model with different algorithifsee Eqs.  walk approach is of the order of the linear system dize
(25 and(27)]. We also want to emphasize that the speed-up methods

described here can be easily extended for other cases. The
We note that theoreticallyyry=2 for simple random walk.  half plane propagator can be calculated for an anisotropic
The leading term of Eq(25) gives somewhat larger value case, including a drift term in the diffusion fie[d7]. This
2.10 for the dominant behavior. However, both agree welcan also be done for the square propagator. In addition, one
with theoretical expectations. can calculate the probability for a particle starting at an ar-
bitrary site within a rectangle of sizg x's, to enter a given
site outside the rectangle. In the limit whexgis fixed ands,

For the HBAK model there is no need for the jump index goes to infinity, the average number of steps needed to exit
updating schemes or hierarchical structures used in the DL€ strip increases only by a factor of two as compared to the
simulations, and no additional updating is needed after théotropic square case. Thus, the use of a rectangle instead of
walk is finished. Since the growing aggregate forms compacgdquare does not affect the scaling, but merely the prefactor.
structures with no overhangs, the proper index for taking d-urther, it should also be mentioned that time dependence of
SQP step can be found using simple linear seéirth After the random walk process can be easily extracted from the
finding the proper indexX, taking a step using the square Square propagator distribution, if it is needed for the problem
propagator is independent bf The simulation time can now at hand.

t (L) (sec)
=
T

2. Square propagator method

be expressed as follows: Finally, we note that although the method was presented
here for the two-dimensional case, it can easily be extended
tiot, 1= Nsor L) tsop, (L) + Nupe L) thpe(L) to higher dimensions. Even if the exact form of the distribu-

tion Pgodz) would not be obtainabléwe have not tried

this), it is easy to numerically calculatesodz) for hyper-
cubes of different sizes and store them in the computer
memory to be used in the simulation. As this calculation only
eeds to be done once, one can reach as high an accuracy as
Bne needs to.

= CSLU‘SQPJrBSQP,LH— C4L PP, (27)

wherecs,c, are constants, anglsopand Bsqp, are the scal-
ing exponents for the number of steps and the time needed
take a step, respectively. Our numerical estimates for th
exponents arevgop=1.02+0.01, Bgop, =0.13+0.03, and
appp=1.06+0.01. The leading behavior in the largdimit
obtained by a fit tdy |, is given ACKNOWLEDGMENTS

| 106 (29) This work has been supported in part by the Academy of
' Finland through its Center of Excellence program. J.A.
The dominant term of Eq27) givest,y ;<L 115 The weak wishes to thank the Vaisala Foundation for financial support.

dependence of the index search titegp | is seen here as
the final behavior slightly exceeds the linear scaling. APPENDIX: SQUARE PROPAGATOR
This means that one essentially saves a whole factar of ) ] )
in the CPU time per particle by utilizing the use of the square L€t € denote the jump index corresponding a square of
propagator. The scaling of the total CPU time using theSizes=2{+1. Letn be the index of a row, starting from the

Lot LI

simple RW and SQP methods is illustrated in Fig. 6. top, as illustrated in Fig. 1. LeL, be the the transition ma-
trix whose (,j) element gives the probability for the walker
V. CONCLUSIONS AND DISCUSSION at sitei on nth row to enter sitg at the next row (+1). All

the sites at rows 0 and{ 1), as well as the sites at columns
To summarize, we have presented an exact method t0 and 6+ 1) are considered to be absorbing sites here.
speed up discrete random walk in two-dimensional compli- Let E be the escape matrix, which gives the probability to
cated environments of absorbing sites. This is based on thexit the nth row and enter then(+ 1)th row. This matrix is
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independent ofn. Clearly, To=0. At each of thes sites
within the nth row, the walker can step off the row, or step
within the row to one of the neighboring sites. Thliscan

PHYSICAL REVIEW E66, 066706 (2002

In particular, the transform fok,=c* is needed here as well
as for solving for the eigenvalues and eigenvectors. This is
given by

be decomposed as the sum of probability two terms as fol-

lows:

T,=E+T,T,_1E. (A1)
Let D be the direct transition matrix! (I is the identity
matrix), whose (,i)th element is the probability to step from
sitei at thenth row to sitei at the (1+1)th row. In addition,

2 - I

f(2) kgo cfz K= —. (A9)
Transforming both sides of EGA7), we get

T(2)=(2—zK+1) 1zl (A10)

let Sbe the transition matrix for the walker to step within the Denoting the roots of the denominator in E410) by K .. ,

row. Then, (—9S) is a tridiagonal matrix, having entries 1 at
the diagonal and entries 1 at off diagonals, and it gives the
probability to exit thenth row (up or down).

Now, the particle can enter the{ 1)th row directly, or it

we have

Kt:

(A11)

can take one or more steps within the row and then step the

(n+1)th row. Thus the escape matiixcan be written as a
geometric series

o

E=DZ0 S=D(1-9)° L (A2)

We denote (—S)=3%K. Thus, we can write the recursion
relation for the transition matriX,, as

T,=K '+T,T,_,K™. (A3)
This equation can be formally solved as
Tn:(K_Tn—l)_l- (A4)

Using our initial value To,=0, we immediately getT,
=K1, T,=(K-K 171, etc.

The probability distribution for the walker to exit the
square from the last rom=2¢+1 starting from the rown
={¢+1 can be obtained as the product of thgs as

Psor= Tae+1T2e - Ter2 T, (A5)
because we consider the situation where the walker starts
the center from thef(+ 1)th row. Let us now define matrices
fr by [26]

To=foisfa. (A6)
Again, using the initial value folr, we getf,=0. In addi-
tion, we choosd ;=1. Writing Eq. (A3) in terms of thef,’s,
we obtain the recursion relation

faro—fne1K+£,=0. (A7)

It is convenient to use the discrezdransform for such re-

cursion relations. The transformf(z) of the sequencéd,
(k=0,1,2 ...) isdefined as

T(z)= go fiz k. (A8)

Next, we write the solution in terms of partial fractions to get

T(2)=(K,+K ) [(z=K,) 1= (z—K_)™1].
(A12)

The inversez transform can be found using EGA9), and
thus we have
fo=(KT—K") (K, —K_)"% (A13)

Now we can write the probability distributioRgqpin terms
of the matriceX . ,

Psor= Tacr1Toe - TeroTern
-1 -1 -1
_f2€+2f2€+1f2€+1f2€' ' 'f€+2f€+1

=f0 o= (KO KO L, (A14)
This equation could already be used to numerically calculate
the desired probability distributiosop, but one can do
better. Extracting the full solution in closed form saves a lot
of computational effort for large matrices and increases nu-
merical accuracy.

a To this end, one can easily write recursion relation for the
cﬁaracteristic function of the eigenvalues of the maifix
This can be solved using tlzdransform again. The result for
the kth eigenvalue is

K
N=4-2 coss—, with k=1,2,...s. (Al5)

+1

The same technique can be used to obtain the eigenvectors of
K yielding for thenth component of the eigenvector corre-
sponding to thekth eigenvalue, the result

[ 2
msm

Having now calculated the eigenvectors and eigenvalues of
the matrixK, we can obtain the solution fd?sqpin a closed
form. The matrixK can be diagonalized, reducing signifi-
cantly the elements needed in calculatifgoe. What fol-

XK= (A16)

nk
s+1/°
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lows is that starting from the center at thef1)th column, where
the probability to enter the site at théh column just outside

the square equals f()\):()\éjl_'_)\f:rl)fl,
S
Per (k)= KE()xEFL A17 and A . =\/2+/(N/2)7—1. This is the desired SQP corre-
sartk) nz'l Xnf (ko)X (A1D) sponding to Fig. 1.
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