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This paper introduces a technique for modeling partly consolidated ice rubble using a two-dimensional com-
bined finite-discrete element method and an application of the technique on ice rubble punch through experi-
ments. In the technique, each ice block within the rubble, the contact forces between the blocks, the block
deformation, and the rubble freeze bonds are modelled. Simulations with various freeze bond strengths and
block to block friction coefficients were performed. As a main simulation result, the close relationship between
rubble deformation patterns and load records is demonstrated in detail. It is shown that the buoyant load com-
ponent due to the rubble becoming detached from the surrounding rubble field and displaced during an exper-
iment is of crucial importance when interpreting punch through experiment results. The consequences of
simulation results on ice rubble material modeling are discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ice ridges are common features in northern seas. Two of the most
important parts of ice ridges are the consolidated layer, which is com-
prised of frozen water and ice blocks, and the keel, which consists of
ice rubble. The rubble can be a collection of loose blocks, but it is often
partly consolidated, that is, it consists of ice blocks bonded together
by freeze bonds, which resist the relative movement of the blocks.
The freeze bonds are formed due to freezing or sintering (Ettema
and Schaefer, 1986; Kuroiwa, 1961).

Punch through experiments are commonly used to test the proper-
ties of ice rubble. In a punch through experiment, a flat indentor platen
penetrates the rubble mass while the force applied by the rubble on the
indentor is measured. The indentor force-displacement records, togeth-
er with the dimensions of the experimental set up, are then used to
derive some of the material properties of the rubble.

Thefirst punch through experimentswere performed by Leppäranta
and Hakala (1989, 1992) using a loading platform and concrete blocks.
Since then, the experimental equipment has been improved and the
method has been used in full scale as reported by, for example,
Bruneau et al. (1998), Heinonen and Määttänen (2000, 2001a,b),
Croasdale et al. (2001) andHeinonen (2004). Formore detailed analysis
of the behavior and failuremechanism of rubble in punch through tests,
experiments in laboratory scale have been performed by, for example,
Leppäranta and Hakala (1992), Bruneau et al. (1998), Azarnejad et al.
(1999), Azarnejad and Brown (2001), Jensen et al. (2001), Lemee and
Brown (2002), Serré (2011) and Polojärvi and Tuhkuri (2012). Liferov

and Bonnemaire (2005) have reviewed the experimental work and
modeling.

The modeling of punch through experiments using continuum
models has been performed by a number of authors. These models
have been successful in replicating full scale (Heinonen, 2004) and
laboratory (Liferov et al., 2003; Serré, 2011) experiments, but have
the disadvantage that the details about the rubble behavior have
been smoothed out from the modeling results due to the continuum
description of the rubble. One such detail has to do with the relation
of rubble mass transfer to indentor load records as addressed in
Polojärvi et al. (2012) in the case of non-cohesive rubble.

Hence, even if the ice rubble usually consists of multitude of ice
blocks, it remains unclear whether or not there are enough blocks
to describe the rubble as a continuum, and thus, if the continuum
models can always reliably be used for rubble. This motivates the dis-
continuous approach, in which rubble is modelled block by block,
used here. We believe, that this approach helps in gaining more un-
derstanding on the phenomena behind ice rubble behavior. This un-
derstanding can then be used not only in the estimation of ice loads
or in the planning of future experiments, but also in making further
improvements to the more commonly used continuum models.

This paper presents a technique for modeling partly consolidated ice
rubble using a discontinuous approach, and modeling of punch through
experiments using the technique. The traditional way of modeling
discontinuum is the discrete element method (DEM), which dates back
to Cundall and Strack (1979). In DEM, the individual particles are usually
assumed rigid, and their deformation is taken into account in the
inter-particle contact models. In the present study, however, the blocks
within the keel are deformable and the combinedfinite-discrete element
method (FEM-DEM) is used (Munjiza, 2004; Munjiza and Andrews,
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2000; Munjiza et al., 1995). Cohesive elements were used to model
freeze bonds binding the blocks within the rubble together (Block et
al., 2007; Camacho and Ortiz, 1996; Morris et al., 2006; Ortiz and
Pandolfi, 1999; Sam et al., 2005).

The numerical modeling of ice rubble related problems using DEM
and FEM-DEM has previously been used in studies on ice ridging
(Hopkins, 1992, 1998; Hopkins et al., 1999), ice pile-up against struc-
tures (Haase et al., 2010; Paavilainen and Tuhkuri, 2012; Paavilainen
et al., 2006, 2009, 2011) and punch through experiments on uncon-
solidated rubble (Polojärvi and Tuhkuri, 2009; Polojärvi et al., 2012;
Tuhkuri and Polojärvi, 2005). Different types of cohesive models
have been previously used in modeling sea ice fracture by, for exam-
ple, Mulmule and Dempsey (1997a,b, 1999), Bazant (2002), Schreyer
et al. (2006), Gürtner (2009) and Dempsey et al. (2010).

This paper first discusses the mechanics of the simulations. The
emphasis of this part of the paper is on the modeling of the freeze
bonds between the individual rubble blocks. This is followed by a
description on the application of the model on the study of ridge
keel punch through experiments. After this, we present the results
and analyze them in detail, and provide a discussion on them. Finally,
the paper concludes with some remarks on and suggestions for future
work.

2. Description of the simulations

The virtual punch through experiments were performed using the
combined finite-discrete element method (FEM-DEM). In this method,
the discrete elements representing the ridge keel blocks are meshed
into finite elements. The finite elements are used to compute the
block deformation and the contact forces between colliding blocks. In
addition to contact forces, the deformation and themotion of the blocks
is caused by inertial forces and cohesive forces, and by buoyant force,
which is caused by water.

The simulations were explicit and central difference method was
used to advance between the time steps. On each time step of a simula-
tion, the following seven tasks are performed: (1) Determination of
internal forces according to the displacement field for continuous mate-
rial, (2) a neighbor search, (3) derivation of contact forces, (4) stress
state check at freeze bonds, (5) calculation of the cohesive forces in the
material points under failure process, (6) adding external forces, and
(7) updating of node positions using Newton's laws for the next time
step.

2.1. Contact forces

The contact forces were derived using a penalty function and the
potential contact force method (Munjiza, 2004; Munjiza and Andrews,
2000; Munjiza et al., 1995). In the potential contact force method, a
potentialφwith continuous first partial derivatives with respect to spa-
tial coordinates is defined for every point P of eachfinite element area Γ.
Further, φ=φ(P) should vanish on finite element edge S for a smooth
collision response. Hence,

φ Pð Þ > 0; P∈Γ ∧ φ Pð Þ ¼ 0; P∈S: ð1Þ

When triangular finite elements are used, an obvious choice for
φ(P) is the area coordinates.

The contact force, dfφ, applied to an infinitesimal area element, dΓo,
penetrating into φ is determined from the gradient of φ as (Fig. 1a)

dfφ Pð Þ
dΓo

¼−s∇φ Pð Þ; ð2Þ

where s is a positive constant penalty term. The negative sign is due to
the repulsive nature of the contact force. The contact force, fφ, due to
φ(P) is determined by integration over the overlap area, Γo,of two

colliding elements. The integral is reduced to a computationally more
efficient integral over the boundary of area dΓo using a generalized ver-
sion of Gauss's theorem:

fφ ¼−s∫Γo∇φ Pð ÞdΩ ¼−s∫So
φ Pð Þn dΓ; ð3Þ

where n is the unit outer normal of So (Fig. 1b). The previous equation
shows that the distributed load acting upon overlapping volume ele-
ments due to φ is reduced to a force acting upon a single point on So.

Dissipation due to sliding friction is modelled using dynamic
Coulomb friction. The frictional force, fμ, is solved using the following
equation:

fμ ¼−μ fcj j vr−vr⋅n
vr−vr⋅nj j ; ð4Þ

where μ is the friction coefficient and vr−vr ⋅n is the tangential com-
ponent of the relative velocity of contacting blocks at the point of
contact.

2.2. Block deformation

Though large displacements of individual ice blocks are allowed in
the simulations, the deformation of material elements within the con-
tinuous ice blocks was assumed to be small. The material behavior of
the continuous ice blocks is thus assumed to be linear elastic. This as-
sumption is justified because, rather than being dominated by the
deformation of the individual ice blocks, the deformation of the ice
rubble is dominated by inter-particle sliding and the movement of
the blocks within the rubble (Heinonen, 2004; Sayed et al., 1992).

Furthermore, the material behavior of the blocks is assumed to be
isotropic and plane strain state is assumed. The material damping of
the blocks on the elastic regime is viscous. Internal forces due to the
deformation of the blocks are solved using constant strain triangle ele-
mentswith an explicit solution procedure implemented as presented in
detail by Munjiza (2004).

(a)

(b)

Fig. 1. (a) An infinitesimal area element dΓ at point P penetrating a finite element with
area Γ and (b) the overlap area dΓo of two elements.
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2.3. Freeze bonds

The freeze bonds were modelled using initially rigid cohesive ele-
ments (Block et al., 2007; Camacho and Ortiz, 1996; Morris et al.,
2006; Ortiz and Pandolfi, 1999; Sam et al., 2005). In this approach,
the finite element mesh is initially continuous. Once the stress state
in some point of the mesh (here in point belonging to a freeze
bond) fulfills a predefined failure criterion, an energy dissipating
cohesive crack growth process at that point begins. The approach
was used here, as Fig. 2 illustrates: The simulated keel was meshed
in its initial configuration with the mesh being continuous over the
contacting surfaces of the blocks.

As Fig. 2 further shows, the edges of the finite elements connecting
the blocks were defined as freeze bonds. The failure within the rubble
was limited to only on the freeze bonds in order to study their effect
on rubble failure. On each time step of a simulation, the stress state at
each freeze bond point (a finite element mesh node belonging to a
freeze bond) was monitored and compared to a failure criterion, as
presented below. Once the failure criterion at a freeze bond point
was reached, the point underwent a cohesive crack growth process,
which is described below.

2.3.1. Failure criterion
The failure criterion for the freeze bonds is as follows:

te≥σcr; ð5Þ

where te is the effective traction at a bond point defined as

te ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−2t2t þ t2n

q
if tn≥0

β−1 ttj j−μ tnj jð Þ if tn < 0:

(
ð6Þ

In the definition for te, tt and tn are the tangential and normal com-
ponents of the traction vector t at a bond point, respectively, and μ is
the friction coefficient. Furthermore, β is the shear stress factor, defined
as β=τcr/σcr, where τcr and σcr are the shear and tensile strengths of
the bond, respectively. The failure criterion is for amixedmode fracture,
as the definition for te shows. In addition, for shear failure under
compression, the criterion takes into account the contact friction, as
discussed in the next section.

The traction vector, t, is solved here similarly to Block et al. (2007)
using the area weighted average of the elastic stresses of the elements
connected to the bond point:

t ¼
Xn
i¼1

Ai
A

� �
σ in: ð7Þ

In the previous equation, Ai and σi are the area and elastic stress
tensor, respectively, of the element i, A is the total area of n elements
connected to the point, and n is the bond surface normal.

2.3.2. Cohesive crack growth
When cohesive crack growth is initiated at a freeze bond point, the

finite element mesh node is splitted into two nodes with initially equal
nodal coordinates, x+ and x−, as shown in Fig. 3a and b. The mass, m,
of the node before splitting is divided by the new nodes according to
the elements connected to the node; hence m++m−=m. It should be
noted, that here lumped masses are assumed.

Fig. 2. Two snapshots from a simulation: (a) Ice blocks bonded together by freeze
bonds (red) and (b) a close-up of two freeze bonds.

(a)

(b)

Fig. 3. An illustration of the bond splitting process: (a) An intact node belonging to the
bond surface (between the dashed lines) with a normal n, nodal coordinate x, and
mass m is split into (b) two nodes with masses m+ and m− and the nodal coordinates
x+ and x−. Similarly, new crack surfaces Γ+ and Γ− are generated.
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During the cohesive crack growth, a nodal cohesive force,
fc= fc+=− fc−, resisting the cohesive crack opening is applied to the
newly generated nodes similarly to the work of Block et al. (2007).
The initial value, |fc0|, is derived as follows. The elements connected to
node +(−) are used to compute the internal force vector f+(−) for the
stress state te=σcr (Eq. (5)). Then, f+(−) are used to solve the initial
value |fc0| from (Block et al., 2007; Papoulia and Vavasis, 2003; Sam et
al., 2005):

f0c
��� ��� ¼ −

m−

m
fþ þmþ

m
f−

����
����: ð8Þ

As the distance between the nodes − and + increases during the
crack growth, the value of cohesive force |fc| decreases following the
linear softening law illustrated in Fig. 4. As the figure shows, |fc| is a
function of effective crack opening displacement (Camacho and
Ortiz, 1996; Ortiz and Pandolfi, 1999; Sam et al., 2005)

δe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2δ2t þ 〈δn〉

2
q

; ð9Þ

where δt and δn are the components of the cohesive crack opening
displacement, δ=x+−x−, to the tangential and normal directions
of the freeze bond, respectively. The operator 〈〉 in the definition is
the Macaulay brackets; hence 〈δn〉=0 if δnb0.

In Eq. (9), δe = βδt if δnb0 due to the fact that the contact of the
crack surfaces is treated as phenomena independent of the actual
cohesive model, which is similar to how Camacho and Ortiz (1996)
and Ortiz and Pandolfi (1999) treated it. When the crack is closed,
the contact forces between the contacting crack surfaces are solved,
as presented in Section 2.1 for the blocks. Hence, in the case of rela-
tive sliding of the closed crack surfaces under compression, the cohe-
sive crack growth is simultaneously resisted by both the frictional and
cohesive forces. Due to this, the friction coefficient μ was included in
the failure criterion through the definition of te on the compressive
side (see Eqs. (5) and (6)): If μ is not included in the failure criterion
and the failure initiated under compression with |tt|=τcr, then the
cohesive crack growth would be arrested by friction until |tt|>μ|tn|.

The cohesive crack growth can include loading, unloading and
reloading phases, as illustrated in Fig. 4: in loading phase δe increases,
in unloading it decreases, and in reloading again increases but has a
value smaller than maximum effective crack opening displacement
δm reached in preceding loading phase. The irreversibility of this

crack growth process is ensured by solving the cohesive force value
during these phases based on

fcj j δeð Þ ¼
f0c
��� ��� 1−

δe
δf

� �
for loading

f0c
��� ��� 1−

δm
δf

� �
δe
δm

for un−=reloading:

8>><
>>: ð10Þ

The direction of the cohesive force depends on components δt and
δn of cohesive crack opening displacement δ. When using these com-
ponents, the tangential and normal components of the cohesive force
are, respectively, solved from the following equation:

f ct ¼ fcj j δeð Þ βδt
δe

� �
and f cn ¼ fcj j δeð Þ δnh i

δe

� �
: ð11Þ

As Fig. 4 further shows, |fc(δe)| linearly decreases with an increasing
δe and vanishes once δe reaches δf. The value of δf is not a material pa-
rameter, but instead is derived from the fracture energy G: If the length
of the newly formed crack surfaces associatedwith a bond point is l, the
energy dissipated due to the cohesive crack growth process at the point
should be equal to Gl in 2D. When using the definition for work, linear
softening law in Fig. 4, and requiring the dissipation in the cohesive
crack growth to be equal to Gl, the value of δf is achieved from

∫δf0 fc δeð Þj jdδ ¼ 1
2

f0c
��� ���δf ¼ Gl ⇒ δf ¼ 2Gl

f0c
�� �� : ð12Þ

2.4. Virtual punch through experiments

The simulations were performed in two phases: (1) During the
initial phase the initial configuration of the rubble was generated
and (2) during the punch through phase the indentor penetrated
the rubble. The first phase was performed using rigid blocks in a man-
ner similar to that of Polojärvi and Tuhkuri (2009) and Polojärvi et al.
(2012) to achieve different initial configurations for the ridges. Dur-
ing the first phase, the rigid blocks were released under water with
random orientations and velocities and allowed to float until their
kinetic energy had dissipated, and a quasi-static rubble pile had
formed. At the end of the first phase, the rubble pile was meshed
using Gmsh finite element mesh generator (Geuzaine and Remacle,
2009) for the second phase of the simulation.

At the beginning of the second phase, the buoyant force and gravita-
tion were applied to the whole rubble mass, consolidated layer, and
indentor platen. The buoyant force acting on the indentor platen was
subtracted from the indentor force records. Before any indentormotion,
it was ensured that the systemwas in balance. The boundary conditions
and the simulation domain for the punch through phase of the simula-
tions are illustrated in Fig. 5, with the values for the dimensions in the
figure shown in Table 1. The domain width w was 50 m. The simula-
tions showed that the domain was substantially wider than the width
of the area of moving rubble during indentor penetration.

The block dimensions were randomly varied within each simulat-
ed ridge so that the block thickness and length varied between 0.2
and 0.4 m and 0.6 and 1.8 m, respectively, with the lower bound for
thickness chosen based on Heinonen (2004). This random generation
of the blocks resulted into aspect ratio distribution with a mean at
~1:3.5. The ridge keel thickness, h, and the consolidated layer thick-
ness given in Table 1 were chosen after full scale punch through
experiments reported and analysed by (Heinonen, 2004). In his
experiments, rubble thicknesses varied between 2.2 and 5 m (mean
value 3.8 m), with consolidated layer thickness varying between 0.6
and 1.4 m (mean value 1 m). The rubble was freeze bonded to the
consolidated layer. The indentor width, wI=4 m, used here was
always at least ten times higher than the block thickness, similarly

loading

un-/reloading true crack forms

Fig. 4. Linear softening function fc(δe) and the crack opening, unloading and reloading
phases of the cohesive crack growth. In the figure, δe is the effective crack opening dis-
placement defined in Eq. (9), δm is the maximum crack opening displacement achieved
during the loading phase, and δf is the critical crack opening displacement.

194 A. Polojärvi, J. Tuhkuri / Cold Regions Science and Technology 85 (2013) 191–205



to the experiments by Heinonen (2004). The consolidated layer and
the indentor were elastic. For simplicity, the material parameters for
the consolidated layer and the indentor were the same as for the rub-
ble blocks.

The freeze bond strength was not constant through the rubble
depth but instead decreased linearly towards the bottom of the rub-
ble, where the bond shear and tensile strength values were ~10% of
those on the top. Simple linear relation was used, as experimental
data indicates, that the layer of partially consolidated rubble does
not necessarily reach through the rubble thickness (Croasdale et al.,
2001; Høyland and Løset, 1999; Leppäranta and Hakala, 1989, 1992;
Timco et al., 2000).

A number of freeze bond strength values were used in the simula-
tions. As Table 1 shows, the freeze bond shear strength on top of the
rubble τcr varied between 5 and 100 kPa. The lowest τcr values used
are close to those measured in a laboratory (Ettema and Schaefer,
1986; Repetto-Llamazares et al., 2011a,2011b), while the higher ones
are close to those measured in field studies (Shafrova and Høyland,
2008) or achieved by a rough scaling of the laboratory experiments
(Ettema and Schaefer, 1986; Liferov, 2005). Unfortunately there is a
lack of data on the freeze bond tensile strengths (σcr), hence 10 kPa
on top of the rubble was used here.

Furthermore Table 1 shows the elastic modulus, E=2 GPa, used in
the simulations; it was chosen based on the values 1 to 5 GPa for the
strain modulus of first-year sea ice suggested by Timco and Weeks
(2010). The friction coefficient values μ=0.05 and 0.3 were used
based on values μ≈0.02−0.7, which are reported in the literature
for ice (Frederking and Barker, 2002; Lishman et al., 2009; Pritchard
et al., 2011). Fracture energy for the freeze bonds, G=15 Jm −2,
was chosen after that of the first-year sea ice (Dempsey et al.,
1999). Similar to the freeze bond strength, G decreased linearly
towards the bottom of the rubble. Porosity η, which defines the
ratio between the area of the voids and the area of solid material
within the rubble, was measured in the initial rubble configuration.
Hence, η was not predetermined, but, instead, was a result of the
first simulation phase described above.

The indentor motion was displacement driven, with the displace-
ment being controlled on top of the indentor platen. The indentor was
accelerated to its final velocity of 0.1 ms-1 during the first two sec-
onds of its motion to avoid a load due to inertia of the rubble. A num-
ber of simulations with various slower indentor velocities were used
to verify, that a peak load that appeared at the beginning of the
indentor penetration was not due to the inertia of the rubble pile,
but, instead, due to its quasi-static response. Lowering the indentor
velocity to 0.01 ms-1 while keeping the acceleration time constant
decreased the load at the initial peak by only 3%, hence it was con-
cluded that the indentor force was virtually only due to static load.

3. Results and analysis

We performed the simulations on four different ridge geometries,
hereafter referred to as Ridges 1–4, which had been generated during
phase 1 of the simulations (see Section 2.4). We used various freeze
bond strengths and two friction coefficients for the simulations. In
all the simulations, the strength of the freeze bonds decreased linear-
ly towards the bottom of the rubble, as described in Section 2.4. For
brevity, this is not mentioned in the text below and all of the freeze
bond strength values provided refer to their maximum values on
top of the rubble. As we ran the simulations in 2D, the force values
presented below are per unit width.

3.1. Force-displacement records and maximum indentor force

We observed that the freeze bond strength, friction coefficient, and
ridge geometry all affected the force-displacement (F−yI) records
and load levels. In the following section we first present the effect of
ridge geometry on the F−yI records and load levels. Then, we describe
the effect of freeze bond strength on the F−yI records and load levels.

3.1.1. Force records and ridge geometries
The typical features observed in the simulations can be described

using the force-displacement (F−yI) records from the simulations
performed on Ridges 1 and 3 shown in Fig. 6a and b. The F−yI records

indentor

Direction of
buoyant force

rubble elastic consolidated layer

Fig. 5. Simulation domain and boundary conditions. The upper boundaries of the consolidated layer (marked with dashed lines) had a rigid boundary condition. The symbols in the
figure are as follows: h is the rubble thickness, w the domain width, yI the direction of indentor penetration, and g the gravitational acceleration. The values of the dimensions in the
figure are collected in Table 1. The axes (x, y) of the global coordinate system are also shown in the figure.

Table 1
Main parameters and dimensions used in the simulations. The directions (Dir.) given in
the table refer to the global coordinate system in Fig. 5. Since the freeze bond shear
strength linearly decreased towards the bottom of the pile, the value in the table refers
to the value on top of the rubble.

Parameter Dir. Symbol Unit Value

General number of blocks – – – 665
gravitational acceleration – g ms−2 9.81
domain width – – m 50
ndof – – – ~150,000

Contact penalty term – s – 2×1011

time step – Δt s 1×10(−6)

Blocks length – – m 0.6–1.8
thickness – – m 0.2–0.4
mass density – ρb kg m−3 920
friction coefficient – μ – 0.05, 0.3
Young's modulus – E GPa 2
viscous damping constant – – Pas 2.5×104

Water mass density – ρw kg m−3 1010
Rubble keel depth – h m ~4

bulk porosity – η – ~0.25
Indentor width x wI m 4

thickness y hI m 1
final velocity y vI ms−1 0.1

Consolidated
layer

thickness y – m 1

Young's modulus – – GPa 2
Freeze bond Shear strength – τcr kPa 5…100

Tensile strength – σcr kPa 10
Fracture energy – G Jm−2 15
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in the figures are from the simulations which were performed with a
freeze bond shear and tensile strength of τcr=50 kPa and σcr=10
kPa, respectively, and with friction coefficients of μ=0.05 and 0.3.
For more detail, Fig. 7a and b show close-ups of both the F−yI records
in Fig. 6a and b from the beginning of the indentor penetration.

As Figs. 6 and 7 illustrate, F initially increasedwith a high rate, ∂F/∂yI,
due to rubble buoyancy and system stiffness. The friction coefficient μ
had virtually no effect on the rate, ∂F/∂yI, during the initial increase in
F, as shown by Fig. 7. Following the steep increase in F, the simulations
yielded a cohesive peak load Fm, which corresponded to the onset of the
freeze bond failures within the rubble. This peak load, Fm, was also the
maximum load in the simulations.

A comparison of Fig. 7a and b already suggests that the value of Fm

was significantly affected by the ridge geometry (the different block
arrangements generated during the first simulation phase, described
in Section 2.4), whereas with these bond strength parameters (τcr=
50 kPa andσcr=10) the friction coefficient μ did not have amajor effect
on the load. This can clearly be seen from the Fm values from the simu-
lations for Ridges 1–4 with the values τcr=50 kPa and σcr=10 kPa

given in Fig. 8. The data in Fig. 8 clearly shows that the difference in
Fm yielded by the different ridges with constant μ was up to ~50%. On
the other hand, the difference in the Fm due to μ was only 2–7%
depending on the ridge.

After the peak load Fm, with increasing indentor penetration yI, F
decreased steeply as Fig. 6a and b show. During the steep decrease,
the freeze bonds failed through the rubble thickness, that is, the
decrease in F was due to a global failure of the rubble freeze bonds.
In this global failure, the majority of the failing bonds lay on distinct
zones around the indentor perimeter. A failure plane could be defined
through these zones, as described in the next section. The steep
decrease in F lasted up to yI≈20 mm of indentor penetration.

As the F−yI records in Fig. 6a and b further illustrate, the
post-peak load after the steep decrease in F from Fm was depended
not only on the ridge geometry, but also on the friction coefficient μ.
With the friction coefficient μ=0.05, the load typically decreased up
to an indentor penetration of yI=50…150 mm, whereas with the
friction coefficient μ=0.3 the decrease was either very slow (Ridge
1 in Fig. 6a) or virtually nonexistent (Ridge 3 in Fig. 6b). The value
of Fm with the value μ=0.05 (μ=0.3) for each ridge was between
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Fig. 6. Indentor force-displacement (F−yI) records from simulations of Ridge 1 and 3,
which yielded maximum and minimum peak force Fm values with a friction coefficient
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2.0 and 3.2 (1.9 and 2.6) times higher, than the mean load for the
penetration interval yI=150…300 mm for simulations with the
bond strength values σcr=10 kPa and τcr=50 kPa.

3.1.2. Force records and freeze bond strength
The freeze bond shear strength, τcr, affected the indentor force-

displacement (F−yI) records most clearly during the cohesive peak
at the beginning of the indentor penetration. The effect of τcr on the
cohesive peak is illustrated by Fig. 9, which shows the F−yI records
from the beginning of the simulated indentor penetration on Ridge
1 with τcr equal to 5, 12.5, 25 and 50 kPa. Besides the beginning, the
F−yI records with all τcr showed features similar to those described
above.

The peak load Fm values increased with τcr, as shown in Fig. 10. As
the figure illustrates, the rate ∂Fm/∂τcr was not constant, but in gener-
al it was somewhat higher with low rather than with high τcr values.
The change in the rate ∂Fm/∂τcr when using different τcr values was

explained by the relation of the rubble deformation patterns and τcr
as shown in the next section.

Furthermore, Fig. 10 suggests, that an increase in μ increased the
Fm more in the case of weakly bonded ridges, rather than strongly
bonded ridges. This is clearly shown by the ratios of the Fm values
from the simulations with μ being equal to 0.3 and 0.05 for Ridges
1–4 given in Fig. 11. As the figure shows, the effect of μ on the Fm

values depended on the geometry of the ridge, but decreased as the
τcr was increased. In the case of loosely bonded ridges, μ increased
the maximum load by up to 28%. On the other hand, with the highest
value of τcr used here, the effect of μ on the value of Fm was negligible
(~2.5%).

3.2. Failure process and rubble deformation

The failure process and deformation patterns were related to the
maximum force, Fm, and the post peak indentor load, F, levels. In gen-
eral, the ridges yielding the highest indentor load values had the
highest amount of rubble mass displacing due to initial global failure.
Furthermore, the post-peak indentor load records depended on the
rubble mass displacing, not only directly under the indentor but
also outside the perimeter of the indentor. The analysis in this section
is divided into two parts: first we study Fm using the initial failure
planes within the rubble, after which we analyze the post-peak load
levels using the deformation patterns.

3.2.1. Failure planes and maximum load
The effects of ridge geometry and freeze bond shear strength on

the maximum load, Fm, were related to differences in the initial fail-
ure planes within the rubble. The initial failure planes affected the
amount of rubble mass supported by the indentor and the load com-
ponent due to rubble buoyancy. We assessed the initial rubble failure
using angle α of the rubble failure planes, defined in Fig. 12.

To define α, we collected the positions of the failed freeze bond
points at some instant from the simulation data (Fig. 12). Then, we
used the least squares method to determine two linear fits: One for
the failures with xb−wI/2 (with wI being the indentor width) and
another for failures with x>wI/2. The values for α for xb−wI/2 and
x>wI/2 were then obtained from the angles of the linear fits in rela-
tion to the vertical with the positive direction being away from the
center line of the indentor (see Fig. 12). It should be noted, that the
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failure planes, as they are defined here, were not constrained to align
with the indentor platen corners. Angle α described the initial rubble
failure fairly well, but it should not be used for large indentor dis-
placements when the zones for failed freeze bonds became less
distinct.

The α values showed a similar increase with freeze bond shear
strength τcr as the peak load, Fm, in Fig. 10: α increased with τcr up
to 50 kPa; after that, it remained fairly constant. This increase in α
is shown in Fig. 13, which gives the mean values of α with their stan-
dard deviations as a function of τcr. The data from all of the simula-
tions with the indentor displacement interval yI=1…20 mm are
included in the figure. The displacement interval was chosen so,
that all of the simulations had advanced to a point after the steep de-
crease in F following the initial cohesive peak. As the standard devia-
tions in the figure indicate, α showed relatively wide scatter. The
friction coefficient μ had a negligible effect on α; for example, simula-
tions with τcr=50 kPa yielded mean α values of 43±8° and 44±7°
with μ=0.05 and μ=0.3, respectively.

To study the initial rubble failure patterns, the linear fits used to
determine α were further used to define the area, Ap, of the plug
that formed during the initial rubble failure (see Fig. 12). The Ap is
limited by the linear fits used to define the angle α and the lines pass-
ing the uppermost and lowermost failed bond on each side of the
indentor. Fig. 14 gives the mean Ap values for a indentor penetration
interval yI=1…20 mm for each ridge (Fig. 14a) and the mean for all
of the ridges (Fig. 14b) with different friction coefficient μ values. As

Fig. 14b shows, μ only slightly affected the initial rubble failure
patterns.

The Ap values in Fig. 14a and b clearly suggest that the increase in
freeze bond strength induces a change in the initial rubble failure pat-
terns up to a certain strength (here up to τcr=50 kPa), with no
change in the failure patterns when the freeze bond strengths are in-
creased further. The change in the rate ∂Ap/∂τcr with low τcr values is
likely related to the change in the rate ∂Fm/∂τcr, which occurs around
same freeze bond strength values (see Section 3.1.2 and Fig. 10).
Hence, high ∂Fm/∂τcr with a low τcr is due to changes in both, the rub-
ble strength and the initial failure patterns, whereas with a high τcr,
the ∂Fm/∂τcr is only due to an increase in the rubble strength.

The initial plug areas, Ap, were further used to derive the buoyant
load, Fb, resulting the plug in order to compare the buoyant force and
load levels. From the Ap values, and the porosities η of each ridge, we
calculated the Fb using the following equation:

Fb Ap; η

 �

¼ 1−ηð Þ ρw−ρið ÞgAp; ð13Þ

where ρw and ρi are the mass densities of water and ice, respectively,
and g is the gravitational acceleration.

The values for Fb(Ap,η) are shown in Fig. 15 at an indentor pene-
tration yI=20 mm, together with Fm and the load F at yI=20 mm,
as function of Ap for Ridges 1–4 with τcr=50 kPa. Hence, the figure

0 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

1.25

1.3

τ  [kPa]

ra
tio

 o
f 

F
 v

al
ue

s:
 F

(μ
=

0.
3)

/F
(μ

=
0.

05
) 

[−
] ridge 1

ridge 2
ridge 3
ridge 4
mean

Fig. 11. Ratio of the maximum load Fm values from simulations with friction coefficient
values of 0.05 and 0.3 as a function of freeze bond shear strength τcr. In addition, the
figure shows the mean ratio for all the data. All of the simulations with the data
shown in the figure had a freeze bond tensile strength σcr=10 kPa.

failed freeze bond point

indentor platen

linear fit for

plug with areafor

for

Fig. 12. Derivation of the angle α of failure planes using failed freeze bond points (red crosses), the least squares method and the linear fits (dashed lines). The positive direction of α
is away from the center line of the indentor on both sides of the indentor. In addition, the figure shows the area, Ap, of a rubble plug forming under the indentor as a result of the
failure (gray), defined here as a four-sided polygon with two edges aligned with the linear fits.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

m
ea

n 
α

 f
or

 y
I =

 5
…

20
 m

m
 [

de
gr

ee
s]

 

τ  [kPa]

Fig. 13. The mean values of the failure plane angles �α for the indentor displacement in-
terval yI=1…20 mm as a function of freeze bond shear strength τcr. The data is from
simulations done for Ridges 1–4 with friction coefficient values μ=0.05 and 0.3 and
freeze bond tensile strength σcr=10 kPa.

198 A. Polojärvi, J. Tuhkuri / Cold Regions Science and Technology 85 (2013) 191–205



illustrates the effect of the ridge geometry on the Fm and the differ-
ence in the buoyant load component included in Fm between ridges.

The three main observations illustrated by Fig. 15 are as follows:
(1) the Fm is very likely influenced by the buoyant load Fb(Ap,η) of the
plug, (2) the Fb(Ap,η) is different for different ridges, and (3) after the
cohesive peak, the load is due to buoyancy of the rubble plug separating
from the rest of the rubble. These observations are shown by the fact
that the Fm and F(yI=20 mm) values in the figure increase with Ap,
with only a slight difference between the rates ∂Fm/∂Ap, ∂F(yI=
20 mm)/∂Ap, and ∂Fb(Ap,η)/∂Ap. Hence, Fm and F(yI=20 mm) are likely
both related to Ap and thus related on the buoyant force Fb(Ap,η) due to
the plug.

Since the data from all four ridges is included in Fig. 15, the differ-
ence in the Fm due to ridge geometry is likely related to the difference
in the buoyant load due to the rubble plug. From Fig. 15 it should be

noticed, that Fb(Ap,η) and Fm show similar behavior with Ap and
that the Fb(Ap,η) values are ~50% of the Fm values. These observations
indicate, that Fm values likely include a considerable buoyant compo-
nent, which should be taken into account when interpreting the F−yI
records, as will be discussed in Section 4.1.1.

3.2.2. Deformation patterns and post-peak load
The post-peak indentor load was related to the rubble deformation

patterns. The deformation patterns depended on the ridge geometry
as illustrated in Fig. 16. The figure shows the vertical displacement
field uy of the rubble at an indentor penetration of yI=5 mm.

The deformation patterns of Ridges 1 and 3, which are shown in
Fig. 16 are clearly different: The area of the rubble mass moving
downwards is significantly larger on Ridge 1 than on Ridge 3. Corre-
spondingly, the indentor load for Ridge 1 was ~50% higher than for
Ridge 3 around yI=5 mm (see Figs. 6–8). For the following discus-
sion, we should note, that the area of rubble having the same dis-
placement as the indentor (yI=5 mm, indicated by darkest blue in
the figure), was approximately equal for Ridges 1 and 3.

In order to show the relationship between the observations of the pre-
vious paragraph and the post peak indentor load, we defined the areas of
the displaced rubble as illustrated by Fig. 17. At various indentor displace-
ments, yI, we used downward rubble displacement fields, uy (illustrated
by the colors in Fig. 16) to define areas Ad of the rubble displaced by
more than some ratio K={0…1} of yI. Hence, Ad=Ad(K,yI) and, for
example, the area Ad(K=0.5, yI=100 mm) includes rubble with
uy>0.5×100 mm=50 mm. Similarly to the previous section, the
areas, Ad(K,yI), were also used to derive a buoyant load

Fd K; yIð Þ ¼ 1−ηð Þ ρw−ρið ÞgAd K; yIð Þ; ð14Þ

which can be compared with the post-peak indentor load. As an exam-
ple, the load Fd(K=0.5, yI=100 mm) is an estimate for buoyant load of
rubble with uy≥50 mm.

An example of the results of the analysis described above in Fig. 18
demonstrates the effect of rubble deformation patterns on the
post-peak indentor load, and it shows that a mass larger than just
the rubble directly under the indentor likely contributed to the buoyant
load component included in F. Fig. 18 shows the F(yI), Fd(K=0.45, yI)
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and Fd(K=0.9, yI) graphs from a simulation done on Ridge 1 plotted
against the indentor displacements.

The three plots in Fig. 18 depict the change in the rubble deforma-
tion field with displacement, which can also be seen by comparing
Figs. 16a and 19: The rubble plug that started to move after the initial
failure (Fig. 16a) dissolved due to freeze bond failures during the
indentor penetration, which led to a smaller amount of rubble mov-
ing downwards later in the simulation (Fig. 19). Corresponding to
this change in rubble deformation field, F and Fd(K=0.45, yI) in
Fig. 18 both decreased with increasing yI. Furthermore Figs. 16a and
19 show, that the amount of rubble that moved the same amount as
the indentor (dark blue area in the figures) remained approximately
constant, which explains the smaller decrease in Fd(K=0.9, yI) in
Fig. 18. It should be noted, that the value Fd(K=0.45, yI) in Fig. 18
cannot be the exact buoyant component of F because at certain
instants Fd(K=0.45, yI)>F; rather, it is merely an estimate of the
buoyant component and how it changes.

A similar relationship between the deformation fields and the
post-peak load levels applied for all simulations. To show this, we
derived data sets with values of Ad(K,yI) with K={0.1,0.45,0.9} and yI=
{20,30,40, …,150} mm and corresponding F values for each simulation.
One such set would include the Fd(K,yI) and F data given by the markers
in Fig. 18. The F−Ad(K,yI) sets from all of the simulations for each K=
{0.1,0.45,0.9} are shown in Fig. 20a and b, together with their correlation
coefficients (R) and linear fits. Fig. 20a gives F−Ad data from the simula-
tions done on Ridges 1–4 with freeze bond shear and tensile strengths of
τcr=50 kPa and σcr=10 kPa, respectively, and Fig. 20b includes the data
from all of the simulations. In both figures the data from simulationswith
the values μ=0.05 and μ=0.3 are included. In addition, the figures show
a line for buoyant force F ¼ 1−�ηð Þ ρw−ρið ÞgA, where �η is the mean
porosity of Ridges 1–4.

Figs. 18 and 20 illustrate three important findings related to the
interpretation of punch through test F−yI records on the post-peak
regime: (1) The assumption, that only the rubble directly under the

Fig. 16. Rubble deformation patterns for Ridges (a) 1 and (b) 3 after an indentor penetration of yI=5 mm. The colors indicate vertical displacement uy. In both simulations, τcr=50
kPa, σcr=10 kPa, and μ=0.05. The figures show part −10 m≤x≤10 m of the domain. The indentor perimeter in the x-direction is indicated by thick white dashed lines.
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Fig. 17. Definition of Ad(K,yI) for K values of 0.5 and 0.9: As shown in the illustration, for example the Ad(K=0.5, yI∗) at indentor displacement yI* includes the rubble with downward
displacements of uy>0.5yI*.
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indentor causes the buoyant load component is incorrect, as (2) the
indentor supports a larger volume of displacing rubble, leading to
(3) the post-peak load having a large component due to buoyancy,
which can decrease and be mistaken for as material softening.

The first two findings in the previous paragraph are shown by the
correlation coefficients, R, for the data sets F−Ad(K,yI) in Fig. 20.
These are R=0.13 when K=0.9 (no correlation) and R=0.88 when
K=0.45 (clear correlation) for the different ridge geometries with con-
stant freeze bond properties (Fig. 20a). For all of the simulations, data
set F−Ad(K=0.9, yI) shown had the value R=0.46, but still data set
F−Ad(K=0.45, yI) with the value R=0.82 clearly yield the best corre-
lation (Fig. 20b). The data set F−Ad(K=0.9, yI) show better correlation
in Fig. 20b than in Fig. 20a, which was due to higher Ad(K=0.9, yI)
values for the highest freeze bond strengths (τcr=100 kPa).

In addition to the R values, the lines giving the buoyant load as a
function of A in Fig. 20a and b support the second finding in both
cases, since the data set F−Ad(K=0.45, yI) data points in general
lie close to the lines in the figures. The last finding is also supported
by the data set F−Ad(K=0.45, yI) in Fig. 20a and b, and was also
illustrated by Fig. 18: A decrease in Ad(K=0.45, yI) leads to a decrease
in the post-peak F. Hence, the decrease in F is related to a change in
the deformation patterns of the rubble pile, not to the softening of
the rubble material itself.

4. Discussion

4.1. Rubble shear strength and material modeling

In the following section, we discuss the interpretation of the
punch through experiment results based on the results presented in
the previous section. First we discuss the derivation of the rubble
shear strength, τ, and consider the effect of incorrect assessment of
the buoyant load component. We demonstrate that an incorrect esti-
mate for the buoyant indentor load component has a major effect on τ
values derived for rubble after punch through experiment results.
Then, we discuss how the rubble friction angle is estimated, and we
argue that the punch through experiments may not be a suitable
method for deriving a friction angle for ice rubble. This is due to the
fact that the tensile freeze bond failures dominate the rubble failure
process.

4.1.1. Shear strength of the rubble
To derive τ for the rubble, it is necessary to make assumptions

about the rubble failure process and failure patterns. Usually as a
first assumption, the failure is assumed to occur on the vertical planes
that are aligned with the indentor perimeter and reach through the
rubble (Croasdale et al., 2001; Heinonen, 2004; Serré, 2011). In 3D
with a round indentor, this assumption leads to a so-called cylindrical
failure. For brevity, the term cylindrical failure is subsequently
applied to a 2D failure with failure planes that are aligned with the
indentor corners and have angle α=0 in relation to the vertical
(see Fig. 12).

The rubble shear strength, τ, is often derived using the maximum
indentor load, Fm, and is assumed to be given by the following equa-
tion (Azarnejad and Brown, 2001; Leppäranta and Hakala, 1992):

τ ¼ Fm−Fb
As

; ð15Þ

where Fb is the buoyant component of the indentor load and As is the
area of the shear planes within the rubble. For the following analysis,
we chose the As after cylindrical failure in 2D, thus As=2h (with h
being the rubble thickness).

In earlier studies, different estimates for the buoyant load compo-
nent, Fb, in Eq. (15) has been used. Here, we consider three options:
(1) Only taking account the maximum load Fm (Fb=0), as in, for
example Heinonen (2004), Croasdale et al. (2001) and Serré (2011);
(2) assuming that the buoyant load is a result of a cylindrical plug
(Fb≈11 kPa for all simulations here), as in, for example Leppäranta
and Hakala (1992), and (3) using the formula Fb=Fb(Ap,η) from
Eq. (13), assuming that the buoyant load is a result of a plug forming
in the initial failure (see Fig. 12). As in the case of Fig. 15, Fb(Ap,η) at
the instant of the indentor displacement yI=20 mm is used in the
following.
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Fig. 18. Post-peak indentor load F (black line) as a function of the indentor penetration
yI={20,30,40, …,150} mm from a simulation done on Ridge 1 with the buoyant forces
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Fig. 19. Downward rubble displacements of Ridge 1 at an indentor penetration of yI=150 mm. By comparing the above figure to that of Fig. 16a for the same simulation with value
yI=5 mm, we can see the change in rubble deformation patterns during the indentor penetration: The amount of downward moving rubble decreased when the yI value increased.
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The values of τwhen using assumptions (1)-(3) for Fb are given in
Table 2 for freeze bond shear strengths τcr={5,50,100} kPa. The sym-
bols τ(1), τ(2) and τ(3) in the table refer to the au values derived when
using assumptions (1)-(3) in previous paragraph for Fb, respectively.
The data in the table is from the simulations with both friction coeffi-
cients μ, the effects of which are discussed in the next section.

As Table 2 shows, the estimate for Fb drastically affects the shear
strength value derived from the experiments. With a low freeze
bond shear strength τcr, τ(2) and τ(3) show only fairly minor differ-
ence. The reason for this is that the failure pattern with the low τcr
values is close to that of the cylindrical failure: As Fig. 14 shows,
with the low τcr values, the area Ap of the initial plug due to failure
is fairly close to 16 m2 of the cylindrical plug.

The difference between the τ(2) and τ(3) values increases with τcr,
and τ(2) is approximately 50% higher than τ(3) with τcr=50 kPa. This
is due to the change in rubble failure patterns with τcr, as shown by

Fig. 14: The area Ap of the initial plug increases with τcr and is consider-
ably higher than the area of a cylindrical plug (16 m 2). With a τcr>50
kPa, the increase in τ is driven only by the increase in the rubble
strength (Ap stays virtually constant with τcr for τcr>50 kPa as Fig. 14
shows). As a result, τ estimates which do not properly take account
the buoyant load component, improve somewhat. Still, the difference
in the τ is up to 68% depending on the estimate.

4.1.2. Derivation of the material parameters
The simulations suggest that the punch through experiments may

not be a suitable method for deriving the rubble internal friction
angle. This observation is explained by the failure modes of the freeze
bonds: The ratio of bond points failing due to tensile failure instead of
shear failure under compression increased when the freeze bond
shear strength, τcr, was increased. In tensile failure, friction does not
affect the cohesive failure process of a bond because the bonded
blocks are not in contact with one another.

In other words, the frictional resistance is not mobilized at the
instant of the peak load in a punch through experiment, which has
also been formerly suggested by, for example, Croasdale in Azarnejad
and Brown (2001) and Liferov and Bonnemaire (2005). It should be
noted here, that here the frictional resistance is due to contact friction,
which is evidently related to the internal friction angle of the rubble
mass, that is, a change in friction coefficient or rubble friction angle
would be expected to cause similar change in the measured forces.

The failure modes of the bond points were studied here similar to
Ortiz and Pandolfi (1999). For each freeze bond failure, the normal
(δn) and tangential (δt) components of cohesive crack opening dis-
placement (see Section 2) were monitored. If δn≥ |δt| at the end of
the cohesive crack growth process (δe=δf in Fig. 4), then the failure
was tensile, otherwise, the failure was due to shear. The mean ratios
of the bond point tensile failures to the failures due to shear, together
with the ratios of rubble shear strength, τ, with different friction coef-
ficients μ, are collected to Table 3.

As Table 3 shows, already with a value τcr=5 kPa close to half of
the freeze bond failures occurred in tension (38%). Anyhow, the τ
values with τcr=5 kPa increase with μ, as most of the freeze bonds
still fail due to shear. As the rubble gets stronger, the relative number
of tensile failures increases, leading to virtually equal τ values
irrespective of μ: With a value τcr=100 kPa all shear strength mea-
sures τ(1)−(3) indicate a virtually equal rubble shear strength with
both μ, and the tensile freeze bond failures clearly dominate.

The above results suggest that in addition to the fair amount of
experimental work on freeze bond shear strength under compression
already conducted (Ettema and Schaefer, 1986; Repetto-Llamazares
et al., 2011a,2011b; Shafrova and Høyland, 2008), the freeze bond
tensile strengths should be studied in order to improve the interpre-
tation of punch through experiment results. So far, the experimental
work on freeze bond tensile strengths appears to be limited to the

Table 2
Mean shear strength, τ, values with their standard deviations for different freeze bond
shear strengths, τcr, and different measures for the buoyant indentor load component,
Fb, in Eq. (15): The value Fb=0 was used for τ(1), the value Fb=11 kN, assuming cylin-
drical failure, for τ(2), and the value Fb=Fb(Ap,η) from Eq. (13), while taking account
the buoyant load of the plug forming in the initial failure, for τ(3). In addition, the
table gives the ratios of the mean shear stress values derived using the different Fb

values. The table includes data from the simulations done on Ridges 1–4 with the fric-
tion coefficients μ=0.05 and μ=0.3 and a freeze bond tensile strength 10 kPa.

τcr [kPa]

5 50 100

τ values [kPa] τ(1) 3.6±0.8 5.8±0.9 7.0±1.3
τ(2) 2.3±0.8 4.5±0.9 5.7±1.3
τ(3) 2.0±0.6 3.0±0.6 4.2±1.0

τ ratios [−] �τ 1ð Þ=�τ 3ð Þ 1.79 1.96 1.68
�τ 2ð Þ=�τ 3ð Þ 1.14 1.52 1.36
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Fig. 20. The data set F−Ad(K,yI) (see text for details) when K={0.1,0.5,0.9} with
indentor displacements of yI={20,30,40, …,150} mm: (a) Simulations on Ridges 1–4
with a freeze bond tensile and shear strength of σcr=10 kPa and τcr=50 kPa, respec-
tively, and (b) all simulations. The legend gives the correlation coefficients R and the
linear fits of the data sets for each K. Data points from the simulations with both fric-
tion coefficients (μ=0.05 and 0.3) are included in the figure.
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so-called pull out tests briefly reported in Timco et al. (2000) and
Croasdale et al. (2001).

4.2. Comparison to experiments and continuum models

The results from the simulations were in agreement with earlier
experimental work, as shown below. Earlier modeling efforts and
the results from this study are also compared below. This comparison
includes two principal observations: (1) The continuum models used
previously differ from the model used here, as they do not predict
tensile failures within the rubble, and thus, show peak load values
that are highly dependent on the rubble friction, and (2) based on
the results presented here, the physical phenomena behind decreas-
ing post-peak indentor force, which is generally accounted on the
material softening in the continuum models, is related to the change
in the rubble geometry.

4.2.1. Comparison to experiments
The indentor force-displacement (F−yI) records in Fig. 6 show fea-

tures similar to those from full-scale experiments done by Heinonen
(2004): A peak load Fm occurred early in the experiments and was
followed by a drop in F values. Here, the initial drop due to global plug
failure was steeper than in their experiments, but Heinonen (2004)
reports that in their experiments, the post-peak load decrease does
not correctly present the rubble resistance due to a transient rapid
motion of the indentor platen after the peak load.

The peak load, Fm, and global plug failure occurred here at a very
early stage of the indentor penetration (~1 mm), as shown by Fig. 7.
The indentor penetration at Fm was smaller than usually observed in
the field, even if the indentor displacements at Fm have also been low
in the field. In the full-scale experiments performed and analysed in
Heinonen (2004), Fm occurred at an indentor displacement of yI=
8.8…18.1 mm (with a mean of 13.1 mm). Also Croasdale et al. (2001)
report that the Fm and global plug failure occurred with a very small
indentor penetration, but they unfortunately do not give exact indentor
penetration values.

The failure patterns from the simulations can be compared to those
observed in the laboratory, where detailed data on the failure patterns
is available. The failure patterns are in agreement with the findings of
Lemee and Brown (2002), who describe slow, small-scale punch
through experiments showing a trapezoidal plug of rubble moving
with the initial failure that occurred at the edges of the plug. Jensen et
al. (2001) describe the failure in their experiments also having a trape-
zoidal plug, with the plug edges thatwere approximately 40° in relation
to the vertical. This observation is in agreementwith the failure patterns
observed here, in which the angle of the plug edges was in the range of
the α values in Fig. 13.

The shear strength values, τ, given in Table 2 are well within the
range of those found in the literature. Croasdale et al. (2001) and
Heinonen (2004) reported values τ=6−12.8 kPa and 1.3−18 kPa,

respectively, both not taking account the buoyant load component
(Fb=0 in Eq. (15), hence the results should be compared to τ(1) in
Table 2), and Leppäranta and Hakala (1992) τ=1.7…4 kPa assuming
the buoyant load component being due to cylindrical plug (comparable
to τ(2) in the table).

4.2.2. Comparison to earlier models
The fact that the friction coefficient had a fairly small effect on the

peak load Fm was unexpected based on earlier work on punch through
experiments using continuum models: In the model by Heinonen
(2004) the maximum load increased with an increase in the cohesion
and with an increase in the friction angle of the continuum presenting
the rubble. Also, the continuummodel by Serré (2011) showed a similar
dependency between Fm and the friction angle for simulations without
cohesion (no study on the combined effect of friction and cohesion was
performed in his work).

According to Heinonen (2004), this result was due to compressive
pressure increasing within the rubble due to indentor penetration.
This leads to an increase in frictional resistance of the rubble on the
shear planes, which then hinders rubble displacements. Furthermore,
this effect becomes more prominent in his simulations with an in-
crease in the rubble cohesion, while the model does not show tensile
stresses within the pile. This tendency is very different from the ob-
servations made in ecrefphi; in those simulations tensile freeze
bond failures clearly occur (see Table 3) and the simulations show
vanishingly small effect of friction on Fm with high freeze bond
strengths (see Fig. 10).

On the other hand, when compared to the so-called pseudo-discrete
continuum model in Liferov (2005), the observations here met our
expectations. Liferov (2005) reports that the effect of the friction
angle on the initial failure and strength of the rubble in virtual shear
box experiments was negligible. It should also be noted, that his virtual
shear box experiments showed tensile freeze bond failures dominating
the rubble failure process under low compressive pressures and further
showed a combination of shear and tensile freeze bond failures with
higher compression. These findings support the observations on the
importance of the tensile freeze bond failures in Section 2.

The post-peak indentor load displacement records were similar to
those in the model provided by Heinonen (2004), excluding the initial
steep decrease after the maximum load, Fm, which occurred here.
After this steep decrease, both models show similar behavior, as the
post-peak F decreased with an increase in the indentor displacement.
In Heinonen (2004), the rate ∂F/∂yI of the decrease was affected by
the internal friction of the material, with a higher internal friction caus-
ing lower rate of decrease. Increasing the friction coefficient here caused
a similar change in the post-peak ∂F/∂yI, as Fig. 6 shows.

Based on the results here, our interpretation of the post-peak rub-
ble behavior differs from that offered by the continuum models.
Heinonen (2004) accounts for the decrease in the post-peak F as
being due to the rubble material softening, with the details of the
exact mechanism and physical phenomena being rendered out by
the continuum description of the rubble. The results here clearly indi-
cate (see Section 2 and Fig. 20 in particular) that the change in the
post-peak F is due to a change in the rubble deformation patterns,
that is, the post peak load is decreasing due to a change in the ridge
geometry during a punch through experiment.

5. Conclusions

In this paper we introduced and described in detail a technique for
modeling partly consolidated ice rubble using a two-dimensional
combined finite-discrete element method. In the technique, each ice
block within the rubble, the contact forces between the blocks, the
block deformation, and the rubble freeze bonds are modelled. The
technique for modeling freeze bonds was based on initially rigid
cohesive elements.

Table 3
Ratios of rubble shear strength, τ, resulting from the simulations done with different
friction coefficients, μ, τ(μ=0.05), and τ(μ=0.3), and the ratio of the number of tensile
bond failures (nt) to the number of bond failures due to shear (ns). Shear strength mea-
sures τ(1)−(3) refer to the τ values with different estimates for the buoyant load com-
ponent, Fb, in Eq. (15): Fb=0 was used for τ(1), Fb=11 kN, assuming cylindrical failure,
for τ(2), and Fb=Fb(Ap,η) from Eq. (13) while taking account the buoyant load of the
plug forming in the initial failure, for τ(3). The table includes data from the simulations
done on Ridges 1–4 with a freeze bond tensile strength 10 kPa.

τcr [kPa]

Ratio τ measure 5 50 100

τ(μ=0.3)/τ(μ=0.05) [−] τ(1) 1.17±0.09 1.06±0.03 1.02±0.01
τ(2) 1.29±0.12 1.07±0.04 1.02±0.01
τ(3) 1.09±0.35 1.07±0.10 0.98±0.12

nt/ns [−] 0.38±0.14 1.44±0.61 2.54±0.91
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We used the technique to the modeling of ridge keel punch through
experiments on relatively thin (4 m) partly consolidated ridges.We var-
ied the ridge keel strength by varying the shear strengths of the freeze
bonds. The main findings from the simulations concerning punch
through experiments with dimensions and freeze bond strengths com-
parable to the ones here are as follows:

• The maximum load in the experiments is dependent upon the initial
failure pattern of the rubble, which, on the other hand, is dependent
upon the geometry and strength of the ridge (see Sections 3.1–3.2.1).

• The post peak-load levels show a clear dependency on the rubble vol-
ume being displaced by the indentor platen during the experiment,
that is, the post-peak load is a function of the buoyant load of the rub-
ble displacing during the experiment (see Section 3.2.2).

• Incorrect assessment of the buoyant indentor load component can
lead to inaccuracies when in deriving the rubble shear strength:
The buoyant load component a result not only of the rubble directly
under the indentor and if not correctly taken account, could lead to
severe over estimation of ridge keel shear strength (see Sections
3.2.1 and 4.1.1).

• The decrease in the indentor load on the post-peak regime, usually
accounted for material softening, is due to a change in the rubble
mass supported by the indentor (see Figs. 18–20).

• Punch through experiments may not be a propermethod for deriving
the rubble friction angle for a strongly bonded ridge keel: The rubble
failure process mainly involves tensile failures of the freeze bonds
and the friction does not affect the peak load or the shear strength
(see Section 4.1.2).

Future work should include a more detailed investigation of the
reasons for the effect of the ridge geometry. This work should involve
various rubble depths, block geometries and indentor widths so as to
include the potential scale effects. More detailed study on the effect of
the freeze bond tensile strength should also be performed to investi-
gate whether or not the above findings apply to all freeze bond tensile
to shear strength ratios. In addition, punch through experiments
should be modeled in parallel to modeling of shear box experiments.

The model should also be used in parallel with continuummodels,
since large-scale problems are still more efficiently solved using the
continuummodels. On the other hand, continuummodels can benefit
from an understanding on the smaller scale phenomena provided by
discrete models. In other words, advantage of the complementary
roles of discontinuum and continuum modeling should be exploited
in modeling.

Related to the experiments, work on themodeling of punch through
experiments should include detailed identification of the relationships
between quantities measurable during the field experiments and the
material parameters. This work would make it easier to interpret the
results even when only a limited number of full-scale measurements
(often in very challenging environment) can be conducted.
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