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Abstract— In this paper we present a procedure for reducing the

excess variance introduced by Beamspace Transform when it is applied

to Uniform Circular Array (UCA). Several algorithms for Direction of

Arrival (DoA) estimation exploit modal transforms which are based on

the phase-mode excitation principle [1]. Here we analyze the inverse

Fourier series of the array impulse response, called Effective Aperture

Distribution Function (EADF), for defining an efficient criterion for

selecting the number of virtual array elements. The proposed criterion

is optimum in the sense that maximizes the aperture of the virtual array

while satisfying certain constraints on the maximum number of virtual

array elements. Simulation results show that we can obtain DoA estimates

with a lower variance such that they are closer to the CRB.

I. INTRODUCTION

Circular arrays are of interest in a variety of applications, e.g.

in multiantenna transceivers. Moreover, UCA’s have almost uniform

performance regardless of the angle of azimuth and they can estimate

both azimuth and elevation angles simultaneously. Several DoA

estimators for UCA, such as MUSIC, root-MUSIC and ESPRIT

[2]-[4] employ some modal transforms, e.g. Davies and Beamspace

Transform. These transforms essentially map the steering vectors of

UCA into the steering vectors of a ULA-like array, called virtual

array, with an approximated Vandermonde structure [5].

In [2],[5] it has been shown that the Beamspace Transform (BT)

works properly only under certain constraints that may be difficult

to satisfy in some applications. As claimed in [5], when the BT

does not work under suitable conditions on the array configuration

(number of elements, interelement spacing,...), a bias and an excess

variance may appear in the DoA estimates which severely degrade

the algorithm performance. Here, the excess variance refers to the

variance introduced by the modal transform on top of the Cramér-

Rao Lower Bound (CRB). An efficient solution for bias cancellation

has been proposed in [5]. However, it does not deal with the excess

variance that appears after the BT.

In this paper we propose a method to reduce the excess variance

term based on the analysis of the EADF [8]. The proposed method

selects the appropriate number of virtual array elements M which

leads to reduced variance. The simulation results clearly shown that,

by selecting the number of virtual array elements using the proposed

method, the variance may get significantly reduced. Consequently, the

statistical performance of the DoA estimation algorithm gets closer

to the CRB.

This paper is organized as follows. First, the UCA signal model

is presented. In Section III, the phase-mode excitation principle

is described by focusing on the functions defined on the original

and transformed domain. In Section IV, we introduce the modal

transforms and in particular the different design criteria for selecting

M. In Section V, we introduce the concept of Effective Aperture

Distribution Function (EADF). In Section VI we propose a criterion

for selecting M which is based on analyzing the EADF. In Section

VII, simulation results demonstrating the reduction of the variance

are shown. Finally, Section VIII concludes the paper.

II. SIGNAL MODEL

Let us have a Uniform Circular Array of N sensors. There are P

(P < N ) uncorrelated narrow-band signal sources on the array plane,

impinging the array from directions φ1, φ2, . . . , φP (φ is the azimuth

angle). Furthermore we assume that K snapshots are observed by the

array. The N ×K element-space array output matrix may be written:

X = AS + N, (1)

where X ∈ C
N×K is the element-space data matrix, A ∈ C

N×P is

the element-space steering matrix, S ∈ C
P×K is the source matrix

and N ∈ C
N×K is the noise matrix. The noise is modelled as a

stationary, second-order ergodic, zero-mean spatially and temporally

white circular complex Gaussian process.

The N × P element-space steering vector matrix may be written

as A = [a1(ζ, φ),a2(ζ, φ), . . . , aP (ζ, φ)] where each column is of

the form

ap(ϑ) = [ejζ cos (φp−γ0)
, e

jζ cos (φp−γ1)
, . . . , e

jζ cos (φp−γ(N−1))]T

(2)

for p = 1, 2, . . . , P . Here ϑ = (ζ, φ) and ζ = κr sin θ, r is the

radius, κ = ω

c
is the wavenumber, c is the speed of light, ω = 2πf

is the angular frequency and γn = 2πn

N
(n = 0, . . . N − 1) is the

sensor location. The elevation angle θ is measured down from the z-

axis (assumed to be θ = 90◦) and φ is the azimuth angle measured

counterclockwise from the x-axis in the xy-plane [5].

III. PHASE MODE EXCITATION

The phase-mode excitation principle was introduced by Davies [1]

and it focuses on the study of spatial harmonics [3]. It is essentially

a Fourier analysis of the array excitation functions for different

array configurations, e.g. for UCA [1]-[2]. The principle forms the

background for the Davies, Beamspace and Generalized Beamspace

Transform [5].

For circular arrays the study on the spatial harmonics may be

described using two different array configurations, the continuous

and the discrete circular array (i.e. UCA). A detailed analysis of

a continuous circular aperture shows that any excitation function is

periodic in γ with a period of 2π. Hence, it can be expressed in terms

of Fourier series [1]. A generic excitation function w(γ) may be

defined using the inverse Fourier series w(γ) =
�

∞

m=−∞
cmejmγ ,

where the mth phase mode wm(γ) = ejmγ represents a spatial

harmonic of the array excitation and cm is the corresponding Fourier

series coefficient. For continuous circular arrays we can compute the
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normalized far-field pattern resulting from exciting the aperture with

the mth mode as [1]-[2]

f
c

m(ϑ) =
1

2π

� 2π

0

wm(γ)ejζ cos(φ−γ)dγ = j
m

Jm(ζ)ejmφ
, (3)

where Jm(ζ) is the Bessel function of the first kind of order m. As

a result we have a continuous periodic function in the transformed

spatial domain γ and a discrete aperiodic function in the domain of

the excitation mode order m.

In case of discrete circular aperture (UCA) the normalized far-field

pattern resulting from exciting the aperture with the mth mode is

f
s

m(ϑ) =j
m

Jm(ζ)ejmφ +
∞�

q=1

(jg
Jg(ζ)e−jgφ + j

h
Jh(ζ)ejhφ)

=j
m

Jm(ζ)ejmφ + εm , (4)

where εm represents a sum on index q = 1, 2, . . . ,∞ for defining

the mth excitation mode and the indices g and h are defined as

g = Nq − m and h = Nq + m, respectively. Eq.(4) is composed

of two terms. The first term is known as the principal term. The

other quantity εm, called residual term, arises from sampling the

continuous aperture by N sensors and may represent either an error

(under the transformation point of view [5]) or a set of replicas with

index q of the principal term (from a function analysis perspective).

In other words, by sampling the continuous periodic function in

the spatial harmonics domain, we get infinite replicas (shifted by

m = N ) of the discrete aperiodic function, eq.(3), in the excitation

mode domain. As will be explained in Section V, this leads to aliasing

problems which indeed define the choice of the virtual array size.

As explained in [2],[5] the replicas εm of the principal term

in eq.(4), also called higher-order distortion modes, have to be

minimized in order to get closer to the ideal (continuous) case, i.e.

for reducing the bias term on the DoA estimates.

IV. MODAL TRANSFORMS CRITERIA FOR VIRTUAL ARRAY SIZE

In this section two modal transforms are presented. In particular we

focus on the criteria used for determining the size of the virtual array

M after the transforms. Some methods originally designed for ULA,

e.g. root-MUSIC and spatial smoothing [2]-[4] use these modal trans-

forms in order to build the desired structure of the steering vectors

(i.e. the Vandermonde structure) that is exploited in finding the DoA’s.

It can be easily shown that the size of the virtual array M is always

odd [5]. For this reasons we can write that M = 2M + 1 where

M is the maximum excitation mode order. Overall it is important

to remember that the modal transforms can not make the size of the

physical array larger, e.g. UCA [1],[3]. This means that the constraint

M ≤ N has to be always verified due to spatial sampling conditions

(Nyquist criterion).

A. Davies Transform Criterion

The idea of Davies transform is closely related to the study of

phase mode excitation [3]. The key point is to create a transformation

matrix (see [1],[6] for details) for mapping from UCA into a virtual

array. In literature, some criteria for determine the virtual array size

can be found. For instance, in [6] it is suggested to use a square

transformation matrix such that the size of UCA and the virtual array

are the same M = N . Unfortunately this approach can give some

problems for UCA with an even number of elements as shown in

Section V [3].

A more advanced criterion can be found in [3],[7] where the

maximum excitation mode order M is chosen as

max � M �����
M ≤

N − 1

2
and

|JM−N (κr)|

|JM (κr)|
< ǫ � . (5)

Here the first inequality relates to the spatial sampling condition and

the second condition determines the accuracy of the approximation by

giving a measure of the effect of the aliasing on the highest mode M .

It is important to remember that the aliasing (i.e. the residual term)

may introduce an error in the transform that could lead to biased DoA

estimates [5]. For example, let us consider Fig.2a with M = 3 and

M−N = −4. For the excitation mode m = 3, the m = −4 mode of

the right replica is interfering with the m = 3 mode of the dominant

term. The ratio of the two modes gives a measure of aliasing.

The criterion has the drawback of requiring some preprocessing for

determining the virtual array size and it shows a trade-off between

the aperture of the virtual array and the accuracy of the transform.

B. Beamspace Transform Criterion

The Beamspace Transform (BT) is done by employing a M × N

beamformer F
H

e (see [2] for details) for mapping between UCA and

the virtual array. Notice that the transformation matrix is in general

not square and M ≤ N .

A rule of thumb for computing the highest order mode M is to

consider the smallest integer that is close or equal to κr, where r

is the array radius and κ = ω

c
is the wavenumber. In this way the

excitation modes are m ∈ [−M, M ]. For more details, see [2],[5]. It

is interesting to notice that also Davies gave a similar criterion for

selecting the maximum excitation mode order [1].

This approach has the advantage of being simple and straight

forward. On the other hand it does not optimize the virtual array

size (aperture) and, for certain UCA configuration, it does not

select a proper number of modes, see Section VI for numerical

examples. Consequently, the resolution of the array may reduce and

the statistical performance of the DoA estimation algorithm could

remain far from the theoretical limit (CRB), see Figures 3 and 4.

V. EFFECTIVE APERTURE DISTRIBUTION FUNCTION

The Effective Aperture Distribution Function (EADF) represents a

way of modelling the beampattern of antenna arrays as a function of

the azimuth and elevation angles of incoming waves [8].

An antenna array response to a far field source can be model

by measuring the directional characteristic of the antenna in an

anechoic chamber. For our purposes, we may measure the array

response to a far field source by moving it around the array at a fixed

elevation angle θ = 90◦ along the azimuthal direction in the range

φ ∈ [−π, π). This creates a discrete set of measured point along

the direction φ which represents a discrete periodic function with

period 2π in azimuth. Hence, the beam pattern can be expressed by

an inverse FFT (Fast Fourier Transform) of the previously measured

data. We will refer to this Fourier series as the Effective Aperture

Distribution Function.

In Fig.1 we depict three EADF’s as a function of the order m for

different values of the interelement spacing d. In particular an UCA

with N = 12 omnidirectional sensors and d = {0.3λ, 0.4λ, 0.5λ}
have been considered. From the picture we first observe that the tails

of the EADF (for high mode orders) show a significant increase in

magnitude as the interelement spacing increases. Hence, see Fig.2,

the influence of the replicas of the EADF on the dominant term

increases, i.e. the aliasing is larger. Notice that this can also be seen

as an amplification of the error after the BT [5]. Moreover, the EADF

is a discrete aperiodic function with an infinite number of modes [3]
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as described in the case of continuous circular array, eq.(3). However,

since the magnitude decreases rapidly as the mode order increases,

it is reasonable to consider only a finite number of modes [1].

In Fig.2 we show the effect of the spatial sampling on the EADF.

In case of UCA, eq.(4) the continuous periodic spatial harmonic

function is sampled by the array sensors at a rate γn = 2πn

N
(for

n = 0, . . . , N −1). Replicas of the original EADF, shifted by N , are

hence created in the excitation modes order domain. Clearly, these

replicas interfere with the original EADF by causing aliasing. Notice

that, in order to make the illustration clearer, only the first left and

right replicas (for q = 1) have been depicted.

The EADF clearly illustrates the impact of the spatial sampling on

the excitation modes. Consequently, we can choose the virtual array

size optimally such that its aperture is as large as possible, as it will

be described in the next section.
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Fig. 1. Comparison between the excitation modes amplitude for an UCA
with N = 12 sensors at f = 1.8 GHz. Clearly the magnitude (in dB)
increases significantly as the interelement spacing d increases.

−15 −10 −5 0 5 10 15
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Excitation Modes

M
ag

ni
tu

de
 (d

B)

a)

−15 −10 −5 0 5 10 15
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Excitation Modes

M
ag

ni
tu

de
 (d

B)

b)

Dominant Term
Right Replica
Left Replica

Fig. 2. Representation of the excitation modes belonging to the dominant
term and the first left and right replicas of it due to the spatial sampling
by the UCA sensors. Here d = 0.4λ, f = 1.8 GHz, N = 7 and N = 8

in a) and b) respectively.

VI. VIRTUAL ARRAY SIZE

Here we propose a criterion for selecting the number of virtual

array elements M based on the analysis of the EADF. As it is clearly

depicted in Fig.2, for every UCA configuration we want to select

all the available excitation modes where the magnitude value of the

dominant mode is larger than the magnitude of the replicas (aliasing

mode). As a result, the rule of thumb for choosing the total number

of excitation modes M (i.e. the size of the virtual array) is:�
M = N − 1 for arrays with an EVEN number of sensors

M = N for arrays with ODD number of sensors
(6)

where N denotes the number of sensors in the UCA.

This approach has the advantage of being simple to use and

optimum with respect to the size of the virtual array. In fact, the

aperture of the virtual array is relatively large since we choose always

as much elements as possible. Notice that the criterion in eq.(6) is

similar to the one in eq.(5). However, since in this paper we reduce

the bias by preprocessing, we can avoid the second condition in (5)

and write a more compact criterion as in (6).

In Table I we compare the total number of excitation modes M

that the BT criterion (Section IV-B) and the criterion in eq.(6) suggest

to use in the modal transforms. For several UCA configurations, the

criterion in eq.(6) gives a larger M than the BT criterion, and it always

satisfies the constraint M ≤ N . Hence, the proposed criterion tends to

select a virtual array with as large aperture as possible. Consequently,

as will be show in Section VII, the resolution limit of the virtual array

is improved and we can significantly reduce the excess variance.

It is also interesting to notice that the BT criterion gives an

improper value for M in case of even sized UCA and d = 0.5λ

because it does not satisfy the constraint M ≤ N . On the other hand

the proposed criterion, eq.(6), still gives a reasonable/optimal value.
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Fig. 3. Performances of UCA Unitary root-MUSIC (with bias correction)
when the total number of modes is selected either with the conventional
rule of thumb (M = 5) or with our approach based on EADF (M = 7).
In the latter case we get closer to the CRB. Settings: N = 7, f = 1.8
GHz, d = 0.3λ and (φ1, φ2) = (10

◦, 20◦).
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Fig. 4. Performances of UCA Unitary root-MUSIC (with bias correction)
when the total number of modes is selected either with the conventional
rule of thumb (M = 5) or with our approach based on EADF (M = 7). In
the latter case the excess variance is reduced. Settings: N = 7, d = 0.4λ
and (φ1, φ2) = (10

◦, 20◦).

VII. SIMULATION RESULTS

In this section some simulation results are presented. In order to

provide DoA estimates the UCA Unitary root-MUSIC algorithm [4],

in conjunction with the bias correction procedure [5], has been used.
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TABLE I

TOTAL NUMBER OF EXCITATION MODES M FOR UCA’S WITH SEVERAL NUMBER OF SENSORS N AND DIFFERENT INTERELEMENT SPACINGS d.

HERE WE COMPARE THE TOTAL NUMBER OF MODES COMPUTED: FIRST BY THE RULE OF THUMB OF THE ORIGINAL BEAMSPACE TRANSFORM

(BT) (M ≈ κr) AND SECOND BY ANALYZING THE NON-ALIASED TERMS OF THE EFFECTIVE APERTURE DISTRIBUTION FUNCTION (EADF).

d = 0.3λ d = 0.4λ d = 0.5λ

N Radius M (BT) M (EADF) Radius M (BT) M (EADF) Radius M (BT) M (EADF)

3 0.1732λ 3 3 0.2309λ 3 3 0.2887λ 3 3

4 0.2121λ 3 3 0.2828λ 3 3 0.3536λ 5 3

5 0.2552λ 3 5 0.3403λ 5 5 0.4253λ 5 5

6 0.3λ 3 5 0.4λ 5 5 0.5λ 7 5

7 0.3457λ 5 7 0.4610λ 5 7 0.5762λ 7 7

8 0.3920λ 5 7 0.5226λ 7 7 0.6533λ 9 7

9 0.4386λ 5 9 0.5848λ 7 9 0.7310λ 9 9

10 0.4854λ 7 9 0.6472λ 9 9 0.8090λ 11 9

11 0.5324λ 7 11 0.7099λ 9 11 0.8874λ 11 11

12 0.5796λ 7 11 0.7727λ 9 11 0.9659λ 13 11

24 1.1492λ 15 23 1.5323λ 19 23 1.9153λ 25 23

32 1.5303λ 19 31 2.0405λ 25 31 2.5506λ 33 31

The correction procedure indeed mitigates the effect of the replicas of

the EADF by cancelling the bias term. Moreover it allows us to focus

on the excess variance introduced by the modal transform since it is

the only remaining error term. In fact, in both pictures, the constant

gap in between the CRB and the estimated Root Mean Square Error

(RMSE) is due to the excess variance term.

In Fig.3 we can see that the extra variance term can be significantly

reduced by properly selecting the number of virtual array elements

M. The conventional beamspace transform suggest to select M = 5
elements for this array configuration. Instead, the proposed criterion

based on the EADF suggests to increase the aperture of the virtual

array by selecting M = 7 elements. Notice that in this way we

optimize the virtual array size subjected to M ≤ N . As a result the

variance of the estimates is closer to the CRB.

In Fig.4 we also demonstrate that the excess variance can be

reduced by a proper selection of M.

In [9] it has been proven that working in the beamspace domain

leads to a loss in statistical performance. Consequently, the CRB can

not be achieved. The gap left between the RMSE and CRB curves

depends on the beamformer [9]. However, since the beamformer used

in the BT is a function of d [5], the loss in performance is proportional

to d as well. Consequently, the gap increases as d increases.

Comparing Fig.3 and 4, we observe that even though we are more

far from the CRB for large d, the RMSE (and of course the CRB)

are smaller in case of d = 0.4λ than d = 0.3λ. As a result, it is

better to use an array with large aperture.

VIII. CONCLUSIONS

In this paper we have presented a simple and efficient approach

for selecting the number of elements of the virtual array. As a result

we optimize the size of the virtual array by generally making its size

larger. Notice that the proposed criterion always satisfies the modal

transformation constraints. Consequently, the excess variance in the

DoA estimations is reduced and we get closer to the CRB.
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