
Bayesian Optimization Augmented
with Actively Elicited Expert
Knowledge

Daolang Huang

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 17.5.2022

Supervisor

Prof. Samuel Kaski

Advisors

Dr. Louis Filstroff

M.Sc. Petrus Mikkola

Copyright © 2022 Daolang Huang

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Daolang Huang
Title Bayesian Optimization Augmented with Actively Elicited Expert Knowledge
Degree programme Computer, Communication and Information Sciences
Major Machine Learning, Data Science and Artificial

Intelligence (Macadamia)
Code of major SCI3044

Supervisor Prof. Samuel Kaski
Advisors Dr. Louis Filstroff, M.Sc. Petrus Mikkola
Date 17.5.2022 Number of pages 49+10 Language English
Abstract

Bayesian optimization (BO) is a well-established method to optimize black-box
functions whose direct evaluations are costly. In this thesis, we tackle the problem
of incorporating expert knowledge into BO, with the goal of further accelerating
the optimization, which has received very little attention so far. We design a multi-
task learning architecture for this task, with the goal of jointly eliciting the expert
knowledge and minimizing the objective function. In particular, this allows for
the expert knowledge to be transferred into the BO task. We introduce a specific
architecture based on Siamese neural networks to handle the knowledge elicitation
from pairwise queries. Experiments on various benchmark functions with both
simulated and actual human experts show that the proposed method significantly
speeds up BO even when the expert knowledge is biased compared to the objective
function.
Keywords Bayesian optimization, knowledge elicitation, active learning, preference

learning, multi-task learning

4

Preface
First and foremost, I am deeply indebted to my supervisor Prof. Samuel Kaski for his
constructive advice and feedback during the thesis process. Also, I want to express
my sincere gratitude to my advisors Dr. Louis Filstroff and M.Sc. Petrus Mikkola for
their patience and insightful comments. It is a truly great experience to work with
them. At last, I am grateful to the members of the Probabilistic machine learning
group for their assistance during the experiment and writing stage.

Otaniemi, 17.5.2022

Daolang Huang

5

Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 7

1 Introduction 9
1.1 Motivation . 9
1.2 Contributions . 10
1.3 Outline . 11

2 Background 12
2.1 Bayesian Optimization . 12

2.1.1 Overview . 12
2.1.2 Surrogate Model . 14
2.1.3 Acquisition Functions . 15
2.1.4 Multi-Fidelity Bayesian Optimization 16

2.2 Bayesian Neural Network . 16
2.2.1 Definition . 16
2.2.2 Bayesian Inference Methods 18

2.3 Active Learning . 19
2.4 Multi-Task Learning . 21

2.4.1 Definition . 21
2.4.2 Methods . 22
2.4.3 Loss Weighting . 23

3 Related Work 24
3.1 Knowledge Elicitation . 24
3.2 User Belief-Enhanced BO . 25

4 Preferential Bayesian Neural Network 26
4.1 Preference Learning With Siamese Networks 26
4.2 Active Data Acquisition . 28

5 Expert Knowledge-Augmented Bayesian Optimization 30
5.1 Surrogate model for f . 30
5.2 Multi-task learning . 31
5.3 Acquisition function . 31

6

6 Experiments 34
6.1 Performance of the PBNN architecture 34

6.1.1 Toy example: Capturing the shape 34
6.1.2 Elicitation performance . 34

6.2 Comparison of the optimization performance on benchmark functions 36
6.2.1 Experiment on simulated experts 36
6.2.2 Experiment with actual human experts 38

7 Summary 43

References 44

A User Manual 50
A.1 Introduction . 50
A.2 Experimental details . 50

B Experimental settings 52
B.1 Elicitation experiment . 52
B.2 BO with simulated experts . 53
B.3 BO with actual human experts . 54

C Additional experiments 56

7

Symbols and abbreviations

Symbols

α hyper-parameter of combined loss function
αAL active learning acquisition function
αEI expected improvement acquisition function
βf output layer weights of f̃
βg output layer weights of g̃
Df set of obtained data in BO: Df = {xj, f(xj)}J

j=1
Dg set of queried preference data: Dg = {(xi,x′

i, ŷi)}M
i=1

Dpool pool of unlabeled instance
δ perturbation function for generating biased knowledge
E expectation
Ex expectation with respect to x
f a black-box objective function
f̃ surrogate model of f
g latent expert belief towards objective function f

g̃ surrogate model of g
h binary entropy: h(p) = −p log(p)− (1− p) log(1− p)
H differential entropy
I mutual information
J BO acquisition budget
k kernel function
Lf loss of f̃
Lg loss of g̃
Lj combined loss of Lf and Lg after jth BO acquisition
ℓ a length-scale parameter
M active learning budget
µx predictive mean of x
∅ empty set
N active learning query pool size
N (µ, σ2) normal distribution with mean µ and variance σ2

p probability density
q an approximation to probability density p
ϕwh

neural network forward pass through wh

Φ standard normal cumulative density function
ψ standard normal probability density function
σ sigmoid function: σ(x) = 1

1 + e−x

8

σδ variance of perturbation function
s2

x predictive variance of x
θg hyper-parameters of q
t number of Monte Carlo sampling iterations passed
T Monte Carlo sampling budget
wf neural network weights of f̃ : wf = [wh,βf]
wg neural network weights of g̃: wg = [wh,βg]
wh shared weights in multi-task learning structure
x a vector-valued input location
x̌ the location with largest acquisition function prediction
x⋆ a location attaining the global optimum of f : x⋆ = arg minx∈X f(x)
X domain of objective function
ŷ preference label of covariates pair [x,x′] given by the expert: ŷ ∈ {0, 1}
ybest current observed minimum value of f
ζ Siamese network connection function

Abbreviations
BO Bayesian optimization
GP Gaussian process
NN neural network
ANN artificial neural network
BNN Bayesian neural network
VI variance inference
MCMC Markov Chain Monte Carlo
PBNN preferential Bayesian neural network
ELBO evidence lower bound
MFBO multi-fidelity Bayesian optimization
KL Kullback-Leibler
MTL multi-task learning
AL active learning
BALD Bayesian active learning by disagreement
PBALD preferential Bayesian active learning by disagreement
BBB Bayes by backprop
EI expected improvement

1 Introduction

1.1 Motivation

Bayesian optimization (BO) [Jones et al., 1998, Brochu et al., 2010] has become a
well-established class of methods to optimize black-box functions, with applications in
hyper-parameter tuning [Snoek et al., 2012, Swersky et al., 2013], chemistry [Griffiths
and Hernández-Lobato, 2017, Hase et al., 2018], and material science [Packwood,
2017, Zhang et al., 2020], to cite only a few. In a nutshell, BO algorithms build
a probabilistic surrogate model of the objective function based on its evaluations,
such as a Gaussian process [Jones et al., 1998] or a Bayesian neural network (BNN)
[Snoek et al., 2015, Springenberg et al., 2016, Kim et al., 2021], and sequentially
select optimal new points to evaluate. The selection of the new points is guided by an
acquisition function, which aims at balancing between exploration and exploitation.

Each domain-specific BO problem naturally has its domain experts with their own
knowledge of the problem, i.e., often tacit knowledge about the shape of the objective
function f or where the global optimum might lie. Moreover, the cost of asking the
expert can be significantly cheaper than the cost of obtaining the value of f(x) in
many applications (e.g., when obtaining f(x) corresponds to running a simulation on
a supercomputer or conducting a laboratory experiment). However, and surprisingly
enough, leveraging that expert knowledge in order to speed up BO has only started
to receive attention in the literature very recently. To the best of our knowledge, this
problem has only been tackled from the perspective of incorporating expert prior
knowledge about the location of the optimum into the BO acquisition function [Li
et al., 2020a, Ramachandran et al., 2020, Souza et al., 2021, Hvarfner et al., 2022].
None of these works properly discuss how to obtain such a prior. The reason may be
that eliciting knowledge from humans is notoriously challenging. Indeed, humans can
be bad at evaluating absolute magnitudes, but on the other hand can be much better
at comparing two instances [Millet, 1997, Shah et al., 2014] (e.g., humans can judge
which molecule is more stable, but cannot directly give values for the energy levels).
This has been utilized for preference learning through pairwise comparisons of items
[Chu and Ghahramani, 2005], and has been expanded to an online learning setting
[Brochu et al., 2008, González et al., 2017] to find the optimum of the preferences.
Even though this approach has recently been shown to work in expert knowledge
elicitation [Mikkola et al., 2020], there is still a need for methods to elicit knowledge
from the expert with the goal of performing BO for f . Secondly, transferring that
knowledge into the BO task also represents a technical challenge.

10

1.2 Contributions

In this thesis, we propose an expert knowledge-augmented BO method, which solves
the aforementioned issues. We formulate the problem as a multi-task learning (MTL)
problem [Caruana, 1997], and propose to solve it with a Bayesian neural network-
based architecture whose goal is to learn both the objective function f and the
expert knowledge. The key insight is to leverage statistical strength across the latent
representations of the two tasks, which both are about the same ground truth f ,
even though both can be imperfect in different ways. We operate by first querying
the expert, and then initialize the BO with that knowledge, which leads to a speed-
up for the BO. To make this architecture work, we introduce a novel preference
learning method for the expert knowledge elicitation, which is based on Siamese
neural networks. We call it a preferential Bayesian neural network (PBNN); it not
only learns the instance preference relationship, but is also capable of capturing the
latent function shape. As working with humans implies a limited number of queries,
we use active learning to sequentially ask the most informative queries from the
expert. Experiments demonstrate that PBNN leads to better performance of learning
preference relationships than existing GP-based approaches with limited numbers of
data acquisition steps. More importantly, we show that standard BO optimization
can be significantly sped-up when the elicited expert knowledge is transferred to
the BO surrogate. For instance, if the simulated expert knowledge is 80% accurate,
the BO speedup varies between 1× and 25× across the experimented benchmark
functions.

In summary, the main contributions in this thesis are:

• We propose a new preference learning method for knowledge elicitation based
on Siamese neural networks; it leads to better performance in capturing latent
preference relationships than previous GP-based methods under a limited query
budget.

• We study how to effectively transfer the elicited expert knowledge into the
BO. To that end, we propose integrating the PBNN into a multi-task learning
architecture. By doing so, we can provide the surrogate model of f with a
good initialization and then accelerate optimization.

• We demonstrate the effectiveness of our proposed knowledge augmented-BO
on different BO benchmark functions with our simulated experts.

• We further carry out demo experiments with actual human experts, which shows
promising results as to the applicability of this work to real-world problems.

11

1.3 Outline

This thesis is organized as follows. Section 2 introduces the necessary background
related to this work. Basic ideas of Bayesian optimization, Bayesian neural network,
active learning, and multi-task learning will be covered. Section 3 discusses recent
works of the literature that aim to elicit the human knowledge, and also the works
that try to speed up BO by incorporating human belief, which have the same goal
as ours but are tackled in different manners. The details of our proposed PBNN
architecture is described in Section 4, as well as the active learning strategy used in
the knowledge elicitation stage. In Section 5, we first describe the surrogate model
used for f , and then illustrate how to incorporate the elicited expert model into
the BO surrogate with the proposed multi-task learning architecture. Experimental
results, which consist of preference learning performance comparison between GP and
PBNN, and knowledge-augmented BO performance with different levels of simulated
experts and real human experts, are shown in Section 6. Finally, Section 7 concludes
the thesis and proposes some future work.

12

2 Background

2.1 Bayesian Optimization

2.1.1 Overview

Let f : X → R be a black-box function with no analytical form defined over some
compact space X . The function f lacks easy-to-optimize structure information such
as concavity or linearity. Moreover, we cannot apply gradient descent or Newton’s
method since we are unable to access the first- or second-order information. We
assume the only possible thing to do is to evaluate f at some point x, but it may be
expensive. The goal of Bayesian optimization (BO) is to find the global optimum x⋆

of f under a limited budget, defined as

x⋆ = arg min
x∈X

f(x). (1)

BO is equipped with two major components: a probabilistic surrogate model for
f responsible for output prediction and uncertainty estimation, and an acquisition
function α used to choose the next point to evaluate. During optimization, we first
initialize the surrogate model with the original dataset, then conduct the following
operations iteratively:

• Query the next point based on the acquisition function’s score across the input
domain.

• Augment the existing dataset with the newly added sample.

• Update our surrogate model with the new dataset.

Algorithm 1 Basic BO algorithm
Input: BO acquisition budget J , Initial dataset Df

Output: Minimum of f
1: Initialize ybest with the current minimal function value in Df

2: Initialize a surrogate model f̃ with Df

3: for j = 1 to J do
4: x̌j = arg max

x∈X
α(x)

5: Evaluate f(x̌j)
6: Df ← Df ∪ (x̌j, f(x̌j))
7: Update the surrogate model with Df

8: ybest ← min(ybest,minimum of posterior mean)
9: end for

10: return ybest

13

Figure 1: A visualization of how Bayesian optimization works. The target is 1D
Forrester function, we use a GP as the surrogate model. The above figure is the
posterior prediction distribution with the utility of the acquisition function after 2
steps. The figure below is the result after 5 steps. BO chooses the next query point
with the highest utility score of acquisition function.

This standard process is summarized in Algorithm 1. A visualization of BO in
Algorithm 1 with a GP [Williams and Rasmussen, 2006] surrogate model and the

14

expected improvement acquisition function (EI) [Jones et al., 1998] after 2 and 5
steps is shown in Figure 1. The solid blue line is the objective function, we use
the 1D Forrester function between 0 and 1. The black dotted line is the predicted
mean value returned by the Gaussian Process (GP) surrogate model, and the shaded
region corresponds to the 95% confidence interval. The bottom panel shows the
utility score of the EI function, which we choose the place with maximal value as
the next point to query. We will cover more details of the surrogate model and the
acquisition function in the subsequent subsections.

2.1.2 Surrogate Model

GP [Williams and Rasmussen, 2006] is the most common surrogate model for BO, as
it naturally fits the problem with its flexibility and built-in uncertainty estimation.
A GP is a stochastic process that consists of a collection of random variables, where
the joint distribution of any finite subset of these is a Gaussian distribution. A GP
is fully specified by its mean function m and its covariance function K. The mean
function m specifies the expected function value of input x. In BO, m is usually
a zero-mean function, i.e., m(x) = 0. K is also called the kernel where K(x,x′)
specifies the statistical relationship between two input points x and x′. It can be
viewed as a method to define the similarity between inputs. There are multiple
choices of the kernel, such as squared exponential kernel, linear kernel and periodic
kernel. We place a GP prior on the function f , which we write as:

f ∼ GP (0, K(x,x′)). (2)

Given a dataset D which consists of a collection of input points [x1, ...,xN]
and their corresponding function values f1:N = [f(x1), ..., f(xN)], GP constructs
a prior distribution with a zero-mean vector, and a covariance matrix K, where
[K]ij = K(xi,xj). When we need to evaluate the predicted function value over a
new point x̃, with the property of multivariate Gaussian distribution, the posterior
distribution P (f(x̃)|x̃,D) is also a closed-form Gaussian with:

µ(x̃) = kT K−1f1:N (3)
σ2(x̃) = K(x̃, x̃)− kT K−1k, (4)

where k = [K(x̃,x1), ..., K(x̃,xN)]. Therefore, it is convenient to obtain the uncer-
tainty and select the next query over the acquisition function. For more details about
the GP, we refer readers to Williams and Rasmussen [2006].

However, GPs scale cubically with the number of available points. It will be
impractical when the dataset is large since the computational cost becomes the
bottleneck. Moreover, when the data complexity increases, choosing an effective

15

kernel function and its hyperparameters also becomes a tough problem. In Snoek
et al. [2015], a BNN (see Section 2.2) is used as a surrogate model to solve the
above-mentioned problem, which was the first time BNNs were used as an alternative
to GPs to serve as the surrogate model in BO. Kim et al. [2021] used BNNs to
incorporate auxiliary information such as symmetries and constraints, which allows
the BO to handle more complex tasks.

There are also other surrogate models for BO, such as neural process [Shangguan
et al., 2021] or random forest [Jenatton et al., 2017]. Regardless of the type of
functional model, as long as it can give reasonable predictions and reliable uncertainty,
it can be used as a suitable surrogate model for BO tasks.

2.1.3 Acquisition Functions

The role of the acquisition function is to seek the next informative point to query
for the goal of finding the minimizer of f . It has to navigate a trade-off between
exploration and exploitation. Exploration aims to discover the most uncertain
part where we lack data evidence and are thus not confident about the prediction.
Exploitation tries to find the optimal place by staying close to what we currently
consider to be a good region for the global minimizer. Typically, we are going to
maximize the function α to get the next point, that point might have either a low
predicted function value or a large uncertainty.

The most popular acquisition function is expected improvement (EI) [Jones et al.,
1998] (see Section 5.3), where it quantifies the improvement over the current optimal
function value f ∗. There are also a variety of other acquisition functions, we only
list some representative ones:

• Probability of improvement (PI) [Kushner, 1964]: in contrast to the EI, which
evaluates the magnitude of the improvement, PI only considers the probability
of improving the current best estimate. It selects the point with the highest
probability of improvement.

• Gaussian process upper confidence bound (GP-UCB) [Srinivas et al., 2009]:
tries to balance between exploration and exploitation. In the minimization
problem, it has the form αUCB = µ(x)−βσ(x), where β is a trade-off parameter.

• Entropy search (ES) [Hennig and Schuler, 2012], predictive entropy search
(PES) [Hernández-Lobato et al., 2014] and max-value entropy search (MES)
[Wang and Jegelka, 2017]: these acquisition functions tackle the problem from
the information-theoretic view, where they choose the points that minimize
the entropy of the predicted distribution.

16

2.1.4 Multi-Fidelity Bayesian Optimization

A research direction related to our problem is multi-fidelity BO (MFBO). In many
realistic problems, in contrast to the traditional setting, MFBO assumes that the
function value can be accessed in different fidelities. Different fidelities mean the
degree of exactness of the objective function is different, the low fidelity value might
be cheaper to evaluate, while the high fidelity value requires simulation with high
computational cost. For instance, the simulation of robot action can be realized by
expensive actual operation or cheap computer simulation. MFBO tries to reduce the
cost by querying the low-value region cheaply with low-fidelity data and captures the
optimal value speedily by acquiring high fidelity data on a small promising region.
Kandasamy et al. [2016] developed a novel MFBO algorithm called Multi-Fidelity
Gaussian Process Upper Confidence Bound (MF-GP-UCB), in which they query
the point at each fidelity until a confidence bound exceeds a threshold. As they
model each fidelity independently with different GPs, the information between each
fidelity is not well-shared. To address the problem, Li et al. [2020b] proposed Deep
Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) to establish the
connection between different fidelities with a modularized Bayesian neural network,
which led to improved performance compared w.r.t. previously proposed methods.

In our problem, the expert can be regarded as a low-fidelity information source
since it is costless to query, and the real function values can be seen as the high-fidelity
data. The only difference is that we formulate it as a two-step procedure where we
query the expert first to get an auxiliary model, then perform standard BO with
single fidelity, while MFBO usually conducts the experiment simultaneously.

2.2 Bayesian Neural Network

2.2.1 Definition

A neural network (NN), also known as an artificial neural network (ANN) [LeCun
et al., 2015], is a machine learning model inspired by the human brain, which tries to
mimic the behavior of synapses that transmit information. It consists of a collection
of layers, each layer contains many nodes (artificial neurons). Each node between
two conjoint layers has an edge and is assigned a weight parameter.

A standard ANN assigns each parameter a deterministic value, which often tends
to be overconfident about its prediction and is prone to overfitting. Bayesian neural
network (BNN) is a stochastic artificial neural network that aims to alleviate the
above problem with Bayesian inference. Rather than a fixed value, BNN assigns each
weight a probability distribution, Figure 2 shows the difference between the classical
neural network with BNN. It can be viewed as a special case of ensemble learning,

17

where a BNN is an ensemble of myriad neural networks, the parameters of each
network are drawn from a shared probability distribution. By aggregating different
sets of parameters, a BNN is able to estimate the epistemic uncertainty of a target
by comparing the predicted outputs of multiple sampled parameters. The ability of
uncertainty estimation provides us with a new metric to monitor our prediction with
the model.

To train a BNN, we first put a prior distribution P (w) over weights w which
represents our prior belief towards the weights, then update the belief based on the
training data D to obtain the posterior distribution of weights:

P (w|D) = P (D|w)P (w)
P (D) = P (D|w)P (w)∫︁

w P (D|w)P (w)dw . (5)

Where P (D|w) is the likelihood which encodes the aleatoric uncertainty, and P (D)
is called evidence or marginal likelihood. Computing the posterior distribution is
usually intractable, since the evidence does not have a closed form solution. To
address this, there are two available classes of solutions, Markov Chain Monte Carlo
(MCMC) and variance inference (VI).

Figure 2: (a) A standard artificial neural network structure with deterministic value
for each weight. (b) Bayesian neural network structure, each weight is assigned a
distribution.

When making the prediction for the unseen data, the distribution we really care
about is posterior predictive distribution P (y|x,D):

P (y|x,D) = EP (w|D)[P (y|x,w)] (6)

=
∫︂

w
P (y|x,w)P (w|D)dw. (7)

18

Taking the expectation equals making the prediction over all the possible weights;
it is a weighted sum of infinite neural networks. In practice, Equation 7 is intractable,
so we usually adopt the Monte Carlo approximation:

y = 1
T

T∑︂
t=1

ϕwt(x), (8)

where wt ∼ P (w|D) and ϕ(·) is the forward function of the neural network (a forward
pass through all the neural network parameters).

Exploring Bayesian deep learning has multiple advantages. First, it provides a
measure of uncertainty for traditional neural networks. This additional metric can
help us know more about neural network prediction, as it can prevent the model from
being overconfident. Compared with the GPs, another inference model equipped
with uncertainty estimation, BNN is more scalable and can be efficiently trained on
large datasets. Second, using Bayesian learning, we can interpret some useful tricks
in a neural network as explicit prior, e.g., regularization tricks or data augmentation.
Therefore, BNN can provide us with a better perspective to explain the theory behind
the neural network.

2.2.2 Bayesian Inference Methods

Computing the posterior P (w|D) is almost always impossible, as it includes the
evidence term, which is almost always intractable. There are two existing classes of
algorithms that tackle the problem: Markov Chain Monte Carlo (MCMC), which
constructs a Markov Chain to sample from the exact posterior distribution; Varia-
tional inference (VI), which approximates the posterior distribution with a tractable
surrogate distribution. Compared with MCMC, VI gains more attention these days
as it is more scalable than MCMC. In this thesis, we will only cover VI. We refer
the reader to Jospin et al. [2020] for more details about MCMC methods.

In VI, we are looking for the closest distribution to the true posterior distribution
P (w|D) within a family of distributions q(w|θ) parameterized by θ. The optimal
value of θ is obtained by minimizing the Kullback-Leibler (KL) divergence between
these two distributions:

KL[q(w|θ)||P (w|D)] =
∫︂
q(w|θ) log q(w|θ)

P (w|D)dw (9)

=
∫︂
q(w|θ) log q(w|θ)

P (w)P (D|w)dw + logP (D). (10)

Since P (D) is a constant w.r.t. w, minimizing the KL divergenceKL[q(w|θ)||P (w|D)]

19

equals to maximizing L(θ):

L(θ) =
∫︂
q(w|θ) log P (w)P (D|w)

q(w|θ) dw (11)

=
∫︂
q(w|θ) log P (w)

q(w|θ)dw +
∫︂
q(w|θ) logP (D|w)dw (12)

= −KL[q(w|θ)||P (w)] + Eq(w|θ)(logP (D|w)), (13)

which is called the evidence lower bound (ELBO), it consists of two terms, the first
part is the data dependent likelihood term under the expectation of the variational
distribution on weights, the second part is the complexity cost which depends on the
prior distribution of weights. We take ELBO as our objective function to optimize
the model. In order to make it applicable to BNNs, Blundell et al. [2015] proposed
a practical solution called Bayes by Backprop (BBB), a practical implementation
of stochastic variational inference incorporated with a reparameterization trick to
make sure back-propagation works normally. It can be seen as a breakthrough in
Bayesian deep learning, as it provides a standard training process for the Bayesian
neural network.

Recently there have been some new inference approaches designed for deep learning.
One remarkable work is MC-Dropout [Gal et al., 2017], which used Dropout as the
posterior approximation. Compared with the classical VI methods, MC-Dropout is
easier to implement and also leads to faster training, as it quantifies the uncertainty
only by turning the Dropout layer on during the test stage. However, in some simple
cases that do not require expensive computational costs, BBB usually performs better
in uncertainty estimation and generalization ability.

2.3 Active Learning

In the traditional supervised learning setting, we have a training set comprising
labeled examples, and we build a model based on this training set. However, it can
be expensive to obtain labeled data in a real-life setting, especially in some cases
where the object can only be evaluated through simulations or actual experiments.
In contrast to the passive setting, active learning (AL) [Settles, 2012] sequentially
selects the most informative data to label based on a specific criterion and aims to
maximize the model accuracy in a data-efficient way. AL approaches can be divided
into membership query synthesis [Angluin, 1988], stream-based AL [Dagan and
Engelson, 1995] and pool-based AL [Lewis and Gale, 1994]. The current mainstream
method is pool-based AL, which chooses the best candidate from a pre-defined set
of unlabeled instances. The standard pool-based AL cycle is shown in Figure 3. In
machine learning, AL usually is used for classification problems, however the concept
straightforwardly extends to regression problems, and there is a more general concept

20

in statistics called "Bayesian experimental design" [Chaloner and Verdinelli, 1995],
which aims to design experiments to make the outcomes as informative as possible
towards the parameters that we are interested in.

Formally, we have an unlabeled pool Dpool = {xn}N
n=1 with N samples, and

D = {xm, ym}M
m=1 is the current labeled training set, our target is to design a query

strategy αAL (a.k.a., the acquisition function) to select the data from Dpool to augment
D, expecting that M ≪ N . We wish to use this αAL to choose the most informative
samples to reach higher model accuracy in a limited budget setting. Therefore,
designing an effective query strategy is the most crucial part in AL problem.

Figure 3: A standard pool-based active learning cycle. We iteratively select the
most "interesting" sample to annotate, then augment the existing dataset with newly
annotated data to train a better model.

Many different criteria have been proposed, here we are only going to detail the
most classical ones. The simplest way to design an acquisition function is to select
the most uncertain samples under the current model predictions, which is called
uncertainty sampling [Lewis and Catlett, 1994]. The idea is to iteratively label the
points that the current model considers the most confusing, then train with these
newly added data. In this way, it will reduce the model uncertainty the most. There
are various methods to measure the uncertainty based on the actual problem setting.
Least confident sampling is one of the most straightforward uncertainty sampling
methods, it selects the samples whose most confident prediction (highest probability)
is actually the smallest one among all the prediction probabilities of unlabeled
instances. The drawback of least confident sampling is that it only considers the best
prediction while discarding the information in rest labels. Another approach is based
on the output margin, which is called margin sampling. It chooses a sample with a

21

minimum distance between the highest and second-highest prediction probabilities.
It is an improvement of least confident sampling as it takes the second-best labeling
into account. Still, when the problem has large categories, margin sampling will
lead to information loss. The most common method for uncertainty sampling is the
entropy-based method (entropy sampling), where it chooses the instance with the
largest entropy of the predicted distribution.

In Houlsby et al. [2011], a new criterion called Bayesian Active Learning by
Disagreement (BALD) was proposed, where it selects the data points which maximize
the mutual information between model predictions and parameters. It is a different
interpretation of the expected information gain (EIG) Bayesian experimental design
[Lindley, 1956] that computes the entropies in the output space instead of parameter
space. In other words, it seeks the next query point for which model is highly uncertain
about its predicted label, but each pass through the model tends to produce a similar
uncertain result. Kirsch et al. [2019] extended BALD to apply it under batch query
setting.

As a methodology that aims to achieve the excellent result under a limited budget,
AL is naturally suitable for the interaction with an expert, as human only has limited
patience for querying, and we need to find the most informative points for an expert
to label.

2.4 Multi-Task Learning

2.4.1 Definition

In contrast to single-task learning, multi-task learning (MTL) [Caruana, 1997] aims
to optimize more than one objective in a single learning system. By sharing latent
representations between a set of related tasks, it can potentially speed up the learning
by integrating the knowledge. Some MTL systems target to optimize several tasks
simultaneously and gain improvement on multiple objectives, here we only consider
the case where an additional task is introduced to accelerate our main target. We
also refer to this method as learning with auxiliary tasks. Since the intermediate
representations of different tasks can be shared, we can gain performance improvement
in MTL by incorporating specific domain knowledge into another task. In recent
years, MTL has been successfully applied to different machine learning fields, from
computer vision [Zhang et al., 2014, Dai et al., 2016] to natural language processing
[Liu et al., 2019b, 2015]. Recently, multi-modal fusion has gradually gained more
attention as it aims to handle multiple data modalities simultaneously to explore the
possibility of joint learning. It has a very similar idea with the MTL as they both
target to share the latent representation across domains to improve generalization. In
traditional deep MTL, the feature vectors are shared in different tasks but within the

22

same modality. However, in multi-task multi-modal learning [Nguyen and Okatani,
2019, Pramanik et al., 2019], the features are distilled with several tasks in different
modalities, which is considered an improvement of MTL.

One of the intuitions behind MTL comes from the human cognitive system, where
humans tend to utilize the knowledge acquired from previous related tasks when
learning a new task. For instance, when a baby learns from babbling to speaking,
it constantly learns the abstract pronunciation system and intonation. Once these
basic concepts are learned, they can be reused for studying more complex tasks,
such as singing and tongue-twisters. In fact, whenever humans want to perceive
something new, they always take the prior knowledge they have acquired to speed
up their understanding. However, current networks always learn a task from scratch
through large training samples and take days of work. MTL tries to solve the problem
by introducing a proper inductive bias to eliminate certain improper hypotheses.
Auxiliary tasks can provide additional information to let the model prefer hypotheses
that favour more than one task, which leads to better generalization.

Figure 4: (a) Hard parameter sharing: the parameters in hidden layers are shared
among different tasks. (b) Soft parameter sharing: each task has its own stream, but
there are some regularization methods to constrain the hidden layers to be more
similar between different tasks.

2.4.2 Methods

There are typically two different methods to perform deep MTL, called soft or
hard parameter sharing of hidden layers. In hard parameter sharing, weights in
hidden layers are shared among different tasks, while several task-specific output
layers are placed after these hidden layers to make predictions for each task. Hard

23

parameter sharing can significantly reduce the overfitting, since it aims to learn a
joint representation that captures common features across all the tasks. On the other
hand, soft parameter sharing does not require the shared hidden layers, each task
has its own learning stream with separate parameters. To establish the connection
between tasks, soft parameter sharing put the regularization trick to narrow the
distance between parameters. Although there is no explicit parameter sharing scheme,
it imposes potential constraints to make parameters more similar between tasks. The
difference between these two methods is illustrated in Figure 4.

2.4.3 Loss Weighting

During the optimization, we need to seek a balance among the different loss functions
of each task. As we train on several tasks, we must combine the various task-specific
loss functions to a unified loss for the model to minimize. A natural question will be
how to effectively combine multiple loss functions to make it suitable for the MTL.
The most common way is to put a scheduled weight on each loss function to form
an aggregated loss, then the problem lies on how to design this schedule properly.
The most straightforward way of designing schedule is to declare a static scheme
before training stage, it relies on the prior knowledge of human hyper-parameter
tuner to provide a suitable scheduler, which is usually sub-optimal. Another way
is to adaptively learn this weight thorough training, there are several ways, such
as weighting by uncertainty [Kendall et al., 2018], weighting by learning speed [Liu
et al., 2019a] and weighting by performance [Guo et al., 2018].

24

3 Related Work

3.1 Knowledge Elicitation

Knowledge Elicitation is a set of methods that aims to elicit the knowledge of a
domain expert. The research mainly focuses on how to efficiently interact with the
expert to gather useful information. It has been originally used for constructing prior
distribution in Bayesian data analysis [O’Hagan et al., 2006, Mikkola et al., 2021].
The target is to transform the tacit expert knowledge into explicit prior information
and further constraint the range of parameters in statistical models. A recent line of
works [Soare et al., 2016, Micallef et al., 2017, Afrabandpey et al., 2017, Daee et al.,
2017, Sundin et al., 2018] focus on improving prediction by incorporating the expert’s
feedback into the experimental design. Soare et al. [2016] focused on the "small n large
p" regression problem, where the number of samples n is very small compared with the
feature dimensionality p. It is impossible to learn a model with good generalization
ability in this case. But with the additional expert knowledge, even for the extreme
case where n→ 1, it may become realistic to learn a useful predictor. In their work,
they assumed the expert knowledge was reliable and accurate, but they had only
a limited budget to query. The experiments showed significant improvement with
the expert feedback engaged, which opened the door for the following research line.
Micallef et al. [2017] presented a novel interactive visualization method to model the
domain expert’s knowledge of the relevance between features and targets, then taking
this elicited information as prior knowledge to obtain a model with higher precision.
And showed better performance compared with using randomly chosen features. For
the same purpose, Afrabandpey et al. [2017] proposed an expert prior knowledge
elicitation method that considered the pairwise similarities between the features. By
using an interactive MDS-type scatter-plot, users can provide feedback with their
expertise. The feedback then is transformed into a prior distribution of the Bayesian
linear regression coefficients. Daee et al. [2017] formulated the knowledge elicitation
as a probabilistic inference process. They integrated the expert and regression models
into a joint probabilistic model, making it possible to update the uncertainties after
each interaction with the expert. The selection process is then treated as an optimal
experimental design problem, where the most informative queries are selected by
maximizing the expected information gain. Sundin et al. [2018] applied the expert
knowledge to the precision medicine field and introduced a new targeted knowledge
elicitation approach, which was the extension of the work in Daee et al. [2017].

25

3.2 User Belief-Enhanced BO

A few very recent works have been proposed to incorporate user belief about the
global optimum into BO as prior knowledge for acceleration. Li et al. [2020a] was the
first to take advantage of this extra information into account. In their work, a vague
probability dense function π(x∗), which encodes the user belief towards the optimal
value x∗ was proposed as a tractable form of prior knowledge representation. Then,
Thompson sampling was deployed to sample a number of functions from the GP
posterior, and the extremes of each function were further obtained. The next point
to be queried was then selected by evaluating over π(x∗). However, their method is
restricted to only one acquisition function and can only be applied to GP surrogate
model.

Ramachandran et al. [2020] developed a method that is agnostic to any acquisition
function. Unlike the previous standard BO methods that assign each point an equal
probability to be the optimum, they put an expert prior on the model that warped the
search space with the probability integral transform. The regions with a higher chance
of containing the optimum are expanded, and other regions are shrunk. However, it
is still impractical if the prior is misleading, as the searching space is warped on this
prior and is hard to recover.

Souza et al. [2021] proposed BOPrO, which combined the expert’s prior knowledge
with the surrogate model of BO to derive a pseudo-posterior. The configurations
were then chosen using the EI acquisition function. Compared with the above
methods, it was agnostic to the model used and was capable of recovering from
the misleading prior. However, it is restricted to the EI acquisition function and
cannot provide convergence guarantees. Hvarfner et al. [2022] improved the above
method by introducing πBO, a flexible human belief-augmented BO structure that
was not constrained by both the surrogate model and the acquisition function. They
implemented it by simply multiplying the acquisition function by the expert’s prior
distribution, which is straightforward. To deal with the poorly-chosen priors, a decay
schedule is arranged to weaken the effect of priors over time.

While all of these methods aim to incorporate expert belief into BO, they neglect
the fact that the priors are not coming out of thin air. They all ignore the stage where
such a prior has to actually be elicited from a human expert. This elicitation step
should be taken into account for human-in-the-loop machine learning methods. In
our thesis, an end-to-end approach is proposed, which considers both the elicitation
and incorporation stages.

26

4 Preferential Bayesian Neural Network
In order to elicit the knowledge of the domain expert, we model it as a function,
denoted by g, which represents the beliefs of the expert. We can interpret g as a
biased version of f . By querying pairwise comparisons from the expert, we build a
probabilistic surrogate of g. Note that g corresponds to the utility function of the
expert, which is a well-studied concept in economics [Rader, 1963].

As motivated in the introduction, it is much easier for humans to compare two
items than to give the absolute magnitude of one item (for instance it can be extremely
difficult for a material scientist to compute a potential energy of a molecule, but
comparing the stability between two molecules is easier). Hence, we assume that the
expert cannot directly give the value g(x) for a certain x. Instead, given a pair of
covariates [x,x′] ∈ X × X , we assume that the expert is able to return a preference
label ŷ ∈ {0, 1}, with value ŷi = 1 if g(x) ≥ g(x′), and ŷi = 0 if g(x) < g(x′). We
will sequentially collect a dataset Dg = {(xi,x′

i, ŷi)}M
i=1, which is in turn used to

build a probabilistic surrogate of g. Note that based on the ordered data, we will be
able to learn about the shape of g, but not about the actual magnitude and scale,
meaning that any monotonic transformation of g is an equivalent solution.

We introduce a neural network-based architecture to handle preference learning
and approach this problem as binary classification. More precisely, given two inputs
x and x′, we wish to output a value in [0, 1] that corresponds to the probability of ŷ
equaling 1. A natural solution to this problem would be to expand the input space
to X × X by concatenating the covariates pair. Such an architecture is displayed in
Figure 5-a. However, by doing so, we would not learn anything about the function g.
Instead, we propose to use an architecture based on Siamese networks (Figure 5-b),
coined PBNN (preferential Bayesian neural network), which is detailed in the next
subsection.

4.1 Preference Learning With Siamese Networks

Network architecture and loss function

A Siamese neural network consists of two parallel, identical sub-networks that share
the same set of parameters. Each sub-network takes a distinct input, and the
representations produced by each network are then compared using a connection
function, which we denote by ζ. They were introduced in the 90s for signature
verification [Bromley et al., 1993], and have since become very popular for, e.g.,
one-shot/few-shot learning [Koch et al., 2015], and object tracking [Bertinetto et al.,
2016]. As our knowledge elicitation task amounts to a comparison between two values
at a time, the Siamese network architecture naturally fits to our problem.

27

Figure 5: (a) A simple neural network architecture to handle preference learning.
The neural network outputs the probability of ŷ to be 1 given x and x′, but fails
at capturing the shape of the utility function of the expert, g. (b) The proposed
architecture, based on a Siamese neural network. It also solves the preference learning
problem, but each sub-network outputs a real-valued latent representation that we
interpret as g(x). The network is able to learn the shape of g, up to a monotonic
transformation.

The proposed PBNN uses that architecture exactly. Let us denote by wg the
weights shared by the two sub-networks, and let us denote by g̃wg

(x) and g̃wg
(x′)

the representations produced by forwarding x and x′. PBNN models the probability
of ŷ to be 1 given two inputs x and x′ by comparing g̃wg

(x) and g̃wg
(x′) with the

connection function ζ. Contrary to the “concatenation” baseline approach previously
described (Figure 5-a), the representations produced by the two sub-networks are
real-valued, and we interpret them as the values of the true function g. These two
values are further combined to provide a value in [0, 1], i.e., our connection function
is naturally chosen as

ζ(g̃wg
(x), g̃wg

(x′)) = σ(g̃wg
(x)− g̃wg

(x′)), (14)

where σ(x) = 1
1 + e−x

is the sigmoid function. We can then train the whole model
by minimizing the negative log-likelihood, which is equivalent to using the binary

28

cross-entropy loss. We write

log p(Dg|wg) =
M∑︂

i=1
log p(ŷi|[xi,x′

i],wg) (15)

=
M∑︂

i=1

(︄
ŷi log

(︂
ζ(g̃wg

(x), g̃wg
(x′))

)︂
(16)

+ (1− yî) log
(︂
1− ζ(g̃wg

(x), g̃wg
(x′))

)︂)︄
.

To sum things up, the Siamese network-based architecture also solves the binary
classification problem, but does so by learning an intermediate representation, which
we identify as g(x). However, the current architecture only outputs a point estimate
for g̃wg

(x), which is unsatisfying in our scenario where we wish to characterize
uncertainties for active learning. To do so, we resort to Bayesian inference.

Bayesian inference

To characterize the posterior distribution p(wg|Dg) ∝ p(Dg|wg)p(wg), the network
weights wg are equipped with a prior distribution p(wg). The posterior is then in
turn used to compute the predictive posterior distribution of g̃wg

(x). We resort to
variational inference to characterize the posterior distribution. Variational inference
aims at finding the closest approximation in terms of Kullback-Leibler divergence
to p(wg|Dg), among a chosen family of distributions parameterized by θg. Let us
denote this approximation by q(wg|θg) (the so-called variational posterior). It can
easily be shown that this amounts to minimizing the following expression w.r.t. θg:

Lg(θg) = KL[q(wg|θg)||p(wg)] (17)
− Eq(wg |θg)[log p(Dg|wg)],

where the term log p(Dg|wg) is given by Eq. (16). This expression is called the
negative ELBO (evidence lower bound). The loss in Eq. (17) and its gradient
are intractable, but we use Bayes by backprop (BBB) [Blundell et al., 2015] as
our practical implementation. It provides Monte Carlo estimators of the loss and
gradients, and ensures that back-propagation works. The minimization is then simply
carried out by gradient descent. We refer the reader to the original paper for details.

4.2 Active Data Acquisition

Humans are not passive sources of information, and can only answer to a certain
amount of queries before growing tired or impatient. In this limited budget setting,
in order to maximize the use of the expert’s time, we propose to resort to active

29

learning to learn an accurate model in a sample-efficient way. Active learning
methods sequentially select the most informative unlabeled instance (usually from
a pool, which we denote by Dpool), get the associated label, and retrain the model.
Many different informativeness criteria have been proposed in the literature [Settles,
2012]. Here, we propose to use the so-called BALD (Bayesian Active Learning by
Disagreement, Houlsby et al. [2011], Gal et al. [2017]), a criterion justified from
an information-theoretic perspective. BALD selects the point which maximizes the
mutual information between its observation and model parameters. The optimal
query x⋆ is such that

x⋆ = arg max
x∈Dpool

I(y; w|x,D), (18)

= H[y|x,D]− Ep(w|D)[H[y|x,w]], (19)

where H denotes the differential entropy. Note that this is equivalent to maximizing
the expected information gain on the model parameters, a well-known strategy in
Bayesian experimental design [Lindley, 1956, MacKay, 1992, Chaloner and Verdinelli,
1995].

Adapting BALD to our setting, we have

[x,x′]⋆ = arg max
[x,x′]∈Dpool

I(ŷ; wg|[x,x′],Dg). (20)

We approximate the mutual information as follows:

I(ŷ,wg|[x,x′],Dg)
= H[ŷ|[x,x′],Dg]− Ep(w|Dg)[H[ŷ|[x,x′],wg]], (21)
≃ H[ŷ|[x,x′],Dg]− Eq(wg |θg)[H[ŷ|[x,x′],wg]], (22)

≃ h

(︄
1
T

T∑︂
t=1

p̂w(t)
g

(x,x′)
)︄
− 1
T

T∑︂
t=1

h
(︃
p̂w(t)

g
(x,x′)

)︃
, (23)

where we have used the notation

p̂wg
(x,x′) = ζ(g̃wg

(x), g̃wg
(x′)) (24)

to denote the predicted probability that ŷ = 1 given the pair [x,x′] and parameters wg

(i.e., the output of the network with parameters wg), and where h(p) = −p log(p)−
(1− p) log(1− p) denotes the binary entropy function. The approximation in Eq. (22)
comes from swapping the true posterior distribution p(wg|Dg) with the variational
posterior q(wg|θg), and the approximation in Eq. (23) corresponds to Monte Carlo
approximations given that the w(t)

g are i.i.d. samples from q(wg|θg). We will refer to
this criterion as PBALD.

30

5 Expert Knowledge-Augmented Bayesian Opti-
mization

We now tackle the challenge of transferring what was learned in the previous step
for the BO task. To that end, we propose to plug the previously described PBNN
architecture into a wider multi-task learning (MTL) one. The MTL architecture
aims at building probabilistic surrogates for both f and g, by sharing the weights
of the hidden layers, and having separate weights for the last layer. Indeed, we
leverage the similarity between the functions f and g by sharing some of the latent
representations produced by the network. The architecture is detailed in Section 5.2.
As we are eliciting the knowledge of the expert in a first step, this will have the effect
of providing the surrogate model for f with a good initialization, which in turn will
lead to accelerating the task of optimizing f . For this second step, we sequentially
update this surrogate by collecting a dataset Df = {xj, f(xj)}J

j=1. Those points are
selected using a BO acquisition function, as explained in Section 5.3.

5.1 Surrogate model for f

The probabilistic surrogate we use for f is a Bayesian neural network. Let us denote
by wf its weights, with prior distribution p(wf). We further denote by f̃wf

(x) the
output obtained by forwarding x. Similarly, we resort to variational inference to
characterize the posterior distribution p(wf |Df), i.e., we aim at minimizing the
following expression w.r.t. variational parameters θf :

Lf (θf) = KL[q(wf |θf)||p(wf)] (25)
− Eq(wf |θf)[log p(Df |wf)],

where q(wf |θf) denotes the variational posterior parameterized by θf . Note that
the log-likelihood term p(Df |wf) is here Gaussian, which corresponds to the mean
squared error.

A straightforward way of transferring what was learned in the first step would
be to use the posterior distribution of the weights from the trained PBNN as the
prior for wf . However, since PBNN does not learn the actual scale of f , using it to
provide the prior distribution of the weights will not help at all, and may even lead
to catastrophic forgetting [French, 1999], where the shape information encoded in
the posterior distribution of weights is erased during the training with Df .

To alleviate this problem, we consider a MTL architecture, with hard parameter
sharing among the hidden layers for the surrogates of f and g. In other words, we
consider a joint model, whose shared parameters are going to be initialized through
the trained PBNN. This is detailed next.

31

5.2 Multi-task learning

Parameter sharing

We adopt hard parameter sharing among the weights of the hidden layers for the
surrogates of f and g. Let us split the weights wg of PBNN into wh and βg, where
wh are the weights of all hidden layers and βg the weights of the output layer. That
is, we can write g̃(x) = βT

g ϕwh
(x), where ϕwh

(x) represents the feature vector which
is produced by forwarding x through all the hidden layers. The weights wh are going
to be shared for both surrogates, i.e., we can now write that the BNN surrogate
of f is parameterized by wh and βf , such that f̃(x) = βT

f ϕwh
(x) is the predicted

outcome.
As such, the shared representation ϕwh

(x) will encode common features, such as
the shape information that we wish to transfer to the surrogate of f . While expert
knowledge may be biased, βf can be interpreted as a calibrator to lead the surrogate
of f to its actual scale and also rectify the potentially inaccurate information provided
by the expert. By using the joint model, we will need fewer queries for Bayesian
optimization, i.e., we save potentially expensive simulation costs.

Combining the losses

The detailed architecture of the MTL system is presented in Figure 6. Now remains
the question of combining the loss functions Lg (Eq. (17)) and Lf (Eq. (25)). In
order to put more emphasis on the actual acquisitions of f over time, we propose a
weighted scheme with exponential decay for the Lg. After the j-th BO acquisition,
the loss Lj is such that

Lj = αj−1

αj−1 + 1Lg + 1
αj−1 + 1Lf , (26)

with α < 1 a hyper-parameter to control the speed of the decay.

5.3 Acquisition function

We adopt the expected improvement (EI) as the acquisition function Jones et al.
[1998]. Given µx the predictive mean of BO surrogate model and s2

x the predictive
variance, the EI at point x can be defined as:

αEI(x) = sx[γ(x)Φ(γ(x)) + ψ(γ(x))], (27)

where γ(x) = (ybest−µx)/sx, ybest is the current lowest value of the objective function,
and the Φ(·), ψ(·) are the cumulative distribution function and probability density
function of a standard normal random variable. Since Eq. (27) is intractable for a

32

Figure 6: Multi-task learning (MTL) architecture, for the tasks of building jointly
probabilistic surrogates for both the expert’s beliefs g and the function to be optimized
f . The green flow corresponds to surrogate of g, used in the knowledge elicitation
part, and the blue flow to the surrogate of f , which is used for Bayesian optimization.
The first layers (with parameters wh) are shared for the two surrogates, meaning
that we aim at leveraging the similarity between the two functions by sharing some
representations. They only differ in the output layer, parameterized by either βg or
βf . The two losses Lg and Lf are combined using a weighted scheme, which will
give more and more importance to Lf as we get evaluations of f .

33

Algorithm 2 Expert knowledge-augmented BO
Input: Active learning budget M , BO acquisition budget J
Output: Minimum of f

1: // Start Knowledge Elicitation
2: Initialize the expert model g̃ using PBNN with a random pair, Dg = {(x0,x′

0, ŷ0)}.
3: for i = 1 to M do
4: [xi,x′

i] = arg max
[x,x′]∈Dpool

I(ŷ; wg|[x,x′],Dg) (Eq. (23))

5: Query the expert to obtain ŷi associated to [xi,x′
i]

6: Dg ← Dg ∪ (xi,x′
i, ŷi)

7: Update variational parameters θg by minimizing Eq. (17)
8: end for
9: // Start Bayesian Optimization

10: Df = ∅
11: ybest =∞
12: for j = 1 to J do
13: x̌j = arg max

x∈X
αEI(x)

14: Evaluate f(x̌j)
15: Df ← Df ∪ (x̌j, f(x̌j))
16: Update variational parameters θg and θf by minimizing the combined loss

Eq. (26)
17: ybest ← min(ybest, f(arg min

x∈X
f̃(x)))

18: end for
19: return ybest

BNN as there is no analytical form of the output distribution, we use Monte Carlo
sampling to obtain the approximate EI [Kim et al., 2021]:

αEI(x) ≈ 1
T

T∑︂
t=1

max
(︃
ybest − f̃

(t)(x), 0
)︃
, (28)

where the f̃ (t)(x) are i.i.d. predictive samples at x.
Our two-step, expert knowledge-augmented BO procedure (knowledge elicitation

first, and BO second) is summed up in Algorithm 2.

34

6 Experiments

6.1 Performance of the PBNN architecture

6.1.1 Toy example: Capturing the shape

We first present a toy example using 1-dimensional benchmark functions to illustrate
how the proposed PBNN architecture can learn the shape of the function g through
different number of pairwise comparisons. The model is trained by sequentially
selecting 10, 20 and 50 pairwise comparisons using the PBALD criterion and getting
the associated preference labels. We assume noiseless feedback in this experiment for
illustration purposes. Figure 7 displays the comparison between the real function
values g and elicited expert model predictions g̃, with the Forrester and Styblinski-
Tang functions. From the figure, it can been seen that with 50 pairwise comparisons,
the expert model g̃ can capture the ordinal information, i.e., g up to a monotonic
constant, as previously explained.

6.1.2 Elicitation performance

We compare the performance of PBNN with the classical GP-based preference learning
model by Chu and Ghahramani [2005] on three different datasets. We artificially
transform three regression datasets into preference datasets by creating preference
labels between all possible pairs of covariates using the target values.

For the GP-based model, we use the squared exponential kernel with the hyper-
parameters optimized by maximum marginal likelihood. The PBNN architecture
consists of two fully connected layers with width 100 and 10, where each hidden layer
is followed by a tanh activation function. Optimization is carried out using ADAM
[Kingma and Ba, 2014] with learning rate 0.001. We use a Gaussian variational
posterior with N (0, 0.1) as priors for the weights.

The models are initialized using one random pair, and then a total of NAL pairs
are sequentially queried by maximizing the BALD criterion [Houlsby et al., 2011] for
the GP-based model, and the PBALD criterion for PBNN, respectively. After the
active learning phase, the accuracy of the model is assessed by computing a binary
accuracy score on a hold-out test set consisting of 1000 pairs. The results on the
three datasets, averaged over 20 replications, are presented in Table 2 for NAL = 50
and NAL = 100. In all scenarios, PBNN achieved better accuracy results w.r.t. the
GP-based model.

Lastly, we propose to compare the runtimes of the two methods. The inference
of PBNN is typically run GPU-based architectures, however, for a fair comparison,
we compare 20 runs of each method on the three datasets using NAL = 50 using the

35

0.0 0.2 0.4 0.6 0.8 1.0
x

5

0

5

10

15

Forrester function
g(x)
g(x) - 10 acq.
g(x) - 20 acq.
g(x) - 50 acq.

4 2 0 2 4
x

25

0

25

50

75

100

125
Styblinski-Tang function

Figure 7: Toy example illustrating how the proposed PBNN architecture can learn
the shape of a function using pairwise comparisons. Experiments carried out on the
Forrester (top) and Styblinski-Tang (bottom) functions. The thickest, dark blue
line represents the true function g, while the dotted lines represent the predicted
functions g̃ learned by PBNN using 10, 20 and 50 pairwise comparisons.

same CPU architecture1. The results are reported in Table 3. On all three datasets,
the proposed PBNN is roughly 20 times faster than the GP-based baseline.

12x20 core Xeon Gold 6248 2.50GHz, 192GB RAM.

36

Table 2: Accuracy of preference prediction after NAL acquisitions is significantly
better than the earlier GP-based method on three datasets. The accuracy score
corresponds to the proportion of correct binary preference prediction on a hold-out
test set comprising 1000 pairs. The mean and standard deviation of this score are
reported over 20 replications.

Accuracy (%)
DATASET NAL GP PBNN

Machine CPU (6D) 50 67.29± 2.91 81.07± 3.74
100 69.45± 1.82 84.38± 1.52

Boston Housing (13D) 50 67.41± 2.35 83.40± 2.14
100 69.33± 2.50 85.89± 2.52

Pyrimidine (27D) 50 70.99± 2.35 79.63± 2.14
100 79.29± 2.50 86.59± 2.52

Table 3: Average runtimes (in seconds) after NAL = 50 acquisitions on three datasets.
The runtime of the proposed PBNN is roughly 20 times faster than the GP-based
method. The comparison was carried out with 20 runs on the same CPU architecture.
The standard deviation is also reported.

Runtimes (sec.)
DATASET NAL GP PBNN
Machine CPU (6D) 50 899 ± 68 40± 4
Boston Housing (13D) 50 981 ± 72 50± 7
Pyrimidine (27D) 50 1003 ± 64 57± 9

6.2 Comparison of the optimization performance on bench-
mark functions

6.2.1 Experiment on simulated experts

We first study the performance of the proposed knowledge-augmented Bayesian
optimization scheme in a simulated setting where we can control the bias of an
expert. More precisely, we compare how well the scheme performs w.r.t. to standard
Bayesian optimization on several benchmark functions from the literature.

We assume an expert with potentially biased beliefs of the true function f , with
the bias expressed as a perturbation function δ:

g(x) = f(x) + δ(x), (29)

where δ is a zero-mean Gaussian process draw with kernel σ2
δk(x, x′), which encodes

the form of the expert’s bias. Note that this does not reduce generality, assuming a

37

0.0 0.2 0.4 0.6 0.8 1.0
x

15

10

5

0

5

10

15

20
Biased expert knowledge

f(x)
g(x)-90%
g(x)-80%
g(x)-70%
g(x)-60%
g(x)-50%

Figure 8: Illustration of the simulated expert’s beliefs using the Forrester function.
The true function is the thickest, dark blue curve, and the other curves correspond
to that function perturbed with a random GP draw with various variances. The
variances are chosen such that the accuracy of the expert ranges from 50% to 90 %.

general enough perturbation family. In the experiments reported below, we study the
effect of expert’s bias on the performance by choosing the SE kernel with lengthscale
ℓ = 0.1 and varying σ2

δ so that we obtain five levels of expert knowledge accuracy
from 50% up to 90%. Figure 8 illustrates the comparison between the simulated
experts with the ground truth objective function with the Forrester function, for the
5 considered accuracy levels.

For the MTL structure, the shared hidden layers have width [100, 30, 15]. Standard
BO is run using the BNN surrogate described in Section 5.1, in other words, it is
the exact same architecture as the “BO branch” of the MTL, for fair comparison.
Experiments were run with M = 100, J = 50 and α = 0.95. The results, detailed in
the next paragraph, are averaged over 50 replications of the experiment. The full
description of experimental settings is provided in Appendix B.

Figure 9 shows the results on four benchmark functions2: “Forrester1D”, “Six-
hump-camel2D”, “Branin2D” and “Levy10D”. The results are evaluated by ybest,
which is the current minimal value of the true objective function predicted by the
surrogate of f . We can see that the more accurate the simulated expert is, the
more pronounced the acceleration effect. If the expert is reliable enough, we can
speed up BO significantly. When the expert does not have any knowledge, i.e. 50%

2https://www.sfu.ca/ ssurjano/optimization.html

38

Figure 9: Comparison of the optimization performance of the expert knowledge-
augmented BO using 4 benchmark functions w.r.t. standard BO. We simulate 5
experts with different levels of knowledge (denoted PBNN-xx%), where the percentage
stands for the accuracy of the expert’s preferential feedback, i.e., 50% means that
the expert is simulated with fully biased knowledge. The knowledge of the simulated
expert is elicited using M = 100 pairwise comparisons. The standard BO scheme,
i.e., without expert knowledge, is denoted Standard BO. The results are averaged
over 50 simulations.

preference accuracy, this actually leads to performance deterioration w.r.t. standard
BO, which meets our expectation. For the all expert accuracy levels ≥ 60%, the final
round BO performance (Nquery = 50) is at least as competitive as the standard BO.
However, the gain is much more striking in the early stages of the BO (Nquery ≪ 50).
This phenomenon may be due to the challenge of making use of inaccurate expert
knowledge as more accurate ground-truth data becomes increasingly available. We
also provide additional experiment results with different parameter settings, please
refer to Appendix C.

6.2.2 Experiment with actual human experts

We further study the performance of the proposed method in a real-world setting with
actual human experts. We conduct a simple user experiment involving their memory

39

abilities. The goal of the experiment is to optimize BO benchmark functions. To
induce controlled knowledge about those functions, we let users memorize the shape
of the objective function by displaying 2D-plots for a short time. That would provide
useful but biased preference information for optimization. For the experiment setup,
we restrict the objective functions to 2D benchmark functions as we cannot properly
display 3D (or more) functions to users. Based on their memory of the function, the
user must then answer a series of questions asked in the preferential form. Finally,
BO augmented with expert knowledge is then run with the proposed methodology.
We compare this approach with standard BO. The intuition behind this experiment
is that users cannot memorize all the details, but still can grasp an understanding
of the overall shape of the function, which can expedite the optimization to some
extent.

For the details of the experiment, we choose three commonly used 2D benchmark
functions: "Six-hump-camel2D", "Three-hump-camel2D" and "Branin2D". We choose
these particular functions because they have several local minima, but are still smooth
enough so that users can remember the general shape in a short time. We display
the plots for 2 minutes after testing it ourselves; we believe it is enough to remember
the general shape of the function, but not learn perfect information, thus mimicking
expert knowledge on complex problems. We set the number of questions to 25, as we
believe it is not too small to effectively build the expert model nor too large to bore
the users. For each question, our process selects two points in the definition space,
and the question is asked in the format "At which point do you think the value of
the function is larger?". We provide the coordinates of the two points to the users
and also plot their locations in the coordinate system used for the visualization of
the function. Then the user has to make a decision about their preference towards
the function values. The questions are determined by the active learning criterion,
which is PBALD, detailed in Section 4.2. Other settings remain the same as the
experiments of Section 6.2.1. For this experiment, we rely on the existing code of
conduct from Aalto University regarding the conduction of user studies. The users
are recruited from a student population that have no previous knowledge of the
test functions. The experimental data is only used for this thesis, and we will not
disclose any private information of the users. To make them quickly understand the
content of the entire experiment, we also provide a brief instruction for the users
(see Appendix A).

40

Table 4: Expert accuracy for different functions, data is obtained by dividing the
number of questions the user answered correctly by 25. The final averaged accuracy
meet our expectation as we believe the "Branin2D" function is the easiest one among
the three functions and "Six-hump-camel2D" is the most difficult one.

Accuracy
DATASET Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Three-hump-camel2D 64% 84% 72% 80% 52%
Six-hump-camel2D 52% 68% 76% 88% 64%
Branin2D 80% 72% 72% 80% 68%

Accuracy
DATASET Expert 6 Expert 7 Expert 8 Expert Average
Three-hump-camel2D 80% 72% 68% 71.5%
Six-hump-camel2D 84% 72% 56% 70%
Branin2D 84% 80% 76% 76.5%

41

Figure 10: Comparison of the optimization performance of the expert knowledge-
augmented BO with real users on 3 2D benchmark functions w.r.t. standard BO.
We collect the data from 8 users, where the percentage stands for the accuracy of
the expert’s preferential feedback. The knowledge of the simulated expert is elicited
using M = 25 pairwise comparisons. The results are averaged over 10 simulations.

42

Table 4 collects the experiment accuracy of 8 different human experts on three
objective functions. All the accuracy rates are greater than 50%, and the average
accuracy is higher than 70%, which is useful information. Figure 10 shows the com-
parison between standard BO and our method in terms of optimization performance.
Each simulation builds the expert model using PBNN with the same dataset obtained
from each user, but with different network initialization. We run 10 simulations to
mitigate the randomness. With the help of experts, we can see prominent accelera-
tion compared with standard BO, which again proves the effectiveness of our expert
knowledge-augmented BO method. At last, we visualize the objective functions and
selected expert models in Figure 11, which shows the expert model is able to capture
the general shape information within only limited query times, hence speeding up
the optimization by giving the right query direction for BO acquisition function.

Figure 11: (a) 3D view of objective functions. (b) 3D view of simulated expert
models with 25 queries, the user accuracy for the above plot is 80% and 84% for the
bottom plot. We can see the expert models successfully capture the approximate
shape of the objective functions.

43

7 Summary
In this thesis, we tackled the incorporation of human expert knowledge into BO with
the goal of speeding up the optimization. Our procedure breaks down into two steps.
The first is to elicit the expert beliefs by querying them with pairwise comparisons.
By doing so, we obtain the approximate shape of the objective function. The second
step is to share the expert knowledge with the BO, to provide auxiliary information
about the potential location of the optimum.

More precisely, we proposed PBNN, a novel preference learning architecture
based on Siamese networks to efficiently elicit the expert knowledge. By sequentially
querying the preferences between two objects with active learning, the proposed
PBNN is more powerful in capturing the latent preference relationships compared
with the former GP-based model on different datasets. To conduct the knowledge
transfer, we design a well-aligned multi-task learning structure with a knowledge
sharing scheme to combine our expert model with BO surrogate. Experiments on
different benchmark functions show that when the expert is trustworthy, we can
gain significant benefit from the elicited knowledge and markedly speed up the
optimization. For user study, we believe it is promising for real-world problems.

A limitation of this thesis is that we conducted the knowledge elicitation blindly
w.r.t. the task of optimizing f . We will aim at proposing task-oriented active learning
criterion in future work. Another exciting direction for future work is to directly
consider the expert as another source of information, and therefore not resort to
the two-step approach considered here. This would bring this work closer to the
multi-fidelity BO line of research [Kandasamy et al., 2016, Takeno et al., 2020, Li
et al., 2020a]. In that scenario, as humans are not passive sources of information, but
rather active planners, we would need to build models able to anticipate behaviours
such as steering [Colella et al., 2020].

44

References

Homayun Afrabandpey, Tomi Peltola, and Samuel Kaski. Interactive prior elicitation
of feature similarities for small sample size prediction. In Proceedings of the 25th
Conference on User Modeling, Adaptation and Personalization, pages 265–269,
2017.

Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS
Torr. Fully-convolutional siamese networks for object tracking. In European
Conference on Computer Vision (ECCV), pages 850–865, 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International Conference on Machine Learning
(ICML), pages 1613–1622, 2015.

Eric Brochu, Nando D. Freitas, and Abhijeet Ghosh. Active preference learning
with discrete choice data. In Advances in Neural Information Processing Systems
(NIPS), pages 409–416, 2008.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
Signature verification using a" siamese" time delay neural network. In Advances
in Neural Information Processing Systems (NIPS), 1993.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review.
Statistical Science, 10(3):273–304, 1995.

Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In
International Conference on Machine Learning (ICML), pages 137–144, 2005.

Fabio Colella, Pedram Daee, Jussi Jokinen, Antti Oulasvirta, and Samuel Kaski.
Human strategic steering improves performance of interactive optimization. In
ACM Conference on User Modeling, Adaptation and Personalization, pages 293–
297, 2020.

Pedram Daee, Tomi Peltola, Marta Soare, and Samuel Kaski. Knowledge elicitation
via sequential probabilistic inference for high-dimensional prediction. Machine
Learning, 106(9):1599–1620, 2017.

45

Ido Dagan and Sean P Engelson. Committee-based sampling for training probabilistic
classifiers. In Machine Learning Proceedings 1995, pages 150–157. Elsevier, 1995.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via
multi-task network cascades. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3150–3158, 2016.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning
with image data. In International Conference on Machine Learning (ICML), pages
1183–1192, 2017.

Javier González, Zhenwen Dai, Andreas Damianou, and Neil D. Lawrence. Prefer-
ential Bayesian Optimization. In International Conference on Machine Learning
(ICML), pages 1282–1291, 2017.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian
optimization for automatic chemical design. arXiv preprint arXiv:1709.05501,
2017.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic
task prioritization for multitask learning. In Proceedings of the European conference
on computer vision (ECCV), pages 270–287, 2018.

Florian Hase, Loïc M Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. Phoenics:
a Bayesian optimizer for chemistry. ACS central science, 4(9):1134–1145, 2018.

Philipp Hennig and Christian J Schuler. Entropy search for information-efficient
global optimization. Journal of Machine Learning Research, 13(6), 2012.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani.
Predictive entropy search for efficient global optimization of black-box functions.
Advances in neural information processing systems, 27, 2014.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745,
2011.

Carl Hvarfner, Danny Stoll, Artur Souza, Luigi Nardi, Marius Lindauer, and Frank
Hutter. πBO: Augmenting Acquisition Functions with User Beliefs for Bayesian
Optimization. In International Conference on Learning Representations (ICLR),
2022.

46

Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.
Bayesian optimization with tree-structured dependencies. In International Con-
ference on Machine Learning, pages 1655–1664. PMLR, 2017.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global
Optimization of Expensive Black-Box Functions. Journal of Global Optimization,
13:455–492, 1998.

Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed
Bennamoun. Hands-on bayesian neural networks–a tutorial for deep learning users.
arXiv preprint arXiv:2007.06823, 2020.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and
Barnabás Póczos. Gaussian process bandit optimisation with multi-fidelity evalua-
tions. In Advances in Neural Information Processing Systems (NIPS), 2016.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7482–7491, 2018.

Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Sol-
jačić. Scalable and flexible deep bayesian optimization with auxiliary information
for scientific problems. arXiv preprint arXiv:2104.11667, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR), 2014.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and
diverse batch acquisition for deep bayesian active learning. Advances in neural
information processing systems, 32, 2019.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks
for one-shot image recognition. In ICML deep learning workshop, 2015.

Harold J Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. 1964.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised
learning. In Machine learning proceedings 1994, pages 148–156. Elsevier, 1994.

David D Lewis and William A Gale. A sequential algorithm for training text
classifiers. In SIGIR’94, pages 3–12. Springer, 1994.

47

Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly, and Svetha
Venkatesh. Incorporating expert prior knowledge into experimental design via
posterior sampling. arXiv preprint arXiv:2002.11256, 2020a.

Shibo Li, Wei Xing, Robert Kirby, and Shandian Zhe. Multi-fidelity Bayesian
optimization via deep neural networks. 2020b.

Dennis V Lindley. On a measure of the information provided by an experiment. The
Annals of Mathematical Statistics, 27(4):986–1005, 1956.

Shengchao Liu, Yingyu Liang, and Anthony Gitter. Loss-balanced task weighting
to reduce negative transfer in multi-task learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 9977–9978, 2019a.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
Representation learning using multi-task deep neural networks for semantic classi-
fication and information retrieval. 2015.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neu-
ral networks for natural language understanding. arXiv preprint arXiv:1901.11504,
2019b.

David J. C. MacKay. Information-Based Objective Functions for Active Data
Selection. Neural Computation, 4(4):590–604, 1992.

Luana Micallef, Iiris Sundin, Pekka Marttinen, Muhammad Ammad-Ud-Din, Tomi
Peltola, Marta Soare, Giulio Jacucci, and Samuel Kaski. Interactive elicitation
of knowledge on feature relevance improves predictions in small data sets. In
Proceedings of the 22nd International Conference on Intelligent User Interfaces,
pages 547–552, 2017.

Petrus Mikkola, Milica Todorović, Jari Järvi, Patrick Rinke, and Samuel Kaski.
Projective preferential bayesian optimization. In International Conference on
Machine Learning, pages 6884–6892, 2020.

Petrus Mikkola, Osvaldo A Martin, Suyog Chandramouli, Marcelo Hartmann,
Oriol Abril Pla, Owen Thomas, Henri Pesonen, Jukka Corander, Aki Vehtari,
Samuel Kaski, et al. Prior knowledge elicitation: The past, present, and future.
arXiv preprint arXiv:2112.01380, 2021.

Ido Millet. The effectiveness of alternative preference elicitation methods in the
analytic hierarchy process. Journal of Multi-Criteria Decision Analysis, 6(1):
41–51, 1997.

48

Duy-Kien Nguyen and Takayuki Okatani. Multi-task learning of hierarchical vision-
language representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10492–10501, 2019.

Anthony O’Hagan, Caitlin E Buck, Alireza Daneshkhah, J Richard Eiser, Paul H
Garthwaite, David J Jenkinson, Jeremy E Oakley, and Tim Rakow. Uncertain
judgements: eliciting experts’ probabilities. 2006.

Daniel Packwood. Bayesian optimization for materials science. Springer, 2017.

Subhojeet Pramanik, Priyanka Agrawal, and Aman Hussain. Omninet: A unified
architecture for multi-modal multi-task learning. arXiv preprint arXiv:1907.07804,
2019.

Trout Rader. The existence of a utility function to represent preferences. The
Review of Economic Studies, 30(3):229–232, 1963.

Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh.
Incorporating expert prior in bayesian optimisation via space warping. Knowledge-
Based Systems, 195:105663, 2020.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning Series. Morgan & Claypool, 2012.

Nihar B Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan
Ramchandran, and Martin Wainwright. When is it better to compare than to
score? arXiv preprint arXiv:1406.6618, 2014.

Zhongkai Shangguan, Lei Lin, Wencheng Wu, and Beilei Xu. Neural process
for black-box model optimization under bayesian framework. arXiv preprint
arXiv:2104.02487, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
systems (NIPS), 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian
optimization using deep neural networks. In International Conference on Machine
Learning (ICML), pages 2171–2180, 2015.

Marta Soare, Muhammad Ammad-Ud-Din, and Samuel Kaski. Regression with n→
1 by expert knowledge elicitation. In 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 734–739. IEEE, 2016.

49

Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer,
and Frank Hutter. Bayesian optimization with a prior for the optimum. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pages 265–296, 2021.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian
optimization with robust bayesian neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design.
arXiv preprint arXiv:0912.3995, 2009.

Iiris Sundin, Tomi Peltola, Luana Micallef, Homayun Afrabandpey, Marta Soare,
Muntasir Mamun Majumder, Pedram Daee, Chen He, Baris Serim, Aki Havulinna,
et al. Improving genomics-based predictions for precision medicine through active
elicitation of expert knowledge. Bioinformatics, 34(13):i395–i403, 2018.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization.
Advances in neural information processing systems, 26, 2013.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga,
Ichiro Takeuchi, and Masayuki Karasuyama. Multi-fidelity Bayesian optimization
with max-value entropy search and its parallelization. In International Conference
on Machine Learning, 2020.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian
optimization. In International Conference on Machine Learning, pages 3627–3635.
PMLR, 2017.

Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA, 2006.

Yichi Zhang, Daniel W Apley, and Wei Chen. Bayesian optimization for materials
design with mixed quantitative and qualitative variables. Scientific reports, 10(1):
1–13, 2020.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark
detection by deep multi-task learning. In European conference on computer vision,
pages 94–108. Springer, 2014.

50

A User Manual

A.1 Introduction

Welcome to the test. During this experiment, you need to try your best to remember
the shapes of three different 2-D functions in limited time. After that you need to
answer 25 simple questions, by telling which point do you think is larger between a
pair of points.

In this test, we rely on the existing code of conduct of Aalto University for
conducting user studies in our field. The experimental data is only used for this
thesis, and we will not disclose any of your private information.

A.2 Experimental details

Three experiments will be conducted in random order. When each experiment starts,
you will be shown a 3-D plot and a 2-D heat map of the function (demo plots are
shown in Figure A1), and you can drag the 3-D plot to have a better visualization.
You will have 2 minutes to remember the plots, once the time is up, you will no
longer be able to view these plots.

Figure A1: The left plot is the 3-D view of the objective function, and the right
one is the 2-D heat map. These plots are only for demonstration, the real objective
functions in the experiment will not be shown here.

After that, you will be asked 25 questions. Each question is asked in the format
"At which point do you think the value of the function is larger?" And there will be
no time limit for you to answer these questions. We will provide the coordinates of
the two points to you and also plot their locations in the coordinate system used in
the visualization of the function. The demo plot is shown in Figure A2.

51

Figure A2: The plot of two points in the question stage.

After answering all the questions, you will directly jump to the next experiment.
Upon finish the three experiments, the system will calculate the accuracy of your
performance, and you can also view your own user model in 3D plot (see Figure A3
for reference).

Figure A3: An example of the user model

52

B Experimental settings

B.1 Elicitation experiment

Datasets

• Machine CPU: A computer hardware dataset. The dimension is 6 and has 209
instances

• Boston housing: This dataset contains information concerning housing in the
area of Boston Mass. The dimension is 13 and has 506 cases

• Pyrimidine: A pyrimidine QSAR dataset. The dimension of this dataset is 27
and has 74 instances

The initial training set contains one random pair. The query pool size for active
learning is 2000 pairs, and the test set used for evaluating accuracy consists of 1000
pairs. The dataset is shuffled in each epoch.

Hyper-parameters

• Number of active acquisitions in elicitation stage: 50, 100

• Monte Carlo sampling budget in BALD: 100

• Number of simulations: 20

Neural network configurations

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with learning rate = 0.001

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001

• Batch size: 2

• Number of epochs: 20

• Bayesian linear layer: 2 layers with weight prior N (0, 0.1), width [100, 10]

• Activation function: Tanh

53

B.2 BO with simulated experts

Benchmark functions

• Forrester1D: A simple one-dimensional test function, with one global minimum,
one local minimum and a zero-gradient inflection point. This function is
evaluated on x ∈ [0, 1]. The form of this function is:

f(x) = (6x− 2)2 sin(12x− 4). (B1)

• Branin2D: A 2D function with three global minima. We take a = 1, b =
5.1
4π2 , c = 5

π
, r = 6, s = 10 and t = 1

8π . This function is evaluated on the square
x1 ∈ [−5, 10], x2 ∈ [0, 15]. The function form is:

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s. (B2)

• Six-hump-camel2D: A 2D function with six local minima, two of which are
global. This function is evaluated on the square x1 ∈ [−3, 3], x2 ∈ [−2, 2]. The
function form is:

f(x) = (4− 2.1x2
1 + x4

1
3)x2

1 + x1x2 + (−4 + 4x2
2)x2

2. (B3)

• Levy10D: A 10D function evaluated on the hypercube xi ∈ [−2, 2], for all
i = 1, ..., d. The function form is:

f(x) = sin2(πw1) +
d−1∑︂
i=1

(wi − 1)2[1 + 10 sin2(πwi + 1)] (B4)

+ (wd − 1)2[1 + sin2(2πwd)],

where wi = 1 + xi − 1
4 , for all i = 1, ..., d.

The number if initial training pairs for elicitation is 1. The query pool size for
active learning is 2000.

Hyper-parameters

• Number of active acquisitions in elicitation stage: 100

• Number of BO acquisition: 50

• Monte Carlo sampling budget in BALD: 100

• Monte Carlo sampling budget in EI: 30

• α in MTL shared weight: 0.95

• Number of simulations: 50

54

Neural network configurations

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with lr = 0.001 in elicitation stage, lr = 0.01 in BO stage

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001 in elicita-
tion stage, no scheduler in BO.

• Batch size: 10 for preference data, 5 for regression data

• Number of epochs: 100 in elicitation stage, 200 in BO stage

• Bayesian linear layer: 3 shared hidden layers with weight prior N (0, 0.1), width
[100, 30, 15]

• Activation function: Tanh

B.3 BO with actual human experts

Benchmark functions

• Three-hump-camel2D: This function has three local minima and is evaluated
on the square x1 ∈ [−2, 2], x2 ∈ [−2, 2]. The form of this function is:

f(x) = 2x2
1 − 1.05x4

1 + x6
1

6 + x1x2 + x2
2. (B5)

• Six-hump-camel2D: A 2D function with six local minima, two of which are
global. This function is evaluated on the square x1 ∈ [−2, 2], x2 ∈ [−1, 1]. The
function form is:

f(x) = (4− 2.1x2
1 + x4

1
3)x2

1 + x1x2 + (−4 + 4x2
2)x2

2. (B6)

• Branin2D: A 2D function with three global minima. We take a = 1, b =
5.1
4π2 , c = 5

π
, r = 6, s = 10 and t = 1

8π . This function is evaluated on the square
x1 ∈ [−5, 10], x2 ∈ [0, 15]. The function form is:

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s. (B7)

The number if initial training pairs for elicitation is 1. The query pool size for
active learning is 2000.

55

Hyper-parameters

• Number of active acquisitions in elicitation stage: 25

• Number of BO acquisition: 20

• Monte Carlo sampling budget in BALD: 100

• Monte Carlo sampling budget in EI: 30

• α in MTL shared weight: 0.95

• Number of simulations: 10

Neural network configurations

• Framework: PyTorch, torchbnn

• Optimizer: ADAM with lr = 0.001 in elicitation stage, lr = 0.01 in BO stage

• Scheduler: CosineAnnealingLR with Tmax = 20 and etamin = 0.0001 in elicita-
tion stage, no scheduler in BO.

• Batch size: 10 for preference data, 5 for regression data

• Number of epochs: 100 in elicitation stage, 200 in BO stage

• Bayesian linear layer: 3 shared hidden layers with weight prior N (0, 0.1), width
[100, 30, 15]

• Activation function: Tanh

56

C Additional experiments
We further investigate the performance of our expert-augmented BO with different
elicitation budgets. We use the same objective functions as in Section 6.2.1 and
simulate four different levels of the experts. We use the same configurations as in
the previous experiments, the details can be found in Section B.2.

The results are shown in Figures C1 C2, C3, C4. The overall performance behaves
as expected. With a larger elicitation budget, the acceleration of BO is more obvious.
We notice that the performance is even worse under a very limited budget than
standard BO, i.e., NAL = 10. We guess the reason behind this situation is that the
insufficient preference training data makes the network prone to overfitting, hence
misguiding the training of the surrogate model during the MTL stage. Moreover, in
some figures, we can see the performance between NAL = 50 and NAL = 100 is very
close, which implies that there is no need to over-query for the expert under some
relatively easy-to-optimize functions since the expert knowledge will then dominate
the actual BO regression data and slow down the optimization. In this case, we
should consider lowering the value of α (Equation 26).

Figure C1: A BO comparison on "Forrester1D" function with different knowledge
elicitation budget. We simulate 4 experts with different levels of knowledge, in
each subplot we use the same level of the expert. The results are averaged over 20
simulations.

57

Figure C2: A BO comparison on "Branin2D" function with different knowledge
elicitation budget. We simulate 4 experts with different levels of knowledge, in
each subplot we use the same level of the expert. The results are averaged over 20
simulations.

58

Figure C3: A BO comparison on "Six-Hump-Camel2D" function with different
knowledge elicitation budget. We simulate 4 experts with different levels of knowledge,
in each subplot we use the same level of the expert. The results are averaged over 20
simulations.

59

Figure C4: A BO comparison on "Levy10D" function with different knowledge
elicitation budget. We simulate 4 experts with different levels of knowledge, in
each subplot we use the same level of the expert. The results are averaged over 20
simulations.

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Bayesian Optimization
	2.1.1 Overview
	2.1.2 Surrogate Model
	2.1.3 Acquisition Functions
	2.1.4 Multi-Fidelity Bayesian Optimization

	2.2 Bayesian Neural Network
	2.2.1 Definition
	2.2.2 Bayesian Inference Methods

	2.3 Active Learning
	2.4 Multi-Task Learning
	2.4.1 Definition
	2.4.2 Methods
	2.4.3 Loss Weighting

	3 Related Work
	3.1 Knowledge Elicitation
	3.2 User Belief-Enhanced BO

	4 Preferential Bayesian Neural Network
	4.1 Preference Learning With Siamese Networks
	4.2 Active Data Acquisition

	5 Expert Knowledge-Augmented Bayesian Optimization
	5.1 Surrogate model for f
	5.2 Multi-task learning
	5.3 Acquisition function

	6 Experiments
	6.1 Performance of the PBNN architecture
	6.1.1 Toy example: Capturing the shape
	6.1.2 Elicitation performance

	6.2 Comparison of the optimization performance on benchmark functions
	6.2.1 Experiment on simulated experts
	6.2.2 Experiment with actual human experts

	7 Summary
	References
	A User Manual
	A.1 Introduction
	A.2 Experimental details

	B Experimental settings
	B.1 Elicitation experiment
	B.2 BO with simulated experts
	B.3 BO with actual human experts

	C Additional experiments

