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PHYSICAL REVIEW B 87, 235406 (2013)

Tension-induced nonlinearities of flexural modes in nanomechanical resonators

Raphaël Khan,* F. Massel, and T. T. Heikkilä
Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

(Received 16 November 2012; published 6 June 2013)

We consider the tension-induced nonlinearities of mechanical resonators and derive the Hamiltonian of the
flexural modes up to the fourth order in the position operators. This tension can be controlled by a nearby
gate voltage. We focus on systems which allow large deformations, u(x) � h, compared to the thickness h

of the resonator and show that in this case, the third-order coupling can become nonzero due to the induced
dc deformation and offers the possibility to realize radiation-pressure-type equations of motion encountered in
optomechanics. The fourth-order coupling is relevant especially for relatively low voltages. It can be detected by
accessing the Duffing regime and by measuring frequency shifts due to mode-mode coupling.

DOI: 10.1103/PhysRevB.87.235406 PACS number(s): 85.85.+j, 05.45.−a

I. INTRODUCTION

Recent progress in fabricating nanomechanical resonators
has shown how these systems can be used for ultrasensitive
measurements of mass, force, and charge.1–4 Within the past
few years, these systems have also entered the quantum realm,5

as superpositions of vibrational states and zero-point vibra-
tions have been measured. Even though such measurements
can be performed in a regime where the elastic properties of
the resonators could essentially be considered as linear, the
extension to nonlinear conditions is well within reach of the
current experimental techniques.
In this paper, we consider the generic nonlinearities of the

resonators, how these show up in measurements, and how
they arise when the resonators are manipulated electronically.
In general, the effect of nonlinearities is twofold: on one
hand, theymodify in an amplitude-dependent way the resonant
frequency of a given normal mode (Duffing self-nonlinearity),
and on the other hand, they introduce a coupling between
normal modes. Such nonlinearities show up in the presence
of strong external driving, which allows one to control
the coupling of different modes or detect their occupation
numbers.
Motivated by the recent advances in fabricating graphene

and carbon nanotube resonators,4,6 we concentrate especially
on the regime of thin resonators, where the mechanical defor-
mation can be large compared to the resonator thickness. In this
case, the major source of nonlinearity is the tension induced
by the deformation itself. Starting from the mechanical energy
of the deformations, we derive the generic Hamiltonian of the
flexural modes, including nonlinearities up to the fourth order
in the vibration amplitudes. In contrast to the results discussed
inRefs. 7 and 8,where it is not taken into account, we explicitly
consider the dc deformation of the resonator. This additional
aspect creates an asymmetry in our system, which leads to a
cubic nonlinearity. The dc deformation, dictating the strength
of the nonlinearity, is driven by a nearby gate voltage, as in
Fig. 1. Concentrating first on the Duffing self-nonlinearity of
themodes, this then allows us to derive the voltage dependence
of the Duffing constant and show that it changes sign for a
certain value of voltage that depends on mode index and the
amount of initial tension. This sign change results primarily
from the cubic nonlinearity. Therefore, studies of the Duffing
constant reveal information about the parameters of the system,

in particular on the initial tension, which may otherwise
be difficult to obtain by only concentrating on the voltage
dependence of themode eigenfrequencies.We go on to analyze
the intermode coupling and show that the nonlinearities allow
the creation of a radiation-pressure-type coupling between the
different flexuralmodes. Such a coupling allows the realization
of optomechanics-type experiments, where one of the modes
is cooled or heated by driving another mode. We provide
quantitative predictions for the optical spring effect (driving-
induced frequency shift) and changes in effective mode
damping responsible for the cooling/heating behavior and
show how these can be tuned by the dc gate voltage.

II. METHOD

The general Hamiltonian describing a nonlinear resonator
is of the form

H =
∑

n

ωnâ
†
nân +

∑
nml

Tnmlx̂nx̂mx̂l

+
∑
nmlk

Fnmlkx̂nx̂mx̂l x̂k + O(x̂ox̂nx̂mx̂l x̂k). (1)

Here x̂n = a
†
n + an are the dimensionless position operators.

The nonlinearities are described by the coefficients Tnml and
Fnmlk . The presence of Tnml , like any odd nonlinearities,
arises from an asymmetry in the system. In the following, we
consider a mechanical resonator exhibiting the nonlinearities
discussed above. We analyze a beam of mass m with length
L, thickness h, and cross section S suspended on top of a gate
capacitor at voltage Vg (see Fig. 1). The flexural vibrations
are characterized by the deformation u(y,t) of the beam.
By defining z = y/L, u′ = ∂zu and introducing the notation
〈u|v〉 = ∫ 1

0 u(z,t)v(z,t)dz, one can obtain (1) from the elastic
energy of a resonator,9

ε[u(y,t)] = EIy

2L3︸︷︷︸
1
2mω20

〈u′′|u′′〉 + T0

2L︸︷︷︸
1
2 τ0mω2s

〈u′|u′〉

+ ES

8L3︸︷︷︸
1
2h2

mω2s

〈u′|u′〉2 + εforce[u(y,t)], (2)
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FIG. 1. Schematic picture of the studied setup: a metallic beam
whose deformation is controlled by a gate voltage Vg coupled to the
beam via capacitance C[d − u(y,t)].

with E the Young modulus, Iy the bending moment, T0 the
initial tension of the resonator, and εforce the potential energy
of the force acting on the resonator. The latter is of the
form εforce = −(V 2

g /2)
∫ 1
0 C[d − u(z,t)]dz, where C[d] is the

capacitance between the gate and the beam at the distance
d. In order to arrive at a Hamiltonian of the form given in
Eq. (1), we assume that the gate voltage Vg is the sum of
a dc part Vdc and a small ac part Vac � Vdc. These voltages
lead to a static deformation udc(y) � d and a time-varying
part uac(y,t) � udc(y). Expanding uac(y,t) on an arbitrary
basis χn(y), uac = h

∑
n xn(t)χn(y), we can write the potential

energy containing terms with two, three, and four yn’s.
Writing the Hamiltonian in terms of the stress energyEstress =
mω2s h

2/2 = ESh4/(8L3), these terms are characterized by
the dimensionless parameters which we denote by [�2]nm,
�n

mo, and �no
mp for the second-, third- and fourth-order terms,

respectively. These parameters are described in detail in the
Appendix. In particular, they depend on the dc bias voltage
Vdc and the total tension T in the beam. As discussed
below, the latter also depends on Vdc. The behavior of the
coefficient [�2]nm determines the voltage dependence of the
eigenfrequency, as described in Refs. 10 and 11. For Vdc = 0,
third-order terms �n

mo vanish because of symmetry (udc = 0),
but for large Vdc, they grow as �n

mo ∝ V
2/3
g . The voltage

dependence of the fourth-order terms �no
mp, on the other hand,

is weak and in our analytical approximations (see Appendix)
is disregarded altogether.
We arrive at the desired form (1) bywriting the Hamiltonian

in a basis which diagonalizes [�2]nm and scaling the amplitude
hxn of each mode by its zero-point motion xzpn

=
√

1
mωn
.12

Nonlinearities are primarily associated with the presence
of an induced tension term, which is maximized for large
deformations u(x) � h. Therefore, we concentrate on systems
which allow large deformations, i.e., systems with d � h.
We truncate the expansion to the fourth order, as in the
model employed above higher-order couplings are relevant
only close to the point where the beam pulls into contact

with the gate plane,11 i.e., max[u(y,t)] = d. As an example,
a single-layer graphene sheet with h = 0.34 nm, L = 1 μm,
S/h = 1 μm, E = 1 TPa, and mass density ρ = 1400 kg/m3

would have ωs = 250 MHz and Estress = 0.01 eV. The va-
lidity of our assumption u � d is subject to the constraint
that

√
−h ∂dC

Estress
Vg � 3

√
d
h
for a resonator without initial

tension.11 For the graphene sheet described above satisfying
this condition with

√
−h ∂dC

Estress
Vg = 100 would require that

d � 0.38 μm.

III. SELF-NONLINEARITY

Let us first consider the nonlinear effects which occur when
driving mode n with a driving force fd cos(ωdt), ωd ≈ ωn,
disregarding the coupling to the other modes, since in the
absence of direct driving of the other modes these would
show up only in a higher order in the nonlinear coupling
constants. We also exclude the special case when two or three
times the mode frequency matches one of the other mode
frequencies.13–15 Including dissipation, the equation of motion
for the amplitude xn of mode n is

ẍn + ω2nxn + γ ẋn + 3Tnx
2
n + 4Fnx

3
n = fd

m
cos(ωdt). (3)

Here, xn = xzpn
x̂n, ωn = ωs(�n

n)d , Tn ≡ 1
2

ω2s
h
(�n

nn)d , Fn ≡
1
2

ω2s
h2
(�nn

nn)d , and the subscript d denotes that the tensors are
written in the basis which diagonalizes [�2]. The frequency
response function can be solved from Eq. (3)13,16

|xn|2 = |fd |2/(ωnm)2

γ

2
2 + [

(ωn − ωd )− 3
8

D
ωn

|xn|2
]2 , (4)

where γ is the damping constant and D = 4Fn − 10( Tn

ωn
)2 =

2ω2s /(h
2)[(�nn

nn)d − 5(�n
nn)

2
d/[2(�

n
n)
2
d ]]. This frequency re-

sponse function is the same as one would get when considering
only the fourth-order nonlinearityFn, i.e., a Duffing oscillator.
The effect of the third-order nonlinearity Tn is to shift the value
of the constant D in the frequency response function.16

An example of the voltage dependence of D and the
response function obtained for different dc gate voltages is
plotted in Fig. 2 and shows up as a crossover from D > 0
(hardening) toD < 0 (softening). The behavior of the Duffing
constant depends on the total tension T of the beam, which
is the sum of the initial tension T0 and the tension induced
by the deformation udc(x) caused by Vdc. The latter has
to be calculated self-consistently from the Euler-Bernoulli
equation, as discussed in Ref. 10. In what follows, we
describe this behavior in terms of the dimensionless quantity
τ = 4T L2/(ESh2) = h2T/(2EstressL). In the limit d � h, it
satisfies (see Appendix)

τ = τ0 + 2
∫ 1

0
u′2

dcdz = τ0 + Ṽ 4

96τ 2

(
1− 3

√
3√
τ

+ 8

τ

)
, (5)

with Ṽ 2 = (−h∂dCV 2
g )/Estress. This equation is valid provided

the resultant τ � 1. The tension τ exhibits a rather complicated
voltage dependence, however, its behavior can be investigated
in different limiting cases.A characteristic value for the voltage
can be found by substituting τ ≡ τ0 into Eq. (5) and comparing
τ0 to the second term of the right-hand side of Eq. (5). This
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FIG. 2. (Color online) Duffing constant and frequency response
function (inset) of the first mode with τ0 = 0. The Duffing constant is
plotted from a numerical solution of the full Euler-Bernoulli equation
obtained from (2). The response function is plotted with γ 2 = 0.04ω2s
and f 2

ω21
= 0.002m2ω2s h

2. Here Estress = ESh4/(8L3).

yields

Ṽ ∗ = 961/4
τ
3/4
0(

1− 3
√
3√
τ0

+ 8
τ0

)1/4 . (6)

Thus we find that for Ṽ � Ṽ ∗, the tension τ ≈ τ0,
while for Ṽ � Ṽ ∗, we have τ ≈ V 4/3

961/3 . Disregarding terms
coming from the electrostatic force in �n

n, �
n
nn, and �nn

nn, the
general expression for the Duffing constant is (for details, see
Appendix)

D = 2ω2s
h2

[
(nπ )4 − 5

8

(nπ )4fn(τ )2 V 4

τ 2

4Iy

Sh2
(nπ4)+ τ (nπ )2 + fn(τ )2 V 4

8τ 2

]
,

(7)

where fn(τ ) = [1− (−1)n]nπ{2/(nπ )2 − √
3τ/[(nπ )2 +

3τ ]}. Note that for a symmetric dc deformation, this
behavior is only valid for odd-order modes (with symmetric
eigenfunctions with respect to the center of the beam).
Indeed, from the expression of fn(τ ), we find that the
Duffing constant is voltage independent for an even n.
As shown in Figs. 3 and 4, at low Vg , D starts from a
positive value, D(Vg = 0) ≈ 2ω2s /(h)

2(nπ )4, and tends to

a voltage-independent value, 2ω2s /(h
2)[ (nπ)4[(nπ)4−768)

192+(nπ)4 ], at
large voltages. In Fig. 3, we plot the behavior of the Duffing
constant for the first mode for different values of τ0. We find
that D changes sign for a given value of the voltage, Ṽ = Ṽc,
and the effect of the initial tension is to shift the crossover
voltage to higher values that can be quite well fitted to the
function Ṽc ≈ √

2τ 3/4 + 8 (see Fig. 5) or

Vc ≈ h3

2.4(−h∂dC)1/2E
1/4
stress

T 3/4 + 8 E
1/2
stress

−h∂dC
. (8)

Contrary to the fundamental mode n = 1, the deformation-
induced changes in the Duffing constant of higher-order

FIG. 3. (Color online) Duffing constant for the first mode with
different initial tensions τ0. From left to right, the dimensionless
initial tension τ0 starts from 0 and increases with the step of 10.
The dashed lines are our analytic expressions and the full lines are
numerical solutions of the full Euler-Bernoulli equations obtained
from Eq. (2). The deviation between the two sets of curves at low Vg

is due to our scheme of approximating mode functions by harmonic
functions. Here, Estress = ESh4/(8L3).

modes are rather small compared to its value for Vg = 0 (see
Fig. 4).

IV. NONLINEAR MODE COUPLING

Let us now concentrate on the nonlinear coupling be-
tween the modes.7 Unlike in Ref. 17, where the coupling
between the modes is a time-dependent linear coupling, in our
system the introduction of the dc deformation leads to a
radiation-pressure coupling [second term in Eq. (1)]. The
regime investigated here is formally analogous to the setup
encountered in optomechanical systems,18–21 where an ex-
ternal driving electromagnetic field, coupled to a resonant

FIG. 4. (Color online) Duffing constant for the third mode with
different initial tensions τ0. From left to right, the dimensionless
initial tension τ0 starts from 0 and increases with the step of 10.
The dashed lines are our analytic expressions and the full lines are
numerical solutions of the full Euler-Bernoulli equations obtained
from Eq. (2). Note that now the Vg induced effect in the analytics
is very small. The approximation with harmonic mode functions
underestimates�no

mp , which is the reason for the discrepancy between
the full numerical solutions and our analytic approximations. Here,
Estress = ESh4/(8L3).
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FIG. 5. (Color online) Crossover voltage Vc for the sign change
of the Duffing constant with respect to the initial tension τ0. Here,
Estress = ESh4/(8L3).

cavity, alters the characteristic response parameters of a
mechanical resonator. More specifically, by aptly tuning the
pump frequency, it is possible to alter the resonant frequency
of the mechanical resonator (optical spring effect)21–23 and
its damping, thereby inducing cooling20 or amplification.21

Here we consider the case where one mechanical mode, say
with eigenfrequency ωm, corresponds to the cavity mode, and
another one, ωn, corresponds to the mechanical mode. We
also assume that ωm > 3ωn. Let us discuss what happens if
the system is driven with frequency ωd = ωm − , ≈ ±ωn,
and probed around ωn.
Neglecting other modes, the Hamiltonian is of the form

H = ωnâ
†
nân + ωmâ†

mam + Tnx̂
3
n + Tmx̂3m

+ Tnnmx̂2nx̂m + Tnmmx̂nx̂
2
m + Fnx̂

4
n + Fmx̂4m

+Fnnnmx̂3nx̂m + Fnnmmx̂2nx̂
2
m + Fnmmmx̂nx̂

3
m, (9)

where Tnmo and Fnmop are the sum of all the permu-
tations of indices n, m, o, and p of Tnmo and Fnmop,

respectively, and Tnmo = mω2s
h

xzpn
xzpm

xzpo
(�n

mo)d , Fnmol =
mω2s
h2

xzpn
xzpm

xzpl
xzpo

(�no
ml)d , Tn ≡ Tnnn, and Tm ≡ Tmmm. Using

the input/output formalism,24 the equations of motion for
operators ân and âm are

˙̂an = −i

[
ωnân + 4Fnx

3
n + 3Tnx

2
n + 4Fnnmm

(
â†

mâm + 1

2

)
xn

+ 2Tnmm

(
â†

mâm + 1

2

)]
− γn

2
ân + √

γnâ
in
n , (10)

˙̂am = −i
[
âm + 12Fmâm(â

†
mâm)

+ 2(Tmmnx̂n + Fnnmmx̂2n
)
âm

]− γm

2
âm + √

γmâin
m . (11)

Here we have written operator αm in a frame rotating with
a frequency ωd and neglected the fast rotating terms. We
linearize (11) and (12), rewriting the operators as a sum of

a static α and a fluctuating part δa, â = α + δâ. Keeping
terms which are of the order of ( xzpn

h
)2, we obtain αn + α∗

n ≈
−4Tnmm|αm|2

ωn
. Solving for δân, we find the frequency response

function for the input signal δain
n . It is a Lorentzian function

peaked at

ωn,eff − ωn

4|αm|2 = Fnnmm − 6TnTnmm

ωn

∓ 1

2

T 2nmm

ωn

(12)

and whose width is

γn,eff − γn

4|αm|2 = ±T 2nmm

ωm

Qm. (13)

HereQm = ωm/γm is the quality factor ofmodem andwe have
assumed for simplicity the fully side-band resolved limitωn �
γm. We remark that the results are similar to those obtained
in optomechanics; the only difference comes from the second
term in the effective frequency, which is proportional to the
self-nonlinearity. As in the case of Duffing nonlinearity, we
consider the limit of τ � 1.Wefind that the effective frequency
when driving mode m = 3 and probing mode n = 1 depends
on the gate voltage as (for details, see Appendix)

ω1,eff − ω1

9χπ4
= 8− 3f1(τ )2 Ṽ 4

τ 2

g1(Ṽ ,τ )
∓ 3

2

f1(τ )2 Ṽ 4

τ 2√
g1(Ṽ ,τ )g3(Ṽ ,τ )

, (14)

where gn(Ṽ ,τ ) = 4Iy (nπ)4

Sh2
+ τ (nπ )2 + fn(τ )2 Ṽ 4

8τ 2 and χ =
4mω2s |αm|2x2zpm

x2zpn

h2
describes the amplitude of the pump. The

effective damping changes as

γ1,eff − γ1

χQ3
= ±2(3π )

4f1(τ )4 Ṽ 4

4τ 2

g3(Ṽ ,τ )
. (15)

In Fig. 6, we plot the effective frequency and the effective
damping when driving mode m = 3 and probing its effect on
mode n = 1. We see that both for the red- and blue-detuned
pumping, i.e.,  = ±ω1, the frequency shift induced by
pumping, ω1,eff − ω1,25 is positive at low gate voltages due to
the fourth-order term F1133 in Eq. (12), changes sign upon an
increasing dc gate voltage, and tends to a voltage-independent
value at large voltages. The fact that the overall frequency shift
is in both cases negative—in contrast to the traditional op-
tomechanical setup—is related to the second term in Eq. (12),
which reflects the effect of the self-nonlinearity Tn, and which
is independent of the sign of . This behavior applies only
to the combination n = 1, m = 3. For higher-order n, the
voltage-induced changes are small compared to the frequency
shift at Vdc = 0 (Fig. 8). However, choosing n = 1 and higher
m results in more complex behavior and the spring effect,
ω1,eff − ω1, may change sign more than once in the case of
blue detuning (Fig. 7). On the other hand, the change in the
effective damping (inset of Fig. 6) depends on the sign of .
For red detuning,  = ωn, γn,eff increases as the voltage is
increased, whereas for blue detuning, γn,eff decreases. For a
fixed amount of fluctuations coupling to mode n, the increase
in damping leads to (side-band) cooling,20 whereas the
decreasing damping leads to heating and, when γeff becomes
zero, to a parametric instability.26 Between these regimes, the
blue-detuned driving can be used for signal amplification.21

In conclusion, we have derived the Hamiltonian of a thin
doubly clamped nanomechanical resonator taking into account
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FIG. 6. (Color online) Effective frequency and damping (inset)
of mode n = 1 when driving mode m = 3 with initial tension τ0 = 0
(no symbols) and τ = 10 (circles) in the case of red detuning (red
lines, lower) with  = ω1 and in the case of blue detuning (blue
lines, upper) with  = −ω1. The full lines are numerical results
obtained by solving the full Euler-Bernoulli equation obtained by
requiring u(x,t) to minimize the energy in Eq. (2), and dashed lines

follow Eqs. (5), (14), and (A8). Here, χ = 4mω2s |αm|2x2zpm

x2zpn

h2
and

Estress = ESh4/(8L3).

FIG. 7. (Color online) Effective frequency and damping (inset)
of mode n = 1 when driving mode m = 5 and when initial tension
τ0 = 0 in the case of red detuning (red lines, lower) with = ω1 and
in the case of blue detuning (blue lines, upper)with = −ω1. The full
lines are numerical results obtained by solving the full Euler-Bernoulli
equation and the dashed lines are analytical results derived in
the text.

FIG. 8. (Color online) Effective frequency and damping (inset)
of mode n = 3 when driving mode m = 5 and when initial tension
τ0 = 0 in the case of red detuning (red lines, lower) with = ω3 and
in the case of blue detuning (blue lines, upper) with  = −ω3. The
full lines are numerical results obtained by solving the full Euler-
Bernoulli equation and dashed lines are analytical results derived in
the text.

the nonlinearities between the amplitudes of the flexural
modes induced by a nearby gate voltage. Besides the Duffing
nonlinearity, we also find a third-order nonlinearity directly
related to the dc deformation of the beam. This third-order
nonlinearity adds to the Duffing nonlinearity and changes
the behavior of the frequency response function. Besides
the self-nonlinearity described by the Duffing behavior, we
find that the different modes of the beam are nonlinearly
coupled. The effective Hamiltonian of a pair of such modes
resembles that of a mechanical degree of freedom coupled to a
cavity, with the difference that in the current setup, the cavity is
replaced by another flexural mode. Therefore, such a coupling
offers the possibility of observing the motion of one mode via
its effect on anothermode. Such effects are the spring effect and
the changing damping, and the latter can be used for side-band
cooling or amplification of a given mechanical mode.
Besides the nonlinearity induced by bending described

here, theremay be other sources of nonlinearity in thinmetallic
beams, such as those related to nonlinearities in electronic
properties27 or nonlinearities induced by stretching. Our re-
sults help to identify the direct bending-induced nonlinearities
and therefore facilitate the precise tuning of nanomechanical
resonances.
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APPENDIX

1. Derivation of the nonlinear Hamiltonian

Expanding uac in Eq. (2) of the main text on an arbitrary basis χn(x), uac = h
∑

n ynχn, we get the Hamiltonian of the form

H = p2n

2m
+ Estress

{
[�2]nmyny

m + �n
moyny

myo + �no
mpyny

myoy
p
}+ Eg, (A1)

with the nonlinear coefficients

[�2]nm = ω20

ω2s
〈χ ′′

n |χ ′′
m〉 + τ 〈χ ′

n|χ ′
m〉 + 2〈χ ′

n|χ ′
m〉〈u′

dc|u′
dc〉 + 4〈u′

dc|χ ′
n〉〈u′

dc|χ ′
m〉 − V 2

dc

mω2s h
2

∫ 1

0

d2C[d − u(x,t)]

du2ac
〈χn|χm〉dx,

(A2a)

�n
mo = 4〈u′

dc|χ ′
o〉〈χ ′

n|χ ′
m〉 − V 2

dc

mω2s h
2

∫ 1

0

d3C[d − u(x,t)]

du3ac
χnχmχodx, (A2b)

�no
mp = 〈χ ′

n|χ ′
m〉〈χ ′

o|χ ′
p〉 − V 2

dc

mω2s h
2

∫ 1

0

d4C[d − u(x,t)]

du4ac
χnχmχpχodx, (A2c)

Eg = (
2VdcVac + V 2

ac

) ∫ 1

0
f (u0(x))dx. (A2d)

Here,C[d] is the capacitance between the gate and the beam at the distance d, 12mω20h
2 = EI

2L3 is the bending energy of a beam

displaced by h, and 1
2mω2s h

2 = ESh4

8L3 is the stress energy of the beam displaced by h with respect to its equilibrium position. The
coefficient Eg describes the feedback of the motion of the resonator on the gate voltage and is neglected below as we assume
a fixed voltage drive. Besides the voltage, the system is described by the two dimensionless parameters τ0 = 4T0L2/(ESh2)
and (ω0/ωs)2 = 4Iy/(Sh2). For a rectangular beam, which we consider in the following, (ω0/ωs)2 = 1/3. Overall, our main
results do not greatly depend on ω0. The thickness h appears in the above expressions only because it sets the magnitude of the
deformation—it scales out from the final results of observable quantities.
Writing the Hamiltonian in the basis which diagonalizes � and scaling hyn by the amplitude of the zero-point motion√
1/mωn, one arrives at Eq. (1) of the main text. We consider here specifically a doubly clamped beam. For low gate voltage Vg ,

the dc deformation udc is given by the Euler-Bernoulli equation in the case of a parallel plate capacitance model:

mω20h u′′′′
dc −

(
mω2T h + 2mω2s h

∫ 1

0
u′2
dcdx

)
u′′
dc = V 2

g

2

εWL

d2
. (A3)

The solution of this integro-differential equation is10

udc = Ṽ 2

8τξ

{
coth

(
ξ

2

)
[cosh(ξx)− 1]− sinh(ξx)+ ξx − ξx2

}
, (A4)

where Ṽ 2 = (−h∂dCV 2
g )/Estress and Estress = mω2s h

2/2 = ESh4/(8L3). We define the total tension

τ = τ0 + 2
∫ 1

0
u′2
dcdx (A5)

and ξ = √
3τ . Substituting Eq. (A4) into (A5) and integrating and then disregarding exponential terms ∼ exp(−ξ ) yields a

self-consistency equation for τ , i.e., Eq. (5).
Since in the limit of large τ , Eq. (A3) reduces to the wave equation, we use the harmonic wave function χn = √

2 sin(nπx)
as a basis for (A3) and get

[�2]nm = (nπ )4

3
+ τ (nπ )2 + Ṽ 4

8τ 2
fn(τ )fm(τ )− Ṽ 2

2

h

d
, (A6a)

�n
mo =

√
2(nπ )2

Ṽ 2

2τ
fo(τ )δ

n
m − Ṽ 2

2

(
h

d

)2 4
√
2mno[(−1)m+n+o − 1]

π (m − n− o)(m + n− o)(m − n+ o)(m + n+ o)
, (A6b)

�no
mp = (nπ )2(pπ )2δn

mδo
p − Ṽ 2

2

(
h

d

)3 1
2
[δn+m+o,−p + δn+m,o+p + δn+p,m+o + δn+o,m+p − δn+m+o,p

− δn+m+p,o − δn+o+p,m − δm+o+p,n], (A6c)

fn(τ ) = nπ [1− (−1)n]
(

2

π2n2
−

√
3τ

π2n2 + 3τ
)

. (A6d)
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The last terms in Eqs. (A6a)–(A6c) are relevant only for low voltages in the presence of initial tension and do not
greatly contribute to the physics discussed in this paper. We thus drop them out in the ensuing analytical approximations.
However, in the numerical results, we use the full solutions of the Euler-Bernoulli equation to determine the eigenmodes and
the coupling constants. Nevertheless, Eqs. (A6a)–(A6c) represent fair approximations in the limit of relatively strong tension.

2. Mode coupling

The frequency response function f for the input signal δainn solved from Eqs. (10) and (11) is

f = −i
√

γn

[
2 + (

γm

2 − iω
)2 − c2|αm|4][a + i

γn

2 + ω + ωn

]− 2b2|αm|2( + c|αm|2)[
2 + (

γm

2 − iω
)2 − c2|αm|4][( γn

2 − iω
)2 + ω2n + 2aωn

]− 4ω1b2|αm|2( + c|αm|2)
, (A7)

with

a = 12Fn(αn + α∗
n)
2 + 6Tn(αn + α∗

n)+ 4Fnnmm|αm|2 + 2Fnnmm,

b = 4Fnnmm(αn + α∗
n)+ 2Tnmm,

c = 12Fm.

This frequency response function describes a Lorentzian resonance around an effective frequency ωn,eff with damping γn,eff

described in Eqs. (12) and (13). Using the approximations leading to Eqs. (A2), we find the effective frequency

ωn,eff − ωn

χ
= n2m2π4

{
8− 3fn(τ )2 Ṽ 4

τ 2

4Iy (nπ)4

Sh2
+ τ (nπ )2 + fn(τ )2 Ṽ 4

8τ 2

∓ m2

4n2
fn(τ )2 Ṽ 4

τ 2√[ 4Iy (nπ)4

Sh2
+ τ (nπ )2 + fn(τ )2 Ṽ 4

8τ 2
][ 4Iy (mπ)4

Sh2
+ τ (mπ )2 + fm(τ )2 Ṽ 4

8τ 2
]
⎫⎬
⎭

and effective damping

γn,eff − γn

χQm

= ± 2(mπ )4fn(τ )2 Ṽ 4

4τ 2

4Iy (mπ)4

Sh2
+ τ (mπ )2 + fm(τ )2 Ṽ 4

8τ 2

. (A8)

Here, χ = 4mω2s |αm|2x2zpm

x2zpn

f h2
describes the amplitude of the pump.

In Fig. 6 of the main text, we plot the effective frequency and the effective damping when driving mode m = 3 and probing
its effect on mode n = 1. Considering only odd modes n, we see that for red-detuned pumping with = ωn, the frequency shift
induced by pumping is positive at low gate voltages, ωn,eff(Vg = 0)− ωn = (nπ )2(mπ )2χ , changes sign with increasing dc gate
voltage, and tends to a voltage-independent value at large voltages,

ωn,eff − ωn

Ṽ �τ0,1−→ χ (nm)2π4
{
8− 4608/(nπ )2

(nπ )2 + 192/(nπ2)
− m2

n2

384/(nπ )2√
[(nπ )2 + 192/(nπ2)][(mπ )2 + 192/(mπ2)]

}
. (A9)

On the other hand, the effective damping increases with an increasing gate voltage until it reaches a voltage-independent
value,

γn,eff − γ

χQm

= m6

n4

768π4

π4m4 + 192 . (A10)

For blue-detuned driving, when  = −ωn, the optical spring effect (ωn,eff − ω) increases until it saturates at large voltages to
the value

ωn,eff − ωn

Ṽ �τ0,1−→ χ (nm)2π4
{
8− 4608/(nπ )2

(nπ )2 + 192/(nπ2)
+ m2

n2

384/(nπ )2√
[(nπ )2 + 192/(nπ2)][(mπ )2 + 192/(mπ2)]

}
,

(A11)

while the damping decreases until it reaches the value

γn,eff − γ

χQm

= −m6

n4

768π4

π4m4 + 192 . (A12)

These predictions are compared to the full numerical solutions obtained from the Hamiltonian given by Eq. (2) in
Figs. 6–8.
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Rev. B 84, 195433 (2011).

12Even though in the following we concentrate on driving am-
plitudes containing many photons, and therefore deal with es-
sentially classical nonlinearities, quantum effects related with
zero-point motion could also be discussed with the Hamiltonian
we derive.

13A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley,
New York, 2008).

14D. Antonio, D. H. Zanette, and D. López, Nature Commun. 3, 806
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