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ABSTRACT

Biological phenomena are usually described by rela-
tional model of interactions and dependencies between
different entities. Therefore, a network-based knowledge
representation of biological knowledge seems to be an
obvious choice. In this paper, we propose such a repre-
sentation when integrating data from heterogeneous life
science data sources, including information extracted
from biomedical literature. We show that such a repre-
sentation enables explanatory analysis in a context de-
pendent manner. The context is enabled by a judicious
assignment of weights on the quality dimensions. Analy-
sis of clusters of nodes and links in the context of under-
lying biological questions may provide emergence of
new concepts and understanding. Results are obtained
with our megNet software, an integrative platform based
on a multi-tier architecture using a native XML data-
base.

1. INTRODUCTION

The primary goal of knowledge representation is to en-
able computer to assist humans in analyzing complex
forms of data to discover useful information. This has
resulted in a wide range of techniques and tools. How to
represent knowledge depends largely on the way reason-
ing can be done with that knowledge. For example, early
works have been mainly focused on logic-based repre-
sentation. Recently, techniques combining machine
learning, pattern recognition, statistics, and artificial in-
telligence have been employed. Although these are well-
developed disciplines, their applications in life science
have been limited [1][2][3].

Biology is a data rich discipline. The problem is that
this source of knowledge is stored in a large number of
different data sources which need to be mined in paral-
lel. Integrating all this information and its efficient min-
ing is a challenge with huge application potential [4][5].
Moreover, each database may have its own interface that
users may not have time to adequately learn to use them
efficiently. A tool which can integrate the mining as well
as visualization of heterogeneous life science data would
therefore open new possibilities for the exploration of

biological knowledge and possibly lead to novel discov-
eries.

As biological systems are characterized by the com-
plexity of interactions of their internal parts and also
with the external environment, integrating such interact-
ing information may result in a large connected graph
with nodes and edges of heterogeneous types. This
makes such information hard to visualize, and sophisti-
cated methods have been developed for analyzing such
complex networks [6][7][8][9]. The most important as-
pect in visualizing high-dimensional data in a lower di-
mensional space is how to preserve the proximity rela-
tionships. In practice, it is very difficult if not impossible
to project hundreds of dimensional data to a smaller di-
mensional space (2 or 3 dimensions) in such a way that
all similarity relationships are preserved. Therefore, in
order to enable effective reasoning, the challenge is to
find the best compromises by choosing which kinds of
relationships to visualize and with what type of metrics
to use in order to ensure the trustworthiness of the visu-
alized data [10].

Another way to enable effective reasoning is to limit
the scope of deliberations to a small context associated
with the domains under consideration. This may be ap-
proached by assigning weights to the “quality dimen-
sions” [11] under consideration (gene-centric, tissue-
centric, compound-centric, disease-centric etc.)

The above criteria have been our motivations to de-
velop an integrated visualization tool, megNet, that uses
topological analysis of complex networks to visualize
query results in a single interface. It also enables con-
text-based information display from our integrated data-
base system (see [12]).

This paper discusses the representation and visualiza-
tion aspects of our integration platform. It is organized
as follows: Section 2 discusses about the network repre-
sentation and clustering methods, including the notion of
distance and context. Section 3 gives examples of visual-
izing a protein-protein interaction network.

2. BIOLOGICAL NETWORKS
With the growing trend towards systems biology, inte-
grated biological networks contain many different types
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of entities and attributes arising from a growing number
of disparate data sources, including literature databases.
These databases have been created by different scientific
communities, for different purposes, and covered differ-
ent aspects. All that led to a high level of structural and
semantic heterogeneity. The structural and semantic in-
tegration aspects of these databases have been reported
in our previous papers [12][13]. Here we will focus on
the retrieval and visualization of these heterogeneous
data. We are mainly interested in the data from the fol-
lowing databases:

• Protein-protein interaction databases:
BIND [14], DIP [15], and MINT [16].

• Biochemical pathways database: KEGG [17].
• TransFac is a database on DNA binding ele-

ments and their transcription factors [18].
• TransPath, an extension of TransFac, contains

signal transduction pathways that regulate the
activity of transcriptional factors in different
species [19].

• GeneOntology (GO) is a database of three
structured controlled vocabularies that describe
gene products in terms of their associated bio-
logical processes, cellular components and mo-
lecular functions in a species-independent man-
ner [20].

The first step after retrieving all the massive informa-
tion from databases is to build the network. The objects
in network are then clustered based on some similarity
measure for the display. The definition of the similarity
measure is thus a crucial step.

2.1. Network representation

The graph representation contains nodes and edges
[21][22]. The nodes include various kinds of molecules,
e.g., proteins, compounds, genes, mRNAs etc. For ex-
ample, in the case of protein-protein interaction network,
we would relate the neighboring proteins by searching
all the possible pathways among them, including their
regulating genes. The generated nodes and edges show
the proteins and their interactions, respectively.

Our biological network is presented as a directed
weighted graph where biological entities are nodes that
are connected to each other through edges which are in-
teractions between the entities. The shape of the nodes
will be coded differently depending on the type of an en-
tity. The edges can be directed or undirected depending
on the nature of the interactions (Figure 1).

A metabolic network consists of reactions. In one re-
action there are substrates, products and at least one en­
zyme that catalyzes the reaction. The substrates, products
and enzymes are presented as nodes. The substrates and
products are presented as circles and the enzymes are
presented as squares. Since some reactions are reversible
and other reactions are irreversible, directed edges are
used to distinguish the direction of a reaction. But in a
protein-protein interaction network, interactions between
the proteins are represented with undirected edges, be-
cause the interaction is mutual.

Figure 1: Example of our integrated network rep-
resentation used. The distance between the enti-
ties A and B, is the same as for B to A. If there is
not any path between two nodes, we assume that

the distance between them is infinity.

The shortest path length between each entity is ob-
tained by using Tom Sawyer Java analysis toolkit (Tom
Sawyer, Inc.). The distances between each entity in both
directions are calculated, based on the cost of connection
types. In Figure 1, the cost of a metabolic interval is de-
noted by y, and x is the cost of a protein-protein interac-
tion. By changing these cost parameters we can investi-
gate how protein-protein interactions affect the structure
of metabolic pathways.

2.2. Clustering of biological networks

The molecular entities of the cell form a very compli-
cated and dynamic interacting system. Yet, it has been
demonstrated that this complex interactions shared some
common network properties, e.g. the presence of single
modularity networks [24][25][26]. However, the pres-
ence of the modularity in highly integrated biological
networks is not self-evident as it lacks quantitative sup-
port [24]. There is thus a need for tools to identify the
modularity of a biological network and to identify the
modules and their relationships. Clustering is a mathe-
matical method which allows the identification of key
connectivity patterns of a network. The most common
methods used when investigating the structure of com-
plex networks are hierarchical clustering tree, Koho-
nen’s Self-Organizing Maps (SOM) [28], and Sammon’s
mapping [29][30].

All clustering algorithms share the basic steps:
1. Compute distance matrix;
2. Find closest pair of clusters;
3. Update distance matrix.

First, the distance matrix must be computed. The dis-
tance matrix define distances from one entity to the other
entities. The distance matrix from the graph represented
in Figure 1 is:
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3 2 2 2 0
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If the purpose of the distance calculations is to inves-
tigate the structure of metabolic pathways, the distance
matrix would not take into account metabolites and other
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proteins that do not belong to the metabolic pathway
(e.g. entities F and G in Figure 1).

After the distance matrix has been obtained, we can
apply clustering algorithm which will merge objects in
the same cluster based on the self-similarity. The self-
similarity of a group of elements is defined as the aver-
age pairwise similarity between the elements. One may
also choose other criteria such that the pair of clusters
maximizes the minimum similarity or minimize the
maximum similarity.

Since the purpose of the distance matrix is to de-
scribe the proximity of the entities, the more similar dis-
tance vectors are, the closer are corresponding biological
entities. In our current implementation, we use the
Sammon’s mapping algorithm to investigate the similari-
ties of the distance vectors.

2.2.1. Similarity measure
For integrated network where entities are of complex na-
ture, evaluating similarity is not a trivial task. While dis-
tances within the molecular networks can be intuitively
set to the length of the shortest path between the mole-
cules, distance measure is less obvious for relationships
such as in ontologies. It was shown that GeneOntology
can be represented as a graph, and the distance measures
based on the shortest path to a common ancestor were
already studied [31]. In the case of gene expression net-
work which consists only of genes, the similarity meas-
ure is based on the gene expression level.

The challenge is to combine topology metrics and the
quantitative information from the data. For instance, one
can combine the gene expression level and the topology
of the network in the same distance function such as in
[32]: )( exp netfd δδ += .

Given a set of data points xi, let us note by d(xi, xj)
being the distance between two data points.

If we consider the gene expression level Gik as a log-
ratio gene expression of gene gi,, the distance function
could be based on the Pearson correlation coefficient:
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with i and i are mean and standard deviation of the
transformed time series data of gi .

The correlation coefficient is then converted to a dis-
tance function as a degree of dissimilarity with:

),(),(exp jiji gggg ρδ −= 1 . We obtain the combined
distance function:

),(),((.),( exp jinetjiji vvggxxd δδ +×−= 501

The network distance function could be based on the
shortest path and the weighting function based on the
degree of vertices.

It is supposed that this combined function may lead
to increased stability of clustering solution when the
gene expression levels support the relations in the net-
works and vice versa [32].

In our current implementation, gene expression data-
bases are not yet fully operational for integrated mining.

2.2.2. Data projection and non­linear mapping
The main purpose of data projection is to transform a
high dimensional data to a lower dimensional space in
order to be able to visualize them. The Kohonen’s self-
organizing map (SOM) [28] is one popular method. But
the delicate part of SOM is that the user needs to set
control parameters carefully that may require sometimes
a priori knowledge about the data. We have chosen the
Sammon’s mapping [29] as is easier to implement.

Like the SOM algorithm, the basic idea of the
Sammon’s mapping algorithm is to arrange all the data
points on a 2-dimensional plane in such a way, that the
distances between the data points in this output plane re-
semble the distances in vector space as defined by some
metric as faithfully as possible. Unlike SOM algorithm,
the Sammon’s mapping algorithm tries to preserve inter-
nal distances in the input data that the human eye can
easily detect. The structure of the input data is thus pre-
served through the mapping.

More formally, let dij be an element of a distance ma-
trix D in input space, let oi be the image of the data item
xj in the 2-dimensional output space. With O we denote
the distance matrix containing the pairwise distances be-
tween images as measured by the Euclidean vector norm

ji oo − . The goal is to place the oi in such a way that

the distance matrix O resembles as closely as possible
matrix D, i.e. to optimize an error function E by follow-
ing an iterative gradient-descent process:
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The resulting visualization depicts clusters in input
space as groups of data points mapped close to each
other in the output plane. Thus, the inherent structure of
the original network can be derived from the structure
detected in the 2-dimensional visualization.

2.3. Context

When a representation includes several domains, one
must take into account the context in which what do-
mains appear more or less important (or salient) [9].

Including context can be achieved by assigning
weights to each domain. The relative weight of a domain
will depend on the context.

2.3.1. Weights as context dependent variables
In the previous section, the distance function could be
weighted as follows:

∑
=

=
n

k
ijkkij dwD

1

The weights wk can be seen as context­dependent
variables that represent the relative degree of salience
for each dimension. This aspect has been used in the
subspace clustering algorithms which assume that cluster
may exist in different subspaces of different sizes. For
example, in the COSA algorithm [33], the weights are
assigned to each dimension for each instance, not each
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cluster. Higher weights are assigned to those dimensions
that have a smaller dispersion within the k­nearest
group. The neighborhoods for each instance become it-
eratively enriched with instances belonging to its own
cluster. The dimension weights are refined as the dimen-
sions relevant to a cluster receive larger weights. This
process enables some dimensions to emerge by different
the clustering criteria. However, in the COSA algorithm,
the number of dimensions to be included in a cluster
cannot be set directly by the user, it is done through a
parameter , which controls the incentive for clustering
on more dimensions.

This COSA distance was shown to be more powerful
than traditional Euclidean distance.

Therefore, the choice of the similarity measure can
affect greatly the quality of the visualization in the pro-
jection space. When we change dimension in the visuali-
zation, the degree of similarity between two data points
changes with the salience of the dimensions of the ob-
jects. This aspect was investigated in [9].

It must be noticed also that the knowledge and inter-
est of the user may influence the “salience weights” as it
is assumed that people can have different “perspectives”.
Therefore it is important that the user has also the possi-
bility to influence this parameter in the visualization
tool.

2.3.2. The effect of context in knowledge discovery
With the explosion of information resources on the Web,
ontologies have been extensively developed to facilitate
the understanding, sharing, re-use and integration of
knowledge through the construction of an explicit do-
main model. In life science, the efforts in building on-
tologies across domains still have many challenges to go
through [34][35]. Gene Ontology (GO) is the only on-
tology that has been extensively used in bioinformatics
[36][37]. However, GO seems to be more a taxonomy
rather than a well-formed ontological structure that
would enable traditional rule-based reasoning [38]. An-
other drawback of GO and other Ontologies in general,
is their static structure and thus, when used as a structure
for reasoning, they can only produce monotonic infer-
ence. Such a mode of reasoning may hinder or possibly
even prevent the discovery and exploration of new pos-
sibilities [39].

While in a context-based reasoning, the conceptuali-
zation associated to the “cluster” that has emerged from
the context, is non­static. For example, when we inter-
pret clusters obtained from gene expression data, we
must take into account the context of underlying bio-
logical models e.g., from which tissue and what was en-
vironmental history which has led to that state.

3. EXAMPLES
In this section we would like to give an example of net-
work clustering of data retrieved from metabolic path-
ways and protein-protein interaction databases. As an
example, we create a network based on the KEGG meta-
bolic pathway from the query: “Glycolysis / Gluconeo-
genesis, Pentose phosphate and Citrate cycle pathways”,

for S.  cerevisiae (Figure 2). The enzymes are then en-
riched with protein-protein interaction (MINT, DIP).The
query results are shown in Figure 3. We can see from the
Sammon’s mapping that there are two main clusters in
these pathways, a strongly connected cluster and
sparsely connected cluster (Figure 3). Sparsely con-
nected proteins are highlighted with gray marks, which
appear to be mostly located at the border of the graph.
Based on the concept of hierarchical modularity, we may
conclude that the proteins of the strongly connected
cluster are in higher hierarchy level than those of the
sparsely connected cluster.

Another example of search is performed for protein-
protein interaction with the set of proteins {P41940,
O15305, P29952} which are involved in the glycosyla-
tion and mannosylation pathways in S. cerevisiae, refer-
enced in GeneOntology Biological process “GDP-
mannose biosynthesis” with GO:0009298. Results are
shown in Figure 5. Clustering examples with different
contexts (different weight assignments) are given in
Figure 6 and Figure 7. In Figure 6, all the edges have
equal weights. We can see that he neighborhood of
GO:0009298 consist of proteins C05345 and C00275,
which denote that in this context, they have stronger
connection to GO:0009298. In Figure 7, the neighbors
of GO:0009298 have larger weights, this has resulted in
the clustering of proteins of the query set {P41940,
O15305, P29952}.

We can “experiment” with the weight assignment for
different context and notice that relative proximity of
nodes changes. This might suggest new hypotheses that
these entities might be involved in the same process or
pathways reflected by the context.

Figure 2: KEGG metabolic pathways for “Glyco-
lysis / Gluconeogenesis , Pentose phosphate and

Citrate cycle pathways.
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Figure 3: Metabolic pathway (KEGG) enriched
with protein-protein interactions from MINT and
DIP databases for “Glycolysis / Gluconeogenesis,
Pentose phosphate and Citrate cycle pathways,.
The proteins loosely connected are highlighted

with gray marks.

Figure 4: Clusters from Sammon’s mapping of
the previous graph. Two main clusters emerged,

one strongly connected and one loosely con-
nected.

Figure 5: Search result of pathway query for
mannose synthesis GO:0009298.

Figure 6: Sammon’s mapping of the previous
network for ”Context 1: Every edge has equal

weight”.

Figure 7: The Sammon’s mapping for “Context
2: The neighborhood edges of GO:0009298 have

higher weights than the other edges”.

4. CONCLUSION

In this paper we have discussed about the heterogeneity
of biological data and resources and existing methodolo-
gies to analyze those data. We introduced our approach
to represent integrated biological data for enabling visual
exploratory analysis. At the current phase, we have im-
plemented the Sammon’s mapping clustering with a dis-
tance function that incorporates the notion of context,
which can be controlled by the user. Our experiments
have shown that the Sammon’s mapping algorithm is not
very suitable for a large number of input vectors. There-
fore, in our biological networks consisting of a large
number of nodes, clustering time is rather long. Second,
one cannot always rely totally on the output by the
Sammon’s mapping clustering due to the trustworthiness
of distance function. Therefore, it is up to the user to
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look for insight and experiment with the dimension sali-
ence to see if it makes any sense and always reconnect to
the original hypothesis and background knowledge.
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