
Publication 3

Vesa Siivola and Bryan L. Pellom. Growing an n-gram model. In
Proceedings of the 9th European Conference on Speech Communica-
tion and Technology (Interspeech 2005), pages 1309–1312, Lisbon,
Portugal, September 2005

© 2005 by authors III

Proc. INTERSPEECH’05, pp. 1309–1312.

Growing an n-gram language model

Vesa Siivola1 and Bryan L. Pellom2

1Neural Networks Research Centre, Helsinki University of Technology, Finland
2The Center for Spoken Language Research, University of Colorado at Boulder, USA

vesa.siivola@hut.fi, pellom@cslr.colorado.edu

Abstract
Traditionally, when building an n-gram model, we decide the
span of the model history, collect the relevant statistics and es-
timate the model. The model can be pruned down to a smaller
size by manipulating the statistics or the estimated model. This
paper shows how an n-gram model can be built by adding suit-
able sets of n-grams to a unigram model until desired complex-
ity is reached. Very high order n-grams can be used in the
model, since the need for handling the full unpruned model is
eliminated by the proposed technique. We compare our growing
method to entropy based pruning. In Finnish speech recognition
tests, the models trained by the growing method outperform the
entropy pruned models of similar size.

1. Introduction
N-grams are the most widely used method for language mod-
eling in speech recognition systems. The size of the language
model grows rapidly with growing n, so it is common to choose
a relatively low model order (n = 3 . . . 5). There are methods
to prune the estimated model to a smaller size with reasonable
reduction in the modeling accuracy. For example with cut-offs,
we throw away all n-gram counts not exceeding a certain thresh-
old and estimate the model based on the remaining counts.

A more principled approach to model pruning is entropy
based pruning [1]. For each n-gram in the model, this method
calculates how much the training set likelihood would decrease,
if the n-gram was removed from the model. If this reduction
does not exceed a given threshold, the n-gram is removed. This
method is used as the baseline method in our experiments.

The pruning methods start with a full model containing also
the n-grams that will be eventually pruned off. We present a
method that starts from a unigram model and only adds the n-
grams that will be needed in the final model. The advantage
is that we do not need to set the highest possible order of n-
grams and can include also reasonable amount of very high or-
der n-grams if necessary. Also the model construction takes
less memory. On the other hand, the model estimation has to be
carefully implemented to make it reasonably fast.

The first tests of the growing method were conducted on
Finnish corpora [2]. In this paper, we report recognition exper-
iments on different Finnish audio data and with new acoustic
models and decoder. We also present initial results on the U.S.
English Broadcast News task. The English cross-entropy tests
were run on different training set sizes in order to evaluate how
the methods cope with differing amounts of training data.

2. Growing the n-gram model
The growing method is inspired by the Minimum Description
Length principle [3], where the object is to compress the given

data so that the number of bits required to send a model of the
data and the actual data given the model is minimized. In this
case, we want to minimize the sum of log likelihood of the train-
ing data and the model size.

We start with an initial model Mold. We build the model
by drawing an (m-1)-gram gm−1 from some distribution (dis-
cussed later). We find all the m-grams gm from the training
data that start with the prefix gm−1 and add this set G to the
model, if the change ∆ in data coding length is negative:

∆ = (αSnew − log Lnew) − (αSold − log Lold) , (1)

where S is the model size, that is the model coding length, and
L is the training data likelihood. This procedure is iterated until
some stopping criterion is met. The coefficient α was added
to scale the relative importance of the training set likelihood
compared to the model size. Since we are not actually wanting
to code the training set data, we can change α to create models
of different sizes.

Since we add the n-grams to the model in sets, it is useful
perform final fine tuning of the model by trimming away the
individual n-grams that do not decrease the data coding length.
This last step is practically identical to the entropy based prun-
ing and helps to create significantly better small models.

2.1. The likelihood of the training data

The likelihood L of the data is simply the probability of the
training data:

L =
∏

i

P (wi|wi−1, . . .) (2)

Let us define the set I , that contains the indices of the words,
for which the training set probabilities of the old (Pold) and new
(Pnew) models differ:

I = {j | Pnew(wj |wj−1, . . .) �= Pold(wj |wj−1, . . .)} (3)

The change in the data log likelihood is then

log Lnew − log Lold =
∑

i∈I

log
Pnew(wi|wi−1, . . .)

Pold(wi|wi−1, . . .)
(4)

As we only need to calculate the change in the log likelihood,
we can leave out most of the computations.

2.2. The model coding length

This section describes a hypothetical efficient coding of the lan-
guage model. This gives us an estimate of the model size for the
algorithm. In practice, during the model estimation, it is useful
to store the model in a structure that is easier to work with.

We are actually only interested in the change of the model
size. Thus, assuming our vocabulary V is constant, we are not

interested in how it can be coded. For simplicity, we assume
that the number of the n-grams in the model is coded as a 32-
bit integer. It takes equal space in all models and can also be
ignored. In addition to the vocabulary, we need to store the n-
grams. We enumerate the words of the vocabulary from zero up-
wards. Thus, we can encode any word as an integer in log2 |V |
bits.

We need to encode which words actually make up the n-
gram. There is an efficient tree structure for storing the n-grams,
which exploits the natural sparsity and structure of n-gram mod-
els [4]. The tree contains all the n-grams of the model, regard-
less of the order of the n-gram. Each node stores only the index
of the last word of the n-gram. To find an n-gram, one would
start from the (empty) root, look for the child node that has the
index of the first word of the gram, proceed to that node and
look for the child node containing the index of the next word
of the n-gram and so on until all of the indices are consumed.
The node where the process stops is the desired node. Thus, for
storing indices of the n-gram, it is sufficient to store only one
index to the tree. For simplicity, we assume that there is always
a path in the tree to the desired node and all nodes can have
child nodes. The tree can be efficiently stored in a vector [4]:
each node stores the range, where its child nodes can be found.
Actually, it is only necessary to store the start of the range, since
the end can be deduced from the start of the next node’s range.
The cost of this bookkeeping is thus log2 N bits, where N is the
number of n-grams in the model. All in all, the cost of storing
the n-grams to the tree sturcture is N log2(N · |V |) bits.

What is left is to store the actual parameters of an n-gram.
For each n-gram gn, we need to store the corresponding proba-
bility. The interpolation (or back-off) coefficient is the same for
all n-grams gn which start with the prefix gn−1 and needs to be
stored. We make the assumption that all n-grams are prefixes to
some (n+1)-grams and each n-gram thus has space allocated for
storing both the probability and the interpolation (or back-off)
coefficient. The cost of storing these two floating point num-
bers is 2θ, where θ is the number of bits needed for the desired
precision.

Finally, we see that the model coding length is

S = N (log2(N · |V |) + 2θ) = N (C + log2(N)) (5)

where C is a constant. The difference in model coding lengths
is:

∆S = (Nnew−Nold) C + Nnewlog2Nnew − Noldlog2Nold (6)

If we would ignore the terms Nnewlog2Nnew and Noldlog2Nold,
we would get something closely resembling the Bayesian Infor-
mation Criterion. In our experiments, ignoring these terms did
not significantly change the cross-entropy results, but hurt the
speech recognition results.

2.3. Practical issues: putting it together

We have given the mathematical theory behind the algorithm
for adding n-grams to the model. In this section, we will fill in
the practical details. The model building was started from a uni-
gram model. Other choices are possible. When looking for new
n-grams of order m, the algorithm first samples a (m-1)-gram
prefix from some distribution. We have simply chosen to sam-
ple the model which we are building, n-gram by n-gram from
unigrams up to the highest order of n-gram that eventually gets
added to model. Incidentally, this kind of sampling assures, that
in the n-gram tree there is always a prefix path up to the current

n-gram, making an earlier assumption true. The stopping crite-
rion for the algorithm comes naturally: when all the n-grams of
the model have been used as prefixes, we are done.

Our sampling processes one n-gram order at a time. Since
we know which prefixes the sampling will use, we do not need
to compute the statistics for the full set of n-grams. These statis-
tics can be collected before processing the n-gram order. This
algorithm is significantly faster than our older method, in which
multiple binary searches were performed [2].

To add a chosen set G of n-grams to the model, we modify
the necessary statistics. If we were using absolute discounting,
this would be simple: we would only need to increment the
counts of the corresponding n-grams. We have decided to use
modified interpolated Kneser-Ney smoothing, which has been
shown to generally outperform the other well known smoothing
methods [5]. Therefore, we also have to modify the lower or-
der n-gram counts accordingly. The discount coefficients of the
smoothing are optimized numerically using Powell search [6].
The discount coefficients are re-estimated each time 10 000 new
sets of n-grams of a new order have been accepted.

3. Experiments
3.1. Data

The Finnish text data was a collection of books and newspaper
articles from the Finnish language bank [7] and short news sto-
ries from the Finnish news agency totaling 36M words. Earlier,
we have experimented with different ways of splitting words
to smaller units (no split, statistical morphs, syllables, gram-
matical morphemes) and found that splitting words to statis-
tical morphs generally outperforms the other methods [8, 9].
This splitting results in 100M morphs (26k different morphs).
The Finnish audio data was a book read by one female speaker
(13h).

The North American News Text Corpus as well as the tran-
scripts from 1996 Hub4 evaluation (LDC97T22) were used for
training the English language models (520M words). 64k most
common words were chosen as the vocabulary of the recog-
nizer. For training the English system, 104 hours of the 1996
Broadcast News Speech Corpus (LDC97S44) and 97 hours of
the 1997 Broadcast News Speech Corpus (LDC98S71) were
used. For testing we used the DARPA 1998 BN Evaluation data
(LDC2000S86). Specifically, we evaluated the system perfor-
mance on the labeled F0 condition of the 1998 BN eval set with
hand-labeled segmentation and speaker labels as reference (i.e.,
without an automatic segmentation and labeling software).

3.2. Speech recognition systems

For Finnish recognition experiments, we used the speech recog-
nition system of the Neural Networks Research Centre (NNRC)
[10]. For English we used the SONIC system [11, 12], which is
freely available for research purposes from the Center for Spo-
ken Language Research website. Both systems share similar
architecture and are based on decision-tree state-clustered hid-
den Markov triphone models with continuous density mixture-
Gaussians. Each clustered state is additionally associated with
a gamma probability density function to model state dura-
tions. Both systems have a decoder that implements an ef-
ficient time-synchronous, beam-pruned Viterbi token-passing
search through a static reentrant lexical prefix tree. We point
out that the NNRC decoder has been designed to efficiently han-
dle higher order n-grams in the first pass to provide improved
recognition performance in languages such as Finnish. SONIC,

106 107 108

13

13.5

14

14.5

15

15.5

16

Model size (n−grams)

C
ro

ss
−e

nt
ro

py
(b

its
)

baseline 3g
baseline 5g
entropy pruning 3g
entropy pruning 5g
growing

Figure 1: Finnish cross-entropies against model sizes. Note that
model sizes are expressed in logarithmic scale. The measure-
ment points on each curve correspond to different parameter
values. Corresponding perplexities range from 7 900 to 48 000.

107 108
6.8

7

7.2

7.4

7.6

7.8

8

Model size (n−grams)

C
ro

ss
−e

nt
ro

py

baseline 3g
baseline 4g
sri 3g pruning
sri 5g pruning
growing

Figure 2: English cross-entropies against model sizes, for train-
ing set of 500M words. Corresponding perplexities range from
110 to 240.

on the other hand, was originally developed for U.S. English
and has been optimized for first-pass recognition using n-grams
where n < 5. The SONIC recognizer currently does not sup-
port 5-gram decoding in the first pass.

3.3. Cross-entropy results

The baseline models were Kneser-Ney smoothed 3, 4 and 5-
grams. The SRILM-toolkit [13] was used to create the entropy
pruned models. For each n-gram model, we tried different val-
ues for the likelihood threshold parameters and got models of
varying sizes. The tests for the growing method were run with
different values of α, yielding models of different sizes. The
performance of the models was measured by cross-entropy HM

of the model M and a previously unseen test set T :

HM(T) = −
1

WT

log2 P (T |M) (7)

Cross-entropy is directly related to perplexity, as ppl(T) =

2H(T), but the relative changes in cross-entropy reflect the rel-
ative changes in word error rate better.

106 107 108

10

12

14

16

18

Model size (n−grams)

W
or

d
er

ro
r r

at
e

(%
)

baseline 3g
baseline 5g
entropy pruning 3g
entropy pruning 5g
growing

Figure 3: Word error rate against model sizes for Finnish. The
corresponding phoneme error rate ranges from 1.4 to 2.4.

The cross-entropy results for Finnish data are plotted in
Figure 1. With the English data, we tested how the methods
work with different amounts of training data, ranging from 5M
words to 500M words. The results for the biggest training set
are plotted in Figure 2. The amount of training data changed
the relative performances of the model so that the smaller the
data set, the less helpful it was to have higher order n-grams in
the model. The cross-entropy for the best models with 107 n-
grams changed approximately from 8.3 to 7.5 with the training
set size.

From the Finnish results we can see that entropy pruning
from trigrams gives better small models than entropy pruning
from 5-grams. It is clear that this entropy pruning is not optimal,
since pruning from 5-grams should always give better model
than pruning from trigrams. The growing method outperforms
the entropy pruning, but since we use greedy sampling, it is not
optimal either.

The difference in cross-entropies of Finnish and English
language models is not surprising. The entropy of Finnish lan-
guage is naturally higher, since one word can contain informa-
tion of several English words (e.g. “from the pub also”, “kup-
pilastakin”). It is interesting to see that the entropy pruned 5-
grams seem to work relatively better for English material than
for Finnish.

3.4. Speech recognition results

The Finnish speech recognition experiments were run on a sub-
set of models used in the cross-entropy experiments. The results
are plotted in Figure 3. For the English experiments, we had to
limit the highest order n-gram to 4 due to the current n-gram
length limitations of SONIC for first-pass decoding. We were
unable to test the largest language models due to restrictions re-
lated to 32-bit memory space access (i.e., models greater than
2GB in size). The results are plotted in Figure 4.

In the Finnish speech recognition experiments, the pro-
posed method performs relatively better than in the cross-
entropy experiments. It outperforms the other models for all
model sizes. The results of the English speech recognition ex-
periments were somewhat surprising. The entropy pruned tri-
gram models were slightly better than the models trained by the
growing method and the improvements predicted by the cross-
entropy experiments were not achieved.

107 108

12

13

14

15

16

Model size (n−grams)

W
or

d
er

ro
r r

at
e

(%
)

baseline 3g
entropy pruning 3g
entropy pruning 4g
growing lim. 4g

Figure 4: Speech recognition results for English. The models
were limited so that no model contained higher order grams
than 4-grams. The largest models were not tested.

4. Discussion and conclusions

We presented a method for building an n-gram model incremen-
tally. In contrast to the pruning methods, the growing algorithm
never handles the full unpruned model. This allows us to con-
sider higher order n-grams for inclusion into the model and also
leads to smaller memory consumption during model estimation.

The proposed growing method was compared to entropy
based pruning [1]. Neither method is optimal. Both methods
use a greedy search to find the best model. Neither of the al-
gorithms takes into account that in speech recognition experi-
ments, the word history might contain errors. In this case, it is
more useful to keep a low order n-gram in the language model
than a high order n-gram. The lower order n-gram should also
generalize better for new sentences.

In the cross-entropy experiments in both Finnish and En-
glish, the growing method outperforms the other methods. The
small models created by the growing method performed rela-
tively better than the ones in our previous experiments [2]. This
difference is due to the final pruning step, which was not car-
ried out in the older experiments. The relative performance of
the models is quite different for Finnish and English. In the
Finnish material, words were split into smaller units (26k dif-
ferent units) whereas in English, 64k most common words were
used. The longer span dependencies are probably more impor-
tant for the Finnish language models. This difference in training
data structure probably affected the tested algorithms differently
and explains the changes in relative performance.

In the Finnish speech recognition experiments, the pro-
posed growing method outperformed the entropy pruned mod-
els. In light of this and earlier results it is surprising that the
entropy pruned trigram model gave the best results with respect
to model size in the English experiments. The growing method
with the 4-gram limit gave the best absolute performance and if
the larger models had been tested, the difference would proba-
bly have been bigger. As for the reasons, we can only speculate
that for English it is probably not as helpful to use higher order
n-grams than for Finnish. It is also possible that tuning the prun-
ing parameters of the SONIC system for 4-grams could affect
the results.

5. Acknowledgments
We would like to thank Finnish news agency (STT) and Finnish
IT center for science for providing text data. The Finnish Feder-
ation of the Visually Impaired and Departments of Speech Sci-
ence and General Linguistics of the University of Helsinki are
thanked for the Finnish audio data. We thank Mathias Creutz
for the discussion leading to development of this model. The
rest of the NNRC speech recognition group is thanked for pro-
viding their tools and scripts for the Finnish experiments.

6. References
[1] A. Stolcke, “Entropy-based pruning of backoff language

models,” in Proc. DARPA Broadcast News Transcription
and Understanding Workshop, 1998, pp. 270–274.

[2] V. Siivola, “Building compact language models incremen-
tally,” in Proceedings of Second Baltic Conference on Hu-
man Language Technologies, 2005, pp. 183–188.

[3] J. Rissanen, Stochastic complexity in statistical inquiry
theory. World Scientific Publishing Co., Inc., 1989.

[4] E. Whittaker and B. Raj, “Quantization-based language
model compression,” in Proc. of Eurospeech, 2001, pp.
33–36.

[5] S. F. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” Computer
Speech and Language, vol. 13, no. 4, pp. 359–393, 1999.

[6] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Eds., Numerical recipes in C, 2nd ed. Cambridge Uni-
versity Press, 1997.

[7] “Finnish Text Collection,” 2005, collection of Finnish
text documents from years 1990–2000. Compiled by
Department of General Linguistics, University of
Helsinki, Linguistics and Language Technology De-
partment, University of Joensuu, Research Institute
for the Languages of Finland, and CSC. Available at
http://www.csc.fi/kielipankki/

[8] V. Siivola, T. Hirsimäki, M. Creutz, and M. Kurimo, “Un-
limited vocabulary speech recognition based on morphs
discovered in an unsupervised manner,” in Proc. of Eu-
rospeech, 2003, pp. 2293–2296.

[9] T. Hirsimäki, M. Creutz, V. Siivola, and M. Kurimo,
“Morphologically motivated language models in speech
recognition,” in Proceedings of International and Interdis-
ciplinary Conference on Adaptive Knowledge Representa-
tion and Reasoning, 2005.

[10] J. Pylkkönen, “An efficient one-pass decoder for finnish
large vocabulary continuous speech recognition,” in Pro-
ceedings of Second Baltic Conference on Human Lan-
guage Technologies, 2005, pp. 167–172.

[11] B. Pellom, “Sonic: The University of Colorado continu-
ous speech recognizer,” University of Colorado,” Techni-
cal Report TR-CSLR-2001-01, 2001.

[12] B. Pellom and K. Hacioglu, “Recent improvements in the
CU SONIC ASR system for noisy speech: The SPINE
task,” in Proc. of ICASSP, 2003, pp. I–4 – I–7.

[13] A. Stolcke, “SRILM – an extensible language model-
ing toolkit,” in Proc. of ICSLP, 2002, pp. 901–904,
http://www.speech.sri.com/projects/srilm/.

