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Abstract.
The local structure of unweighted complex networks can be characterized by the occurrence

frequencies of subgraphs in the network. Frequently occurring subgraphs,motifs, have been related
to the functionality of many natural and man-made networks. Here, we generalize this approach
for weighted networks, presenting two novel measures: theintensity of a subgraph, defined as the
geometric mean of its link weights, and thecoherence, depicting the homogeneity of the weights.
The concept of motif scores is then generalized to weighted networks using these measures. We
also present a definition for the weighted clustering coefficient, which emerges naturally from
the proposed framework. Finally, we demonstrate the concepts by applying them to financial and
metabolic networks.
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INTRODUCTION

The network approach to complex systems has turned out to be extremely fruitful during
the last years, revealing some general principles applicable to a large number of systems,
ranging from the Internet to the protein-protein interaction networks of living cells [1,
2, 3]. The main strength of this approach is its ability to capture essential features
of the systems in question by using simple building blocks, the vertices and edges,
which represent elements or units and their interactions. Studies of the characteristics
of networks have produced novel, unexpected findings such as the very small average
shortest vertex-to-vertex distances often encountered in natural networks, the ubiquity
of scale-free topologies, often coupled with high clustering and some signatures of
modularity, as well as the significantly high frequency of specific network motifs [4,
5, 6], which can be considered as basic structural elements of networks.

In order to understand better the complex systems under study, it is evident that
information about the nature and strength of the underlying interactions should be taken
into account. A natural way of doing this is to assign weights to the network edges,
such as those provided by fluxes in transportation-related networks, e.g. the Internet and
air traffic networks [7, 8, 9], or fluxes of chemical species produced in reactions like
those building the metabolic pathways of a cell [10, 11, 12]. Yet another way to obtain a
weighted network is to utilize correlation matrices to identify the system structure, e.g.,
for inferring the underlying dynamics of stock market data [13, 14, 15].

The above examples indicate the need to generalize commonly utilized network



characteristics to weighted networks. Here, we will focus on measures of weighted
subgraphs and present an extended discussion of the concepts introduced in [16]. The
goal is to provide practical tools for characterizing the importance of specificmotifs, i.e.,
frequently occurring topologically equivalent subgraphs in weighted networks.

INTENSITY AND COHERENCE OF MOTIFS

Motifs with significantly frequent occurence have been related to functional properties
of, e.g., biological and social networks. In the unweighted case, the standard approach
involves counting the number of times a specific type of subgraph appears in a network,
and comparing the appearance frequency to a randomized reference ensemble. However,
in the weighted framework, information would be lost by taking only the appearance
frequency of subgraphs into account. Further, we may consider any weighted network
as a fully connected graph where some links bear zero weights. Counting the number of
times a specific subgraph appears would require imposing a threshold condition on its
weights - should a subgraph where one link bears a vanishing weightε be included in
the count or not?

To overcome the above-mentioned difficulties, we define theintensity I(g) of sub-
graphg with verticesvg and links�g as thegeometric mean of its weights:

I(g) =


 ∏

(i j)∈ �g

wi j




1/|�g|

, (1)

where|�g| is the number of links in�g, andwi j denotes the weight of the link between
verticesi and j. The weights are considered to be non-negative, but not necessarily
normalized. Evidently, as the edge weights are multiplied, the intensity is zero if any
of the weights is zero, and becomes small if any of the weights is small. The definition
suggests a shift in perspective from regarding subgraphs as discrete objects, which either
exist or not, to a continuum of subgraph intensities, where zero or very low intensity
values imply that the subgraph in question does not exist or exists at a practically
insignificant intensity level (see Fig. 1).

The concept of a motif was originally introduced to denote “patterns of interconnec-
tions occurring in complex networks at numbers that are significantly higher than those
in randomized networks” [4]. This has led to some confusion, which partly stems from
the specification of the random ensemble, i.e. the underlying null hypothesis [17, 18].
Further, the terms “subgraph” and “motif” have been used interchangeably by some au-
thors [5]. For the sake of clarity, we choose here to definea motif as a set (an ensemble)
of topologically equivalent subgraphs of a network. With weighted networks it then be-
comes more natural to deal with motif intensities as opposed to numbers of occurrence;
the latter is obtained as a special case of the former when the weights are considered bi-
nary. The motifs showing statistically significant deviation from some reference system
can then be called high or low intensity motifs.
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FIGURE 1. A schematic illustration of the intensity of a triangle motif, when the weightw jk of one of

the constituent edges is gradually decreased from left to right. Here, the intensityI ∆ ∝ w1/3
jk

.

In this framework, thetotal intensity IM of a motif M in the network can now be
defined as the sum of its subgraph intensities:

IM = ∑
g∈M

I(g). (2)

To examine the significance of the total intensity of a motif in an empirical network,
this quantity should be compared to a reference system. For unweighted networks, the
statistical significance of motif occurrence is indicated by thez-score, defined as

zM = (NM −〈nM〉)/σM, (3)

whereNM is the number of subgraphs in motifM in the empirical network,〈nM〉 is the
expectation of their number in the reference ensemble, andσM is the standard deviation
of the latter. This concept is readily generalized to weighted motifs by replacing the
number of subgraphs by their intensities, and we may now define themotif intensity
score as

z̃M = (IM −〈iM〉)/
√
〈i2M〉−〈iM〉2, (4)

whereiM is the total intensity of motifM in one realization of the reference system1. It is
clear that Eqs. (3) and (4) coincide for binary weights, implying that ˜z → z in the limit.

However, due to the nature of the geometric mean, the intensityI(g) does not bear
information on the weight distribution inside a subgraph; it may be low because one of
the weights is very low, or it may result from all of the weights being low. In order to
distinguish between these two extremes, we introduce subgraphcoherence Q(g) as the

1 In the unweighted case, the common approach for constructing the reference system, i.e. the underlying
null hypothesis against which statistical significance is tested, is to generate an ensemble of random
networks such that the degree sequence of the empirical network is conserved in the randomized networks.



ratio of the geometric to the arithmetic mean of the weights as

Q(g) = I(g)|�g|/ ∑
(i j)∈ �g

wi j. (5)

HereQ ∈ [0,1] and it is close to unity only if the subgraph weights do not differ much,
i.e. are internally coherent. Analoguously to the motif intensity score, we can also define
themotif coherence score as

z̃′M = (QM −〈qM〉)/
√
〈q2

M〉−〈qM〉2, (6)

whereQM andqM are the total coherence for motifM in the empirical network and in
one realization of the reference system, respectively.

THE WEIGHTED CLUSTERING COEFFICIENT

As triangles are one type of subgraph, it is of interest to consider generalizing the
clustering coefficient C to weighted networks in the present framework. For unweighted
networks, the clustering coefficient at vertexi of degreeki is defined as

Ci =
2ti

ki(ki −1)
, (7)

i.e., it is the ratio of the numberti of triangles where vertexi participates to the maximum
possible number of such triangles. Hence,Ci ∈ [0,1]. There is no single, evident way to
generalize this concept to the weighted case, and several proposals exist [9, 16, 19].
Our version of the weighted clustering coefficientC̃, introduced in [16], is based on the
following additional requirements:

1. As the weights become binary,C̃ = C.

2. For compatibility,C̃ ∈ [0,1].
3. In the unweighted case, the number of triangles at a node determines its clustering

properties. In the weighted case, clustering should be determined by some weighted
characteristic of triangles.

4. For each triangle, all three edge weights should be taken into account.
5. For each triangle, the weighted characteristic should be invariant to permutation of

weights2.
6. When any of the weights in a triangle approaches zero, the weighted characteristic

of that triangle should likewise approach zero.
7. When vertexi participates in the maximum number1

2ki(ki −1) of triangles, where
each edge weight is maximal, the weighted clustering coefficient should also be
maximal, i.e.,C̃i = 1.

2 This ensures that for a single trianglei jk, the value of the weighted clustering coefficient is the same at
all vertices, i.e.,̃Ci = C̃j = C̃k



These requirements can be fulfilled by replacing the number of triangles in Eq. (7) with
the sum of triangle intensities. Then, the weighted clustering coefficient can be defined
as

C̃i =
2

ki(ki −1) ∑
j,k

(w̃i jw̃ jkw̃ki)
1/3, (8)

where the weights are scaled by the largest weight in the network, ˜wi j = wi j/W with
W = max(wmn). This normalization ensures that requirements (2) and (7) are fulfilled.
Note that normalization based onweighted single-node characteristics such as the
node strengthsi = ∑ j wi j would violate the weight permutation invariance requirement
(5). Further, we can see that requirements (4)-(7) are also fulfilled by the unweighted
clustering coefficientC.

We can relate the weighted clustering coefficient to the unweighted one through the
average intensity of triangles at vertexi as Īi = 1

ti
∑g∆∈N (i) I(g∆), whereN (i) denotes

the neighborhood of nodei. This allows us to write the weighted clustering coefficient
as

C̃i = ĪiCi. (9)

This equation gives a plausible interpretation of the weighted clustering coefficient: It is
the unweighted (topological) clustering coefficient renormalized by the average intensity
of triangles (taken with the normalized weights).

APPLICATION I: CLUSTERING IN AN UNDIRECTED
FINANCIAL NETWORK

We have applied the proposed weighted clustering coefficient to the analysis of a finan-
cial interaction network inferred from a set of daily price data forN = 477 NYSE traded
stocks from the years 1980 to 2000. We first calculated correlation matrices by extract-
ing sliding 4-year return windows in order to study the system’s dynamics. Then, for
each window, we constructed a network depicting the financial interactions, such that its
vertices correspond to stocks, and the weighted undirected edges to the elements in the
corresponding correlation matrix. To be precise, the weights are taken as the absolute
values of the correlation coefficient. Hence, strong edge weights imply strong coupling
between the stock returns in terms of their linear correlation. Evidently, including every
correlation matrix element would result in a fully connected network – to avoid this,
edges have been included in the network in descending order of weight, until a prede-
termined number of links has been reached (in the example discussed below, 476 links
were used). For a detailed description of the method, see [14, 15].

We have shown earlier that the famous Black Monday (10/19/1987) causes a tempo-
rary transition not only in the topology but also in the weights of the network [20], such
that during the crash the network shrinks and correlations increase. Our aim is to use it
as an example of a network undergoing this type of two-fold transition – topology and
weights – and to see whether the changes are reflected in the network’s clustering prop-
erties. For comparison, we have used the unweighted clustering coefficientC of Eq. (7),
and an alternative weighted coefficientĈ defined in [9] as
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FIGURE 2. Average clustering coefficients for the financial network. The weighted clustering coeffi-
cientC̃ (◦) of Eq. (8) shows the effect of Black Monday clearly. The unweightedC (�) of Eq. (7) and the
weightedĈ (�) of Eq. (10) practically coincide (the markers� and� are used alternately).

Ĉi =
1

si(ki −1) ∑
j,k

(wi j +wik)

2
ai jaika jk, (10)

wheresi denotes the strength of nodei, defined assi = ∑ j wi j, andai j is an element of
the underlying binary adjacency matrix. This definition considers only two of the three
link weights, namely those adjacent to nodei (wi j andwik) and requires that a link exist
also between nodesj andk but does not take its weight (w jk) into account.

Fig. 2 displays values of all three clustering coefficients as functions of time, averaged
over all vertices. The changes of the unweighted coefficientC do not capture the effect
of the crash very clearly, as its value is solely determined by the topological aspects of
the transition. The weighted coefficientĈ also appears fairly insensitive to the changes in
link weights in these networks, and its values practically coincide with the unweighted
C. However, the weighted̃C is clearly seen to reflect the transition, indicating its ability
to capture both aspects of the transition. The time-averaged values for the clustering
coefficients outside (inside) the crash period areCavg = 0.57 (Cavg = 0.60),Ĉavg = 0.58
(Ĉavg = 0.60), andC̃avg = 0.36 (C̃avg = 0.50). These numbers imply thatCavg andĈavg
increase less than 5% during the crash which is less than the normal fluctuation ofC
andĈ outside the crash period, measured at 6.2% as their standard deviation relative
to the mean. However, the crash increasesC̃avg by 39%, which is considerably larger
than the the level of fluctuation at 9.7%. Thus,C̃ has a considerably higher “signal-to-
noise” ratio. Further, changing the value of the manually set weight threshold, which
determines the number of edges included in the financial interaction network, does not
affect the results in a significant way. Even in the limit of including every element of
the correlation matrix as an edge, which results in a fully connected network for which



the unweighted clustering coefficientC = Ĉ = 1 for all times, the weighted clustering
coefficientC̃ was still seen capture the effect of the crash clearly.

APPLICATION II: MOTIFS IN A DIRECTED METABOLIC
NETWORK

The concept of motifs is especially relevant in the case of biological networks, such
as those depicting gene regulation, protein interactions, or metabolism, where subgraph
connectivity can often be related to functional “modules”. These types of biological net-
works are well suited for the weighted framework, as in most cases there is a natural
way for including the interaction strengths or, in the case of metabolic networks, re-
action fluxes, into the network depiction as edge weights. Cellular metabolism can be
represented as a directed network of intracellular molecular interactions, such that the
network consists of verticesXi,Yj, which represent the chemicals. Then the vertices are
connected by an edge if the chemicals are connected by a metabolic reaction. Here, we
have focused on the metabolic pathways of the bacteriumEscherichia coli grown in glu-
cose, which have been studied intensely (see, e.g., [10, 21]), and analyzed the intensities
of weighted motifs in the related network. Here, our aim has been merely to point out
that once weights are considered, findings may strongly differ from the unweighted case.
We have chosen not yet to consider possible biological interpretations of these findings.

In order to experiment with weighted directed motifs, we define the weights through
a biochemical reaction of the formx1X1 + · · ·xnXn → y1Y1 + · · ·ymYm with a positive
(negative) net fluxf if the balance of the reaction lies to the right (left). The flux
provides an overall measure of the relative activity of each reaction, allowing us to
define the corresponding weights aswi j = (y j/xi) f , reflecting the rate at whichXi
is converted intoYj. In addition, for analyzing motif significances based on intensity
scores, a reference system needs to be established, corresponding to a null hypothesis.
We follow a typical approach by computationally constructing an ensemble of random
networks by conserving the degree sequence of the empirical network using a switching
algorithm [6], which preserves the single-node characteristics of the empirical network.
Likewise, the weight distribution is conserved by simply permuting the edge weights,
which removes any weight correlations.

Our findings are displayed in Fig. 3, where the unweighted and weighted motif inten-
sities are shown for a subset of the studied motifs: (i) path of order 2, (ii) non-frustrated
triangle, and (iii) frustrated triangle3. The unweighted subgraph-count-basedz-scores
(the weighted intensity-based ˜z-scores) arezi = −5.4 (z̃i = 14.8), zii = 12.8 (z̃ii = 33.8),
and ziii = −0.5 (z̃iii = 9.0). These results indicate that a shift from unweighted to

3 Here, for compatibility with earlier work, subgraphs have been counted only once, that is, a closed
triangle prevents the counting of the three open triangles (paths of order 2) it contains. However, there are
evident problems with this approach; following this logic, one should specify an arbitrary upper limit as to
what is counted. Especially in cases where noise might be manifested as extra edges with small weights,
this approach may lead to erroneous conclusions as “true” motifs are not counted, whereas larger motifs
that are merely an artefact due to noise are.



FIGURE 3. Motif intensities for the empirical network (vertical lines) and the corresponding random
ensembles (histograms), for the unweighted (upper panel) and weighted (lower panel) cases.

weighted characteristics can cause a change from low to high intensity, i.e. from under-
representation to over-representation, as in case (i). The intensity may become ampli-
fied, i.e. increase the extent of over-representation (case (ii)), or it may increase from
average to high intensity, i.e. from statistically insignificant to over-representation (case
(iii)). Thus, we argue that when investigating the significance of motifs in biological
networks, the inclusion of weights in the analysis can dramatically change the picture.

It is also worth noting that the proposed framework is especially suitable for situations
with experimental errors and noise, which may be the case when dealing with biological
networks inferred from measurement data. As the subgraph intensities form a contin-
uum, the effect of noise is also “continuous” and less drastic than when the subgraphs
are treated in a binary way by imposing a threshold weight. In principle, the intensity
scores of motifs should still be reasonably reliable even in the presence of “background
noise” resulting in a large number of extra edges with small weights.

SUMMARY AND CONCLUSIONS

To summarize, we have discussed novel concepts for the characterization of subgraphs
and motifs in weighted complex networks: subgraphintensity andcoherence, as well as
the weighted clustering coefficient which emerges directly within the proposed frame-
work. These measures suggest a shift in perspective from subgraphs being binary ob-
jects, which either exist or not, to a continuum of subgraph intensities, and allow a



natural generalization of thez-scores measuring motif significance. We have applied
these concepts to two cases, undirected financial and directed metabolic networks. We
have shown that our version of the weighted clustering coefficient clearly captures the
effects of a market crash, and that the incorporation of weights into the network motifs
of the metabolic network ofE. Coli considerably modifies their statistics. We hope that
the work presented herein will stimulate generalizing existing network concepts to the
weighted framework, and that the proposed characteristic measures will find further use
in future studies of weighted complex networks.
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