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Functional seizures are often misclassi�ed as epileptic seizures and therefore
treated as such, even though the underlying cause is di�erent. Epilepsy has a
neurological origin, whereas functional seizures arise from psychological factors.
Proper classi�cation allows treating functional seizure patients correctly, using
psychotherapy, and faster treatment for urgent epilepsy patients.

This thesis presents a novel method for convulsive epileptic and functional seizure
classi�cation using optical 
ow and a random forest model. Optical 
ow was
implemented for oscillation detection from video and features were calculated
for oscillation signals ranging from 1 to 7 Hz. Two feature selection methods
were employed: the random forest feature importance and statistically signi�cant
di�erence between features of the two seizure types. Three classi�cation and
three regression models were trained on 39 seizures from 30 patients for seizure
classi�cation. A separate test set consisting of 17 seizures from 10 new patients
was utilized for evaluating the performance and reliability of the model.

The best results were achieved using feature selection based on statistical sig-
ni�cance. The cross-validation accuracy for the binary classi�cation using these
oscillation frequency features was 86%, with a 75% sensitivity to epileptic seizures
and an 89% speci�city to functional seizures. The test accuracy for a completely
unseen set of patients was 82%.

Based on the results it is evident that video-based and non-invasive seizure mon-
itoring provides a cost-e�ective method for convulsive epileptic and functional
seizure classi�cation. Furthermore, it allows the opportunity for home monitor-
ing, reducing hospital resources and ensuring comfort for the patient. Based
on the results of this thesis, it is apparent that further classi�cation of seizure
types into categories de�ned by the International League Against Epilepsy must
be done prior to training a machine learning model in order to achieve a more
accurate classi�cation for all patients.

Keywords: epileptic seizure, functional seizure, seizure classi�cation, ran-
dom forest, optical 
ow

Language: English
ii



Aalto-yliopisto
Perustieteiden korkeakoulu
Life Science Technologies -maisteriohjelma

DIPLOMITY �ON
TIIVISTELM �A
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Toiminnalliset kohtaukset luokitellaan usein epileptisiksi, ja sen vuoksi niit�a hoi-
detaan epileptisin�a kohtauksina, vaikka kohtauksille on eri syyt. Epilepsialla on
neurologinen l�aht�okohta ja toiminnalliset kohtaukset kumpuavat psykologisista
l�aht�okohdista. Kohtausten tarkka luokittelu mahdollistaa toiminnallisten koh-
tausten hoitamisen oikein psykoterapian avulla. N�ain my�os kiireelliset epileptiset
potilaat p�a�asev�at oikeaan hoitoon nopeammin.

T�ass�a diplomity�oss�a esitell�a�an uusi mentelm�a konvulsiivisten epileptisten ja
toiminnallisten kohtausten luokittelemiseksi optisen virtauksen ja satunnais-
mets�an avulla. Optista virtausta k�aytettiin oskillaatioiden havaitsemiseen videol-
ta. N�aist�a oskillaatiosignaaleista laskettiin piirteit�a 1 - 7 Hz oskillaatioille koneop-
pimismalleja varten. Ty�oss�a k�aytettiin kahta piirteenvalintamenetelm�a�a: satun-
naismets�an piirteent�arkeytt �a ja piirteiden tilastollisesti merkitsev�a�a eroavaisuutta
kohtaustyyppien v�alill �a. Ty�oss�a opetettiin kolme luokittelumallia ja kolme regres-
siomallia tunnistamaan kohtaukset. Opetusjoukkona k�aytettiin 30 potilaalta tal-
lennettua 39 kohtausta. Erillist�a kymmenelt�a potilaalta tallennettua 17 kohtausta
k�aytettiin testijoukkona mallien suorituskyvyn ja luotettavuuden arvioimisessa.

Parhaat tulokset saavutettiin k�aytt �aen tilastollista merkitsevyytt�a piirteenvalin-
tamenetelm�an�a. Ristiinvalidointitarkkuudeksi saatiin 86%, niin ett�a sensitiivisyys
epileptisiin kohtauksiin oli 75% ja spesi�syys toiminnallisiin kohtauksiin k�aytt �aen
89%. Testitarkkuus erilliselle testijoukolle oli 82%.

Ty�on tulosten perusteella videopohjainen ja ei-invasiivinen kohtausten monito-
rointi on kustannustehokas menetelm�a konvulsiivisten epileptisen ja toiminnallis-
ten kohtausten luokittelemiseksi. Menetelm�a tarjoaa mahdollisuuden kotimonito-
rointiin, mik �a puolestaan v�ahent�a�a sairaanhoidon kustannuksia ja lis�a�a potilaan
mukavuutta. Tulokset osoittavat, ett�a tarkemman luoktittelun saavuttamiseksi
kohtaustyypit on eroteltava kansainv�alisen epilepsia-alan tiedej�arjest�on Interna-
tional League Against Epilepsy (ILAE) luokkien mukaan ennen koneoppimismal-
lin opettamista.
Asiasanat: epileptinen kohtaus, toiminnallinen kohtaus, kohtausten luo-

kittelu, satunnaismets�a, optinen virtaus
Kieli: Englanti
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Chapter 1

Introduction

Functional seizures are often misclassi�ed as epileptic seizures and therefore
treated as such, even though the underlying cause is di�erent. Epilepsy has
a neurological origin, whereas functional seizures arise from psychological
factors [1]. Misclassifying functional seizures causes many patients su�ering
from these seizures to take antiepileptic drugs with no e�ect, and thus not
receive proper treatment such as psychotherapy. Mistreating patients causes
unnecessary hospital visits and examination of the patients, which in turn
creates massive unnecessary costs [2]. Moreover, treating patients experienc-
ing functional seizures correctly ensures that epileptic patients receive proper
treatment as soon as possible. This is vital especially in seizures manifest-
ing as violent uncontrolled convulsions, which can cause signi�cant physical
harm to the patient. The associated dysfunction in respiration and cardiac
arrythmia during a seizure may even lead to death, known as sudden un-
expected death in epilepsy (SUDEP) [3]. Therefore, distinguishing between
epileptic and functional seizures e�ectively and early on ensures proper pa-
tient treatment and saves hospital resources.

Machine learning holds promise for a resource-e�cient method for seizure
classi�cation, because doctors do not need to watch minutes and hours of
video-electroencephalography (video-EEG) recordings per patient, which is
the gold standard for epilepsy and functional seizure diagnosis at the mo-
ment [4]. Instead, doctors can only assess a small amount of borderline cases
and focus their time on other tasks. Moreover, video-EEG is a complicated
method that involves placing electrodes on the patient’s scalp. These elec-
trodes can come o� during movement such as a seizure and restrict patient
movement. In addition, most functional seizures and some epileptic seizures
do not present abnormal changes in EEG recordings [1].

Continuous e�orts are conducted in product and software development
to combat the restrictions in video-EEG monitoring and establish a mod-
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CHAPTER 1. INTRODUCTION 2

ern seizure diagnosis method. Automatic and non-invasive seizure detection
methods are proposed for more e�cient seizure detection and classi�cation,
and they have produced promising results. For example, the growing medical
technology company Neuro Event Labs aims to provide a new standard for
epilepsy monitoring using computer vision and machine learning. Machine
learning and computer vision are able to distinguish patterns and abnormali-
ties from video footage, such as abnormal seizure-like movement and features
characteristic to di�erent types of seizures [4][5]. The optical 
ow algorithm,
used for computer vision applications, can be employed for analyzing move-
ment on a pixel basis and detect oscillating movement from video. Combined
with e�cient feature extraction methods and machine learning, this method
can be used to detect a seizure and identify the type of seizure. Video-based
and non-invasive seizure monitoring also presents the opportunity for home
monitoring, reducing hospital resources and ensuring comfort for the patient.

The overlapping semiologies of epileptic and functional seizures provides
a diagnostic challenge. Coupled with hours of video-EEG footage, this chal-
lenge increases in magnitude and amount of labor. This thesis aims to im-
prove the diagnostics by measuring convulsion frequencies on video and use
these frequencies to separate convulsive functional and epileptic seizures.
These convulsion frequencies have been found to be separable in previous
literature when measuring the convulsion frequencies using accelerometers
[4][6]. The methodology in this thesis provides a resource-e�cient solution
for seizure classi�cation that saves doctors’ time and ensures proper care for
patients.

This thesis begins by introducing the relevant biological background, in-
cluding seizure etiologies and semiologies as well as the methods for diagnosis
and treatment. The computational background for analyzing these seizures
is covered, beginning with the optical 
ow algorithm. Next, the utilized
machine learning models, namely decision trees and random forests, are pre-
sented, along with an overview of the basic principles of machine learning.
Then, the methods for feature extraction and seizure classi�cation are in-
troduced. The results from di�erent feature extraction methods and ran-
dom forest models are presented and the results are analyzed and discussed.
Lastly, this thesis presents suggestions for future research.



Chapter 2

Background

2.1 Epileptic Seizures

Epilepsy is a neurological disease characterized by recurrent and unprovoked
seizures, also known as ictus, caused by abnormal brain signals. The preva-
lence of epilepsy is approximated to be 7.1 per 1000 yearly with an incidence
of 48 per 100 000 [7]. The prevalence of the disease is highest in infants
and the elderly [1]. Epilepsy is a disease that disrupts daily activities and
a�ects the quality of life signi�cantly due to uncontrollable seizures that can
often cause injury and even death [3], which is why it is important to diag-
nose and treat e�ectively. This chapter introduces the methods for epilepsy
diagnosis, involving the identi�cation of seizure etiology and seizure semi-
ology via video-electroencephalography (video-EEG), and discusses options
for treatment of the disease.

2.1.1 Diagnosis

The gold standard for epilepsy diagnosis is video-EEG at an epilepsy mon-
itoring unit (EMU). This method is based on capturing the brain signals
from EEG and the corresponding physical manifestations from video during
a seizure. During an epileptic seizure the normal signal transmission between
neurons is disrupted by large amounts of neurons �ring synchronously in in-
tensive bursts, causing abnormalities in the electrical activity of the brain as
well as behavior. To detect the disruptions in normal brain activity, EEG
electrodes are placed on the patients scalp and the signal is recorded con-
tinuously. Simultaneously, a video recording of the patient is captured and
synchronized with the EEG recordings. These video-EEG recordings are
then analyzed by a doctor to make a diagnosis of epilepsy and its type. The
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CHAPTER 2. BACKGROUND 4

type of epilepsy depends on the etiology and semiology of the seizures in the
patient [8].

In order to make a comprehensive diagnosis and treatment plan, the eti-
ology of the epileptic seizure must be assessed. The location of abnormal
neuronal �ring depends on the etiology of the seizure and can thus a�ect the
physical manifestations of the seizure. The possible causes for epilepsy and
epileptic seizures are wide and range from genetics to infections. The Inter-
national League Against Epilepsy (ILAE) identi�es six di�erent categories of
causes for epilepsy: structural, genetic, infectious, metabolic, immune, and
unknown [9].

Structural etiologies arise from neuroanatomical or neuropathological ab-
normalities and can be either genetic or acquired as a result of an injury
for example. Genetic epilepsies arise directly as a cause of a genetic mu-
tation, which can either be inherited or arise de novo. Also infections can
cause epilepsy. For example HIV, tuberculosis and cerebral malaria cause
epilepsy in certain parts of the world. Likewise, metabolic disorders such as
porphyria, related to abnormalities in haemoglobin metabolism, may cause
epilepsy. Immune epilepsies are caused by the in
ammation of the central
nervous system. The last category is unknown, which indicates that a cause
has not been identi�ed for the epilepsy either due to the complicated nature
of the seizures or other factors such as lack of resources. This is the case for
almost 50% of epilepsy cases in all age groups [9].

The etiology categories are not mutually exclusive, for example a struc-
tural abnormality causing epilepsy can originate from a genetic mutation as
noted above. Therefore, epilepsies are classi�ed based on the main cause of
the seizures as well as their main symptoms. The most common etiology in
children is genetic, whereas the most common causes of epilepsy in adults
are head injuries, infections, and alcohol. For the elderly the main causes are
strokes and tumors [10].

In addition to etiology identi�cation, the seizure semiologies are used to
categorize the seizure and epilepsy type. The semiologies depend on the lo-
cation of abnormal neuronal �ring. The ILAE categorizes seizures into three
di�erent types: generalized, focal, and unknown. Generalized seizures in-
dicate that the abnormalities originate from both hemispheres of the brain,
whereas focal seizures arise only from one hemisphere. Generalized seizures
are often tonic, atonic, clonic, myoclonic, tonic-clonic, or absence seizures.
Tonic seizures appear as sti�ness of the body, whereas atonic ones indi-
cate body 
accidity. Clonic seizures involve repeated tensing and relaxing of
the muscles, causing rhythmic jerking. Clonic movement of multiple muscle
groups is often synchronous in an epileptic seizure due to synchronous bursts
of neuronal �ring. Myoclonic seizures on the other hand contain only brief
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shock-like jerks of a muscle or muscle group. Tonic-clonic seizures involve
both a tonic phase and a clonic phase. Absence seizures are characterized
by disruptions in consciousness. Focal seizures are often focal aware, fo-
cal impaired awareness, focal motor, focal non-motor, and focal to bilateral
tonic-clonic seizures [9][10].

This thesis focuses on seizures that contain convulsing movement; these
include mainly clonic and tonic-clonic seizures. Identifying both the seizure
type and seizure origin allows determining the correct treatment for the pa-
tient. However, the unknown categories in the o�cial ILAE classi�cation
system in both seizures and etiologies underlines the complexity and variety
of the disease.

Machine learning algorithms are proposed as a new solution for EEG
recording analysis and seizure detection to improve e�ciency and reduce the
required labor [11]. However, the unpredictability of seizures in all hospital
video-EEG monitoring solutions poses a challenge as seizures do not always
occur during the monitoring period. Therefore, purely video-based solutions
are examined for seizure detection and classi�cation. A monitoring system
based only on video is a much simpler method than video-EEG and can
even be implemented in a patient’s home. This allows for longer monitor-
ing periods and an increased chance of observing a seizure. Incorporating
machine learning algorithms with video-based monitoring o�ers improved ef-
�ciency and reduced labor, while also minimizing costs and maximizing the
probability of seizure observance.

2.1.2 Treatment

The most common treatment for epilepsy are antiepileptic drugs. The drugs
aim to reduce the excitability of the neurons, which is the neurological cause
of the seizure. Drugs, such as carbamazepine and ethosuximide, aim to
achieve this by targeting and blocking certain sodium and calcium channels
that are responsible for the normal functioning of neurons and enabling ac-
tion potentials. The consecutive opening and closing of these voltage-gated
ion channels is largely responsible for generating and propagating action
potentials, along with potassium channels. An alternative target site for
drugs is the GABAA (
 -aminobutyric acid, type A) receptor. Drugs such as
Clobazam and Phenobarbital activate these receptors, which prolongs chlo-
ride channel opening and causes hyperpolarization of the neuronal membrane
[12]. Antiepileptic medication is an e�ective treatment in approximately 70%
of patients [10].

Focal epilepsies with a severe structural etiology, and where drug treat-
ment proves ine�ective, can be treated with brain surgery [13]. Epilepsy is
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de�ned to be drug resistant by the ILAE when two trials of appropriately
chosen and employed medications do not yield a sustained freedom from
seizures [14]. When epilepsy surgery is prescribed as an epilepsy treatment,
a presurgical evaluation on the location and magnitude of the surgical area
is conducted. The most common epilepsy surgeries are temporal focal re-
sections, where the speci�c area of the brain tissue causing the seizures is
removed. With this treatment, the chance of seizure absence after 2 years is
approximately 80 to 90% for discrete lesions. For more dispersed lesions full
seizure absence is less likely, but a signi�cant reduction with partial relapses
can be achieved. If the epilepsy is caused by a tumor, the surgery to remove
this tumor will provide seizure control as well as treat the underlying cause
of the epilepsy. With neurosurgery there are always side e�ects to be consid-
ered. The most common side e�ects in epilepsy surgery are local infections,
occurring in approximately 6-12% of patients, but the surgery may also cause
stroke or changes in cognitive capacity, such as verbal list learning. However,
the severe side e�ects are very uncommon [10][13].

Alternatives to epilepsy surgery in treating drug resistant epilepsy include
electrical stimulation of the vagus nerve leading to the brain and deep brain
stimulation. These methods are intended for patients who are not eligible for
epilepsy surgery. The vagus nerve is a mixed nerve containing a�erent and
e�erent sensory �bers, meaning that it carries signals to and from the brain.
The nerve has a variety of connections and conveys information related to vis-
ceral, somatic and taste sensations [15]. For vagus nerve stimulation (VNS),
electrodes are implanted into the neck around the vagus nerve and a pulse
generator connected to these electrodes is implanted into the chest wall [16].
The stimulation can be adjusted according to patient tolerance and clinical
response. The stimulator itself can be activated by an external magnet either
by the patient or a family member during a seizure. The full method of ef-
fect of VNS is unknown, but the hypothesis is that the stimulation modulates
circuits in thalamic and brain stem nuclei. This alters neurotransmitters in-
volved in epileptic seizures and reduces the synchronized �ring causing the
seizures. Vagus nerve stimulation has been reported to produce seizure re-
duction in 20-65% of patients and complete seizure absence in less than 10%
of patients. This wide range of seizure reduction probability emphasizes the
unknown mechanism of action of the VNS system as well as the variability of
epilepsy. The possible side e�ects of this method include di�culty in speak-
ing and voice hoarseness during stimulation as well as shortness of breath or
bradyarrhythmia, a slow hear rate [10].

Deep brain stimulation (DBS) also consists of electrodes implanted into
the brain and a connected pulse generator. The electrodes are implanted
into the anterior nucleus of the thalamus or the hippocampus. Alternative
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sites of stimulation such as the centromedian nucleus in the thalamus are
also being examined [17]. The exact mechanism of DBS in alleviating seizure
symptoms, similarly to VNS, remains unknown. Deep brain stimulation has
been reported to o�er a 46-95% reduction in seizure occurrence in half of
the admitted patients. This therapy option thus also has a large variation in
seizure reduction e�ect. The possible side-e�ects of DBS include paresthesias
and implant cite pain or infection. Both of these methods, vagus nerve and
deep brain stimulation, can o�er a reduction in seizure frequency, but most
likely will not eliminate seizures altogether [18].

2.2 Functional Seizures

Functional seizures, or non-epileptic psychogenic seizures (PNES), are char-
acterized by sudden changes in behaviour and consciousness without the pres-
ence of abnormal brain activity that characterizes epilepsy. These seizures
are a physical manifestation of functional neurological disorders (FND), also
known as conversion disorders. Functional disorders are a selection of di�er-
ent types of neuropsychiatric symptoms that are, as opposed to structural
impairment, caused by a functional de�cit in the nervous system [19]. For
example, FNDs have been reported to be the second most common reason for
new patients to be referred to neurology in Scotland, preceded by headache
and followed by epilepsy [20]. In the United States, the prevalence of func-
tional seizures has been approximated to be 33 per 100 000 people. The
prevalence of functional seizures and their impact on the physical quality of
life is similar to those of the more commonly known Parkinson’s disease [21].
This section will discuss the etiological and semiological factors of functional
seizures and compare these to epileptic seizures. Additionally, the appropri-
ate treatment for functional seizures is introduced.

2.2.1 Diagnosis

Functional seizures are diagnosed using video-EEG monitoring, similarly to
epileptic seizures. Additionally, patient history and eyewitness observations
are considered when making a diagnosis of functional seizures [22]. These
seizures arise typically from psychological or developmental factors. Psycho-
logical factors such as extreme stress or trauma beyond a person’s coping
ability can be manifested as functional seizures. These traumatic life expe-
riences can be so strong that they are "split" from the person’s conscious-
ness and thus unconsciously a�ect the person’s behavior. This unconscious
expression of behavior extends to even unintentionally learning seizure be-
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havior from family members who su�er from epileptic or functional seizures.
Physical trauma such as head injury or surgery can cause functional seizures.
However, the exact pathogenesis of functional seizures remains unclear, which
also creates implications for �nding the exact and most e�ective treatment
for these seizures. Functional seizures are most prevalent between the ages of
20 to 40, with approximately 70% of cases occurring in this age group. This
is opposite to epilepsy, which has a bimodal age curve [1]. These seizures are
universal and appear to have comparable semiologies internationally [23].

The semiologies of functional seizures range from motor manifestations
to a�ective expressions. Motor manifestations can be partial, such that
the seizure is only displayed by slight shaking in one limb. By contrast,
they can also involve the whole body, such that the whole body is shaking,
thrashing, or jerking violently. The amount and location of motor manifes-
tations depends largely on the patient. Especially pelvic thrusting and head
shaking from side to side have been found to be characteristic to functional
seizures [1]. In contrast to epileptic seizures, the movement of limbs is often
asynchronous, meaning that individual body parts move in di�erent direc-
tions with varying frequencies. A�ective expressions that can occur during
functional seizures include ictal crying, moaning, or screaming. Functional
seizures can also include components of impaired awareness, where the pa-
tient loses their sense of focus and responsiveness [22][24]. However, dialep-
tic manifestations are more common in epileptic seizures than in functional
seizures where the patient more often remains present in the situation and
can execute simple commands such as clapping hands or responding to ques-
tions. Some clinical semiologies such as ictal eye closure have been found
to be more common in functional seizures compared to epileptic seizures.
However, it is important to note that no semiological feature has been found
to be pathognomonic to functional seizures [1].

Common terminology is clearly lacking in the �eld of functional disor-
ders and seizures. The terms pseudoseizure and psychogenic seizure give a
sense of the experience being more imaginary than an epileptic seizure, even
though the experience is very real for the patient. In contrast to epileptic
seizures that have o�cial seizure categories established by ILAE, most of
the di�erent functional seizure type classi�cations are based on the observed
seizure types and semiologies in a given sample. These are then given names
that best describe the characteristics of seizure clusters observed in the study
or named by the subjective opinion of a medical professional [25][26]. More-
over, epilepsy terminology is often used in functional seizure classi�cation
even though they have distinct etiologies.
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2.2.2 Treatment

The most common treatment for functional seizures is psychotherapy. This
treatment is based on treating the underlying psychological cause of the dis-
ease using for example cognitive behavioral therapy (CBT) [27]. Comorbid
a�ective or anxiety disorders, which have been found to be more common in
functional seizure patients, can be treated with appropriate antidepressants
or anxiety medication [28]. The e�ect of the treatment depends largely on
the patient’s willingness to accept psychotherapy. Additionally, drug therapy
using sertraline incorporated with cognitive behavioral therapy has been in-
vestigated as a treatment option in a randomized clinical study. LaFrance et
al. [29] observed a 59% decrease in seizures and a signi�cant increase in over-
all functioning with combination of CBT and sertraline, compared to a 51%
decrease in seizures using only CBT. The unknown neuropsychology as well
as short term studies with respect to treatment e�ect presents a challenge in
treating functional seizures [27].

2.3 Optical Flow Algorithm

The optical 
ow algorithm is a method that can be used to observe and an-
alyze movement between individual images or images in a video recording.
The algorithm is based on the 
ow of movement quanti�ed by individual pix-
els and their displacement between frames. Optical 
ow is commonly used
for stereo vision, masking moving objects and facial expression analysis [30].
Later, di�erent variations of the optical 
ow algorithm have also been im-
plemented for healthcare applications, including seizure detection. In these
applications, the optical 
ow maps are used for quantifying pixel-based limb
movements and oscillations [5][31]. This chapter will �rst introduce the two
original optical 
ow algorithms, the Lucas-Kanade and Horn-Schunck algo-
rithms, and discuss the di�erences between sparse and dense optical 
ow
algorithms. Next, the chapter will present modern versions of the optical

ow algorithm used for 3-dimensional stereo vision applications as well as
video-based seizure analysis implementations.

2.3.1 Lucas-Kanade and Horn-Schunck Algorithms

Two original and widely used optical 
ow algorithms are the Lucas-Kanade
[32] and the Horn-Schunck [33] algorithms developed in 1981. The Lucas-
Kanade algorithm is a sparse optical 
ow algorithm, tracking a set of in-
dividual points of interest, whereas the Horn-Schunck algorithm is a dense
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algorithm that tracks all pixels in an image. Local algorithms, such as the
Lucas-Kanade method, are more robust to noise, whereas global methods,
such as the Horn-Schunck algorithm, provide dense 
ow maps and are thus
more accurate, albeit more computationally expensive [34]. Both of these
methods are introduced, with the focus being on dense optical 
ow algo-
rithms.

The Lucas-Kanade algorithm uses spatial intensity for image registration.
A template image T(x) is mapped to an input imageI (x), where x is a
vector of pixel coordinates, using a set of allowed warpsW(x; p), where
p = ( p1; :::; pn )T is a vector of parameters. These warps map the pixels in
the template image to a coordinate frame of the input image. A warp may
be a translations such as

W(x; p) =
�

x + p1
y + p2

�
; (2.1)

where the parameter vectorp would directly be the optical 
ow. The Lucas-
Kanade method aims to �nd the value for p that minimizes the sum of
squared errors between the template imageT(x) and the input image I (x)
warped to the coordinate frame of the template. This method assumes that
the images are already in approximate registration. The algorithm begins
with an initial approximation of p and uses it to approximate the increment
in the parameter vector in a small neighborhood. Thus the aim is to minimize
the following sum of squares with respect to �p:

X

x

[I (W(x; p + � p)) � T(x)]2: (2.2)

The value ofp is updated with each increment such thatp = p + � p. This
iteration is continued until the estimates of p converge. The convergence
is often tested by setting a threshold� for L1 norm or L2 norm, such that
jj � pjj � � [32][35].

Similarly to the Lucas-Kanade optical 
ow algorithm, the Horn-Schunck
algorithm utilizes the changes in brightness between two frames to quantify
the velocity of movement. The brightness at each point in an image at a
time t is denoted byE (x; y; t). In addition to measuring the brightness, the
algorithm introduces a smoothness constraint, which controls the di�erence
between the 
ow velocity of a single point and the average velocity of a small
neighborhood of pixels that contains that point. This accounts for possible
occlusion of a group of pixels by other objects, causing the inability to track
those pixels, and is a unique feature of the dense optical 
ow algorithms.
The optical 
ow velocity (u,v) for each pixel can be obtained by minimizing
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the energy function

E =
ZZ

[(Exu + Eyv + E t )2 + � 2(rjj ujj 2 + rjj vjj2)]dxdy; (2.3)

whereEx , Ey and E t are the partial derivatives of the image brightness in the
horizontal and vertical directions and in time,� is the parameter controlling
the weight of the smoothing factor, andu and v denote the horizontal and
vertical displacement.

Instead of computing the values for each pixel separately, Horn et al. [33]
proposed an iterative method to estimate the 
ow velocities. This method is
based on computing a new set of estimates from the derivative estimates and
previous velocity estimates. Therefore, this method reduces computation
time and cost. The new estimates foru and v are calculated using the
equations

un+1 = un �
Ex (Exun + Eyvn + E t )

� 2 + E 2
x + E 2

y
(2.4)

and
vn+1 = vn �

Ey(Exun + Eyvn + E t )
� 2 + E 2

x + E 2
y

; (2.5)

whereun and vn are the average velocity vectors in the neighborhood of the
current pixel [33][30].

2.3.2 Modern Applications

During the last decade, variations of the Lucas-Kanade and Horn-Schunck
optical 
ow algorithms have emerged for modern applications. The PixFlow
algorithm created by Facebook is capable of measuring optical 
ow in a
three-dimensional space [36]. This algorithm comprises part of the Facebook
Surround 360 video capture system and is designed to be used with accom-
panying hardware. This hardware consists of 14 cameras in a ring formation
and three more cameras on the top and bottom giving it the ability capture
360� videos. The optical 
ow is intended for computing stereo disparity be-
tween the cameras to provide faster 3D video processing for virtual reality
applications [37].

Optical 
ow algorithms have also been used in healthcare and seizure
detection applications. Geertsema et al. [5] used a variation of the Horn-
Schunck optical 
ow algorithm to detect movement from video in a residential
care setting. Their aim was to compare regular and unusual movements
during sleep to detect epileptic seizures and the optical 
ow algorithm was
used in extracting oscillation frequencies from body movements on video.
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Ojanen et al. [31] employed a variation of the PixFlow optical 
ow algorithm
for a similar seizure detection application. The optical 
ow was implemented
for quantifying movement in nocturnal epileptic seizures involving a motor
component.

2.4 Machine Learning

Machine learning is a subcategory of arti�cial intelligence, de�ned as a collec-
tion of methods for distinguishing patterns and learning them based on input
features. Instead of giving the model a set of pre-determined rules, this learn-
ing is based on remembering previous experiences and adapting with new
information, much like human learning. As a result, the models are capable
of making predictions and decisions under uncertainty on a given context
and data set [38]. Machine learning is also becoming increasingly common
in contactless healthcare, where computer vision and contactless sensors are
combined with machine learning methods to provide remote and non-invasive
monitoring [39]. These methods have a wide range of applications in health-
care, such as seizure detection and heart rate monitoring [5][40]. This section
will �rst introduce the basic concepts in machine learning and then focus on
decision trees and random forests used for seizure classi�cation in this thesis.

2.4.1 Basic Principles

Machine learning can be divided into three categories: supervised, unsuper-
vised and reinforcement learning. Supervised learning aims to learn speci�c
mappingsD = f (xi ; yi )gN

i =1 from input features xi to input labels yi , where
D is the training set and N is the number of samples in the training set.
The learning is based on minimizing a loss or error function and penalizing
for high errors and losses. By learning the speci�c mappings, the model is
able to predict categories or values for unseen data. Examples of supervised
learning include image classi�cation and spam detection. Contrarily to su-
pervised learning, unsupervised learning aims to discover patterns from input
data without clear restrictions and guidelines. These models are only given
input features D = f xi gN

i =1 with no speci�ed labels for the data points, and
similarity or di�erence measures are used for learning instead of error and
loss functions. Common use-cases for unsupervised learning include auto-
matic labeling and similarity detection [41]. Reinforcement learning is based
on feedback from the environment, called rewards. These methods are useful
for dynamic models involving qualitative data, where error measures are im-
possible to determine. Here, learning is based on maximizing local and global
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rewards. Reinforcement learning remains a rather uncommon method. It
has been used in robotics and gaming [38]. This study focuses on supervised
methods, speci�cally random forest as a supervised learning method.

A critical part of supervised learning is �nding features that describe
the data set well. The features,xi , are often vectors of properties that
describe the data points in su�cient detail. Alternatively, they can be other
metrics such as a matrix of pixel values in an image or a sequence of letters
in an email. The features can be selected manually or by implementing
automatic feature selection methods that aim to select the most descriptive
features of the data set. The labels,yi , assigned to the data points can
be either qualitative or quantitative. Machine learning problems involving
a discrete label space are de�ned as classi�cation problems and problems
with a continuous label space are called regression. Moreover, classi�cation
problems can be binary, with two outcomes, or multiclass, with multiple
outcomes [41].

Once the features are selected, the model is trained and its performance
evaluated. To accomplish this, the data set is �rst divided into two separate
sets: training and testing. The majority of the data points are included in
the training set, usually around 80 %, and this sample is used to �t the model
for the speci�c use-case. Fitting the model involves adjusting model weights
and parameters in order to approximate the underlying mapping. The test
set can then be used to evaluate the model and assess the ability of the model
to generalize to unseen data. If the model learns the mapping of the speci�c
training data too well and is not able to generalize to new data, it is said to
over�t. To minimize over�tting, the data set can be divided multiple times
into training and validation sets and each of these data set pairs are then
used for model �tting and evaluation. This is called cross-validation (CV).
The data is divided into k folds, such as 3 or 8, depending on the size of the
data set. The division is such that one data point occurs in the test set only
once. The model is trained and validated on all sets and the best model in
terms of cross-validation accuracy can be chosen [38].

2.4.2 Decision Trees

Decision trees are structures that can be used to predict an outcome using a
sequence of decisions. The decision sequence begins at the �rst node of the
tree, called the root, and progresses down the tree until the �nal node, the
leaf, is reached [38]. This structure is illustrated in Figure 2.1 where the root
is at the top, followed by intermediate nodes and ending with leaf nodes.
Decision trees can be used for binary or multi-class classi�cation as well as
regression tasks. The example structure in Figure 2.1 is of a binary decision
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Figure 2.1: An example diagram of a binary decision tree.

tree, where each decision step includes only two possibilities.
Decision trees can be used in applications such as classifying a disease

based on observed symptoms. Each node in the decision tree represents a
feature, such as high blood pressure in detecting heart disease or eye closure
in seizure classi�cation. In a classi�cation problem, the optimal scenario
would be to �nd a feature that perfectly separates the classes. However, this
is rarely the case with real data. To minimize the path length of the decision
process, the decision tree chooses features that best separate the data to the
top of the tree and progresses down to features that are less signi�cant. This
concept is known as purity, and an optimal tree is achieved by calculating the
impurity of each feature and selecting the feature with the lowest impurity
to the top of the tree [38].

There are di�erent impurity measures available for assessing the value
of di�erent features. The most common impurity measures include the Gini
impurity index and cross-entropy impurity index. These impurity indices are
di�erent functions of the probability p(i jj ) of a classi given a certain node
j . The Gini impurity index and cross-entropy are de�ned as follows:

I Gini (j ) =
X

i

p(i jj )(1 � p(i jj )) (2.6)

I cross� entropy (j ) = �
X

i

p(i jj ) log p(i jj ): (2.7)
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The Gini impurity focuses on minimizing the probability of misclassi�ca-
tion, whereas the cross-entropy impurity focuses on the split that minimizes
the uncertainty of classi�cation. The Gini impurity measures the probabil-
ity of misclassi�cation when a label is chosen randomly from the probability
distribution of the branch. The minimum value, which is zero for the Gini
impurity, is reached when all samples are classi�ed into a single category,
and the maximum value is 0.5, indicating a 50 % chance of classifying a data
point correctly. The cross-entropy impurity measures the entropy, or state of
randomness, in the data. It reaches a minimum of zero when all samples in
a split belong to a single class and a maximum of one when the distribution
between classes is uniform and the subtree is prefectly impure. The infor-
mation gain provided by a split is assessed and the split with the highest
information gain is selected until all nodes are pure, the information gain is
zero, or the maximum depth of a tree is reached. The information gain for a
feature � is calculated as follows:

IG (� ) = H (Parent) � H (ParentjChildren ); (2.8)

whereParent denotes the parent node andChildren denote the child nodes
of the parent node. This mutual information represents the amount of in-
formation achieved for Y when observing X and thereby the reduction in
uncertainty of X with increasing knowledge of Y.

The selection of the impurity measure depends on the size of the data set
and the given problem. Gini impurity o�ers a reduction in computational
power, especially for ensemble methods such as random forest, because it
does not include the logarithmic function that the cross-entropy impurity
contains.

As discussed previously, feature selection is of extreme importance in ma-
chine learning methods. Decision trees provide a built-in method for assessing
feature importance and thereby selecting the most important features used
by the decision tree to make a �nal prediction. The feature importance func-
tion uses the selected impurity measure and assesses the impurity reduction
that is achieved by each feature:

Importance(x i ) =
X

k

Nk

N
� I x i ; (2.9)

wherex i is the featurei , I is the speci�ed impurity measure,Nk is the number
of features that reach nodek, N is the total number of nodes, andI x i is the
impurity index of feature i . The sum encompasses all nodes where featurex i
is used. By selecting the most important features, the decision tree is able
to e�ectively and more accurately predict the outcome of a given problem,
such as the existence or probability of heart disease or the type of a seizure.



CHAPTER 2. BACKGROUND 16

2.4.3 Random Forests

While decision trees themselves are too simplistic and non-robust for complex
classi�cation problems, an ensemble of decision trees, called a random forest,
o�ers and improvement. A random forest consists of multiple di�erently
structured decision trees and makes predictions by taking the majority vote
from all trees or averaging the results over a set of these trees. This ensemble
of trees increases the ability of the model to manage complex problems and
reduces over�tting by using a collection of more generalized trees [38].

Random forests are de�ned as a collection of tree-structured classi�ers
f h(x; � k); k = 1 ; :::g where x is an input vector and f � kg are independent
and identically distributed random vectors. The randomness in each clas-
si�er, � k , consists of two factors that arise when building a random forest.
First, a bootstrapped data set is selected randomly from the original data.
This means that N random samples are selected from the original data set
with replacement, resulting in approximately one-third of the samples being
excluded from the original sample [42]. The remaining data outside of the
bootstrapped data set is called the out-of-bag sample. This randomness in
sample selection is the �rst component of �k . Next, a decision tree is created
using the bootstrapped data. Instead of assessing the impurity of all vari-
ables, a random subset of variables is selected for each node of the tree. The
impurity is calculated for this subset of features to make the best splits using
this subset. This forms the second component of �k [43]. Therefore, the
random forest relies on randomness instead of optimizing each tree, which
signi�cantly speeds up the process of building a random forest. The resulting
individual trees may be weaker classi�ers, but the majority vote or average
result of the ensemble produces accurate and robust predictions. This com-
bination of bootstrapping and taking the aggregate of predictions to make a
�nal classi�cation is called bagging, a method created by Breiman already in
1996 [44].

To predict outcomes for a test set with a random forest, the data is run
through all the trees and the average or the majority vote is used as the
classi�cation result or the predicted regression value. To evaluate the model,
the out-of-bag sample from bootstrapping can be used to calculate an out-of-
bag generalization error to assess the accuracy of the model on unseen data.
For classi�cation problems, the generalization error is often quanti�ed by the
out-of-bag error rate

Eoob =
1
N

NX

i =1

I (yi 6= f̂ oob(x i )) ; (2.10)

where N is the number of samples,I is the indicator function and f̂ oob is
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the out-of-bag prediction for observation i. For regression problems, the
mean squared error or the mean absolute error are often used as measures of
generalization error [43]

MSEoob =
1
N

NX

i =1

(yi � f̂ oob(x i ))2: (2.11)

To optimize the performance of a random forest for a speci�c problem,
a variety of parameters can be tuned. This includes the number of trees in
the forest, the number of random features chosen for �nding the best split,
the depth of the tree, the smallest sample size for splitting a node, and the
maximum number of terminal nodes. In general with ensemble models, the
generalization error decreases initially with an increased number of estima-
tors, but eventually increases as the model begins to over�t. However, for
random forests the out-of-bag estimate is unstable and inaccurate for a small
number of trees, but it quickly converges with increasing number of trees.
Random forests are somewhat sensitive to the number of features per node
used for randomly selecting the set of features tested for this node. The
default value used for this parameter is often a square root or a third of the
total number of features. Breiman recommends using large trees in his origi-
nal work [42], but these large trees have been later found to over�t [43]. Thus
a selection of di�erent tree sizes can be used to �nd the optimum number for
a speci�c problem.

The same concept of feature importance as that presented with decision
trees can also be applied to random forests. The feature importance of a
random forest is an average over the importance of individual trees:

Importance(x i ) =
1

N trees

X

t

X

k

Nk

N
� I x i : (2.12)

Random forests are advantageous due to their computational speed, rel-
ative simplicity, and applicability to high-dimensional problems. Random
forests also provide convenience because they have built-in functions for mea-
suring feature importance and generalization error.

2.5 Neuro Event Labs

Neuro Event Labs (NEL) is a company devoted to improving the monitoring
and diagnosis of epilepsy and other neurological disorders. The company
aims to provide a new standard of care for epilepsy monitoring by combining



CHAPTER 2. BACKGROUND 18

arti�cial intelligence and computer vision. Instead of video-EEG monitor-
ing at the hospital, NEL provides equipment and software for nonintrusive
epilepsy monitoring either at the hospital or at a patient’s home. This allows
for 
exibility, comfort and ease of use for the patient during monitoring. The
monitoring can be used for prescreening to manage EMU admissions and po-
tentially replace an EMU visit with home monitoring, diagnosing di�erent
types of epilepsy, and evaluating the e�ect of treatment.

The NEL product is based on personalized and remote video-monitoring,
which is accomplished by implementing a personal recording unit (PRU) to
a patient’s home or hospital room. The PRU consists of a 3-dimensional
camera, microphone, a cloud-based server for data analysis and a web-based
dashboard for remote result examination. The software used in seizure mon-
itoring and detection is based on machine learning methods that discover
unusual and seizure-like activity mainly during sleep, but also during the
day. The results are then analyzed and con�rmed remotely by epilepsy pro-
fessionals to provide a diagnosis or treatment e�ectiveness results for the
patient.

The NEL product is based on both industrial research and clinical valida-
tion against the gold-standard video-EEG. Further research and development
provides continuous improvement in seizure detection and classi�cation ac-
curacy. Additionally, increasing e�orts are made to expand the software to
other movement disorders, such as functional seizures, in order to provide
correct treatment for these patients. Using a remote monitoring solution re-
duces the amount of intervention and labor required in epilepsy monitoring.
The algorithms can e�ectively identify important periods of time from hours
of video footage, which greatly reduces human labor. Home monitoring al-
lows for longer monitoring periods, typically ranging from 14 to 28 days,
which in turn enables even less frequent seizures to be observed. Moreover,
it allows patients to resume normal activities during the day and night at
their own home. [45]
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Methods

3.1 Data

Video recordings of patients experiencing epileptic and functional seizures
were received from the Thomas Je�erson University Hospital Epilepsy Mon-
itoring Unit (USA). The recordings were provided under an Institutional
Review Board approved project lead by Principal Investigator Michael Sper-
ling. The patients were observed using video-EEG round the clock and the
recordings were collected between the years 2018 and 2020. Only the video
recordings were used for the purposes of this research project and the EEG
recordings were excluded. The video recordings were recorded by a camera
mounted to the wall of the hospital room facing the patient’s bed or the arm
chair next to the bed. The camera setup is illustrated in Figure 3.1. The
positioning of the camera and the zoom were not standard but varied with
patients and thus the distance and angle to the patient were not constant.

The seizure type, epilepsy type and starting time of the seizures were la-
belled by the program manager of neurology at Thomas Je�erson University
Hospital. The seizure videos were annotated by noting the duration of the
seizure and any semiologies visible on video. The data set was created by se-
lecting seizures longer than 10 seconds containing convulsive movement. The
convulsive events were determined separate seizures if the duration between
movement was more than 60 seconds, which was only prevalent for functional
seizures. These speci�c minimum seizure duration and maximum inactivity
cut-o� times were also used by Bayly et al. [6] in convulsive epileptic and
functional seizure classi�cation, whereas Karmakar et al. [46] implemented a
20 second cut-o� for both minimum seizure duration and maximum inactiv-
ity period for the same classi�cation task. Filtering long pauses in movement
reduces computational time, which is important because functional seizures

19
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Figure 3.1: Camera set up for video-EEG data collection.

can last more than 30 minutes [47], meaning more than 54 000 frames per
seizure. On the other hand, in some cases this �ltering eliminates the long
seizure duration feature that is characteristic to functional seizures. Lower
computational time and required computational power were prioritized in
this work due to limited resources. In addition to the duration analysis,
videos where the camera placement was signi�cantly closer to the patient
than average were excluded from the data set to increase accuracy for com-
parison of the number of moving pixels. The �nal data set consisted of 56
seizures from 40 patients, of which 26 were epileptic seizures and 30 were
functional seizures. Each patient experienced one to three seizures during
the monitoring period. The data set included both daytime and nighttime
seizures, and the nighttime seizures were especially prevalent in epileptic
patients.

3.2 Data Processing

The data processing pipeline began by pre-processing the videos. This pre-
processing included standardizing and scaling the videos. Next, the optical

ow was computed for each frame of all seizure videos. The oscillations
were calculated for each frame from pixel direction reversals. Lastly, the
proportion of pixels oscillating at di�erent frequencies were computed and the
mean oscillation frequency in each frame was calculated. This data processing
pipeline for one seizure video is presented in Figure 3.2 and described in more
detail in the following paragraphs.

The videos were cut from the �rst signs of physical movement, which
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Figure 3.2: Data processing pipeline for one seizure video.

was designated as the start of the seizure, to the end of the seizure, denoted
by the end of physical movement. Post-ictal periods were not included into
the analysis. The videos were cropped such that 90 % of the width of the
frame was accounted by the hospital bed and 5 % of pixels remained on both
sides of the bed to ensure that most of the convulsive movement would be
captured. The bottom of the bed was already cropped from the frame due to
the camera positioning, and thus 10 % of pixels were added to the top of the
bed to obtain a vertical cropping. This cropping process also minimized noise
in the frames as it cropped most of the external movement from nurses and
other people in the frame. Approximately 20% of the videos were rotated
because the bed was not in line with the camera angle. This limited the
amount of space on the sides of the bed and ensured e�ective cropping. The
videos were scaled by 0.4 to reduce processing time.

The optical 
ow vectors were computed using a variation of the PixFlow
algorithm by Facebook [36]. The calculations were done for every other
frame in order to minimize computation time. The smoothness coe�cient
determining overall smoothness of the 
ow was set as 0.001. The step size
of the gradient was set to 0.5 when adjusting the 
ow towards the gradient.
The fast global smoothing �lter regularization term, color threshold, lambda
decrease per iteration, and iteration count were set to 1000, 1.5, 0.25, and
3, respectively. The con�dence of the optical 
ow was assessed and the
threshold of forward and backward 
ow matching to be considered reliable
was set as 1. The con�dence threshold for luminance, measured by the
correspondence of original image colors at locations pointed by forward and
backward 
ow, was set to 5. The brightness di�erence con�dence threshold,
measured by the correspondence of average brightness between the current
and previous frame, was set to 3. The maximum size of the 
ow map was
649 and the scale factor when building the pyramid was 0.9. The downscale
factor was set to 0.5.

Oscillations were detected during optical 
ow processing by calculating
the vector direction reversals. The direction reversals were calculated for each
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pixel during a time span of one second. The video frame rate was 30 frames
per second, meaning that the pixel direction reversals were calculated over
30 frames. Direction reversals where the angle between two consecutive vec-
tors was greater than 90� were considered oscillations. The minimum length
of 
ow vector included in the reversal analysis was 0.25 and the minimum
amount of valid 
ow vectors required per pixel was 10. The vector analysis
was conducted for every 15th frame of the video. For other frames where
the analysis was not conducted, the previous direction reversal count was
recorded. The oscillation frequency was calculated by dividing the number
of direction reversals by two. The proportions of pixels oscillating at di�erent
frequencies were then obtained by producing a normalized histogram of the
oscillation frequencies for each frame.

The oscillation frequencies obtained from optical 
ow ranged from 0.5
Hz to 7 Hz, which was the maximum detectable frequency for the frame
rate of the videos and optical 
ow calculated for every other frame. The
frequencies were binned in 14 bins of size 0.5 Hz with the �rst bin being
0-0.5 Hz and the last bin being 6.5-7 Hz. The bins will be noted by the
bin maximum in the rest of this work for simpli�ed notation. Geertsema et
al. [5] found the frequency range 2-6 Hz to be optimal for convulsive epilep-
tic seizure detection, while also minimizing overlap with normal movement.
In this study, a slightly higher upper bound was utilized for oscillation fre-
quencies in order to e�ectively separate epileptic and functional seizures, as
high frequency oscillations are more prevalent in epileptic seizures [48] and
because these frequencies were easily available. Furthermore, Geertsema et
al. aimed to separate seizure and non-seizure activity in the same epileptic
patient with a lower bound of 2 Hz. This study aimed to minimize noise
caused by other people than the patient, and thus a lower bound of 1 Hz
was implemented. This minimum frequency was slightly lower than that im-
plemented by Geertsema et al. to ensure the inclusion of lower frequency
oscillations from functional seizures.

The mean oscillation frequency for each frame was calculated from the
individual oscillation frequencies

f mean =
NbinsX

i =1

f i �
ni

n
; (3.1)

where f i is the frequency of the given bin,ni is the number of pixels oscil-
lating at this frequency, andn is the total number of pixels. The oscillation
frequencies were assumed to be approximately normally distributed in the
bins and the bin center frequency was used forf i .
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3.3 Feature Extraction

The features for machine learning were extracted from the oscillation signals,
both the pixel proportions of individual oscillation frequencies as well as the
mean oscillation frequency for each frame. The feature extraction and selec-
tion process is presented in Figure 3.3. The features were calculated using
the tsfresh package inPython designed for calculating timeseries features.
Eleven features were calculated for both the mean and individual frequen-
cies: mean, longest strike above mean, median, variance, sample entropy,
25% quantile, 75% quantile, maximum, kurtosis, skewness and mean change.
The duration of the seizure was also added as a feature because functional
seizures have been found to typically last longer than epileptic seizures [1].

Figure 3.3: Feature extraction and selection process.

When studying the time-frequency maps of limb movements in the two
seizure types, Bayly et al. [6] found the coe�cient of variation in limb oscilla-
tions to be signi�cantly higher for epileptic seizures than functional seizures.
A cut-o� score of 32% for the coe�cient of variation was used to obtain
91% and 93% classi�cation accuracies for epileptic and functional seizures,
respectively. However, this analysis was conducted using a wrist worn ac-
celerometer and thus includes oscillations in three dimensions whereas the
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video image used in this method is only 2-dimensional. Gubbi et al. [4] found
zero-crossings, signal power and the standard deviation of time-frequency
mappings of oscillations to be reliable features in separating the seizure types.

To account for varying seizure length, the features were calculated for
10 second sliding windows of the full seizure with 50% overlap. Bayly et
al. [6] employed 2.56 second windows and Kusmakar et al. [49] followed
suit in classifying epileptic and functional seizures. Gubbi et al. [4], on the
other hand, used 20 second windows with 50% overlap. These windowed
features were used in the random forest model. Additionally, the features
were aggregated over the whole seizure using mean and standard deviation
and these were used as features in the random forest model. The �rst window-
based method resulted in 133 features and the second aggregated method
method resulted in 265 features for the individual seizure frequencies. For the
mean frequency per frame, the total number of features was 23. To limit the
large amount of features calculated for the individual oscillation frequencies,
the feature importance presented in Equation (2.12) was calculated for all
features. The best 30 features were selected based on the feature importance
values. An additional feature selection method based on statistical testing
was implemented. These feature selection methods are described in more
detail in the next chapter.

3.4 Random Forest Models

A random forest model was used for the classi�cation of oscillation signals
into epileptic and functional seizures. The data set was �rst split into train-
ing and test sets by selecting 5 patients randomly from both epileptic and
functional seizure patients. This ensured that both seizure types would be
well represented in the test set for more comprehensive evaluation of results.
Selecting a total of 10 patients to the test set resulted in a test set of 17
seizures, as each patient experienced one to three seizures. The remaining
30 patients and 39 seizures were selected for the training set. This resulted
in approximately 80% of patients and seizures being in the training set and
20% in the test set.

Three random forest classi�ers were trained using di�erent feature selec-
tion approaches. The �rst random forest classi�er was trained on all features
calculated for the mean frequency. The second classi�er model was trained
on the individual frequency features such that the classi�er was �rst trained
on the whole set of features and the most important features were listed ac-
cording to their order of importance in the random forest. Next, the 30 most
important features were selected and the model was trained again on these
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selected features and this model was used to make predictions on the test set.
The third model was trained using the same individual frequency signals, but
an alternative strategy for feature selection. Statistical testing was employed
to �nd di�ering features between epileptic and functional seizures and these
features were used to train the model. The normality of each feature in both
seizure groups was tested using the Shapiro-Wilk normality test [50]. The
di�erence in distribution of the normally distributed variables was tested us-
ing an independent two-sample t-test, which assumes a normal distribution
and two independent random samples with continuous values. The null hy-
pothesis of this test is that the means of the two samples are equal and the
alternative two-tailed hypothesis is that the means are not equal. If the vari-
able in either seizure group was not normally distributed the nonparametric
alternative, the Mann-Whitney U test, was employed. This test assumes
only independent random samples without a speci�ed distribution. The test
is reliable for sample sizes greater than 20. Here the sample sizes are 19 and
20, and thus some caution is necessary when interpreting the results. The
null hypothesis of this test is that the medians are equal and the two-tailed
alternative hypothesis is that the medians are unequal [51].

In addition to the classi�er models, three regression models were em-
ployed to assess the con�dence of predictions, identify possible downfalls of
the classi�er models, and observe any trends in misclassi�cation. The �rst
two models were trained on individual frequency signals and the feature selec-
tion methods described above using random forest feature importances and
statistical testing. This method allowed the examination of the con�dence of
predictions. Regression models require a continuous label and thus epileptic
seizures were assigned the label 1 and functional seizures were labeled as -1.
By this de�nition, a prediction of 1 would denote an epileptic seizure with
100% certainty, whereas a value of -0.7 would denote a functional seizure with
70% certainty. A prediction of 0 would denote that the model is completely
uncertain about the seizure type. A threshold of zero was selected when
making the �nal binary prediction of epileptic or functional seizure. Alter-
native thresholds were also examined for an improved classi�cation accuracy.
The third model was trained on windowed features instead of aggregated fea-
tures over the whole seizure. This window-based regressor was trained with
features in individual 10 second windows with 50% overlap, described in sec-
tion 3.3, and predictions were made for individual windows of the seizure.
The trend in predicted regression values during a seizure was then examined.
This alternative method was tested to observe possible trends in regression
values during the seizure and search for a classi�cation threshold for more
accurate predictions.

These random forest models were advantageous for this study due to their
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robustness to noise, being relatively fast to train, and their ability to handle
small or large data sets. The data includes a signi�cant amount of noise,
which is often the case in machine learning problems. Robustness to noise
is especially important in this study because the noise is caused by other
people in most of the training videos and cannot be completely removed
by standardization or removing noisy samples. The relatively fast training
time of random forests is optimal for the computational resources available
in this thesis and a low computation time also reduces costs from a business
perspective. Random forests are useful for the small data set in this study,
while allowing for the expansion of this method to a larger training set later.

The hyperparameters of the random forest models were tuned using grid
search and the performance was assessed using 8-fold cross-validation. Grid
search is a parameter optimizing method that �ts the model with all com-
binations of selected parameters and evaluates the performance of each set
of parameters. Contrarily, a random search method would select a random
sample of features and compare the performance of the models trained with
all combinations of these parameters [52]. Grid search is computationally a
much heavier algorithm than a random search, but the number of parame-
ters required to optimize a random forest is relatively small compared to, for
example, neural networks. Therefore, the computational resources allowed
for a grid search in this thesis.

Optimizing the hyperparameters of a model optimizes the method for the
speci�c data and features. The parameters tuned for the classi�cation model
were the number of trees in the random forest (nestimators), maximum
depth of trees (maxdepth), minimum number of samples considered when
splitting a node (min samplessplit), minimum number of samples required
in a leaf (min samplesleaf), the number of features to include when looking
for the best split (max features), and the function to measure the quality of
the split (criterion). The parameter options tested were nestimators=[10,
20, 30, 50], maxdepth=[5, 10, None], minsamplessplit=[2, 5, 10], min -
samplesleaf=[1, 2, 4], maxfeatures=[sqrt, log2, None], and criterion=[gini,
entropy], where gini is the Gini impurity index in Equation (2.6) and entropy
is the cross-entropy impurity in Equation (2.7). The regression parameter
options were the same, except for the impurity measure parameter. The
impurity measure options were criterion=[mae, mse], where mae is the mean
absolute error and mse is the mean squared error.

The parameters with the best cross-validation accuracy were chosen for
the classi�cation models and the best cross-validation coe�cient of deter-
mination for the regression models. The computation time increases signi�-
cantly with the number of folds in k-fold CV. The computational resources
in this project enabled 8-fold CV and thus eight folds were used. 8-fold
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cross-validation is useful for this small data set as it maximizes the number
of training samples compared to a smaller number of folds. On the other
hand, the number of test samples is small and thus the evaluation metric can
change greatly with only one di�erently classi�ed sample.

Finally, the �tted model was used to make predictions on the test set
and its performance was evaluated. The test samples were passed down the
trees in the random forest and the aggregate prediction was assigned as the
classi�cation label. The accuracy of predictions was used as the main evalu-
ation metric for model performance in the classi�cation models. Accuracy is
calculated as follows:

Accuracy =
TP + TN

Number of samples
; (3.2)

where TP is the number of true positives and TN is the number of true
negatives. Additionally, the sensitivity and speci�city of predictions were
calculated to evaluate the performance of the model on the two seizure types.
The sensitivity and speci�city metrics are traditionally used for assessing the
rate of true positives and true negatives [53]. Sensitivity is based on the
number true positive predictions and false negative (FN) predictions

Sensitivity =
TP

TP + FN
: (3.3)

Speci�city provides information about the amount of true negative and false
positive (FP) predictions

Specif icity =
TN

TN + FP
: (3.4)

For the purposes of this project, sensitivity is de�ned as the sensitivity to
epileptic seizures and speci�city is de�ned as the speci�city to functional
seizures. A confusion matrix can be used to visualize classi�cation results,
by presenting the number of true positives and true negatives as well as the
number of false positives and false negatives in a matrix form. Figure 3.4
presents an example of a confusion matrix for a binary classi�cation problem
used in this study.

The coe�cient of determination, or R2 score, is used as the evaluation
metric for the regression models. It measures the amount of variance in the
predicted values explained by the data using the sum of squares of residuals,
meaning the di�erence between the sample and the prediction, and total sum
of squares. The R2 is calculated as follows:

R2 = 1 �
SSres

SStot
= 1 �

P
i (yi � f i )2

P
i (yi � y)2 ; (3.5)
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Figure 3.4: Confusion matrix.

where SSres is the sum of squares of residuals,SStot is the total sum of
squares,f i is the predicted value,yi is the true value, andy is the mean of
the true values. A value of 1 denotes perfect �t and 0 denotes a model that
is as good as always predictingy. This metric can also have negative values
if the model performance is worse than always predicting the mean [38].



Chapter 4

Results

4.1 Oscillation Frequencies

The oscillation frequencies were calculated from pixel-based direction rever-
sals obtained using optical 
ow. An example frame from a seizure video of
one patient and the corresponding Hue Saturation Value (HSV) visualiza-
tion from optical 
ow is presented in Figure 4.1. Figure 4.1(a) illustrates the
camera setup and the implemented frame cropping. The face of the patient
is blurred for privacy reasons. The outline of the patient is clearly visible
in the optical 
ow visualization in Figure 4.1(b). The face and upper body
are presented in a violet color, the right hand and lower body in yellow, and
slight green color is visible in the right and left arms and the top of the
head. Even the outline of the pillow is visible in this visualization as the
pillow moves with rigorous head thrashing. These di�erent colors depict the
magnitude and direction of movement in the frame. These optical 
ow maps
were computed for every other frame and the oscillation frequencies for the
entire video were calculated.

The oscillation frequencies of body convulsions present in the seizure
videos were �rst analyzed qualitatively. The oscillation frequency trends
vary between epileptic and functional seizures, as well as within the seizure
groups. Three examples of epileptic seizures are presented in Figure 4.2
and three examples of functional seizures are presented in Figure 4.3. Each
seizure is presented in an individual sub�gure and the mean and individual
frequency bands are presented in the three adjacent �gures. The �rst column
shows the mean frequency for each frame in the seizure. The second column
presents the proportion of pixels oscillating at low frequencies, from 1 Hz to
3.5 Hz, and the third column presents the proportion of pixels oscillating at
high frequencies, from 4 Hz to 7 Hz. High-frequency oscillations are more

29
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(a) Original video. (b) Optical flow visualization.

Figure 4.1: An example frame from a seizure video and the corresponding
optical 
ow visualization.

prevalent in epileptic seizures but some functional convulsions are also high
frequency. The mean frequency is useful for observing the trend in convul-
sive movement over the whole seizure, whereas the individual frequencies
give more detailed information about the convulsions. The average dura-
tion of epileptic seizures is shorter than the average duration of functional
seizures. The mean duration of an epileptic seizure is 73 seconds and the
mean duration of a functional seizure is 136 seconds. The median durations
are 61 and 93 seconds, respectively. However, most of the seizure durations
in both classes are approximately 60 seconds, and setting a maximum in-
activity threshold of 60 seconds reduces the di�erence in seizure lengths, as
the long functional seizures with long periods of inactivity are separated into
di�erent seizures.

The epileptic seizures include oscillations in the high and low frequency
bands. Figure 4.2(a) presents a tonic-clonic seizure where the seizure begins
with slight low frequency convulsions, followed by a tonic component, char-
acterized by tensing in the body and the absence of oscillations. Lastly, a
period of both high and low frequency oscillations is visible in the individual
frequency bands as well as in the increase in mean frequency. This signal
is comparable to the oscillation signal in a bilateral tonic to bilateral clonic
seizure observed by Ojanen et al. [31]. The second patient in Figure 4.2(b)
presents a seizure beginning with a clear clonic component. The mean oscil-
lation frequency peaks right in the beginning of the seizure. The oscillation
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(a) Patient 102.

(b) Patient 109.

(c) Patient 141.

Figure 4.2: Mean oscillation frequencies and the proportion of pixels oscil-
lating at di�erent frequencies for three patients with epileptic seizures.

frequency approaches zero in the tonic component and increases again with
another clonic component. Figure 4.2(c) also presents a clonic seizure. How-
ever, this seizure contains a considerable amount of noise because there are
four nurses in the hospital room, and the lowest peaks in mean frequency
represent the nurses walking past the camera. These short peaks can be dis-
tinguished from the tonic phase of the other epileptic seizure examples, but
a longer period in front of the camera would look similar to a tonic phase in
the seizure.

The maximum mean frequency is higher in these examples in the func-
tional seizures compared to the epileptic seizures. Figure 4.3(a) presents a
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