
Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

Nam Xuan Nguyen

Network isolation for Kubernetes hard
multi-tenancy

Master’s Thesis
Espoo, July 31, 2020

Supervisors: Professor Tuomas Aura, Aalto University
Professor Danilo Gligoroski, NTNU

Advisor: Alireza Ranjbar, M.Sc. (Tech.)

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Nam Xuan Nguyen
Title:
Network isolation for Kubernetes hard multi-tenancy
Date: July 31, 2020 Pages: 90
Major: Security and Cloud Computing Code: SCI3084
Supervisors: Professor Tuomas Aura

Professor Danilo Gligoroski
Advisor: Alireza Ranjbar, M.Sc. (Tech.)
Over the past decade, containerization is increasingly popular due to its advan-
tages in performance compared to virtualization. The rise in the use of containers
leads to the emergence of container orchestration tools. Kubernetes is one of the
top widely used tools serving this purpose. One critical point in the design of this
tool is that one cluster can only serve one tenant. As the number of Kubernetes
users is continuously increasing, this model generates considerate management
overheads and resource fragmentation to the cluster. As a result, multi-tenancy
was introduced as an alternative model. However, the major problem of this ap-
proach is the isolation between tenants. This thesis aims to tackle this isolation
issue. While many cluster resources need to be isolated, we concentrate on han-
dling one crucial feature in Kubernetes hard multi-tenancy: Network isolation.
Our solution for this problem is intended to work regardless of the implementa-
tion flexibility of the Kubernetes network. The solution can also pass most of our
security tests. The remaining issues are not significant, and one of them is solv-
able. Besides, our performance experiments recorded that this solution generated
delays in cluster activities. However, in most cases, this delay is noticeable but
nevertheless acceptable. The proposed method can potentially be a part of real
Kubernetes multi-tenant systems where network isolation is one of the essential
requirements.
Keywords: Multi-tenancy, Kubernetes, container technology, network

isolation, sidecar container, iptables
Language: English

2

Acknowledgements

I wish to express my deep gratitude to Professor Tuomas Aura, my main
supervisor, for his valuable guidance and constructive suggestions, and for
his review of my thesis report. I would also like to thank Alireza Ranibar,
my advisor, for his enthusiastic encouragement, his useful advice, and for
review of my report. I also like to say thank to Jan Melen, my supervisor
in Ericsson, for bringing me to EST team, introducing me this interesting
topic, and for his support for my thesis.

I would like to extend my thanks to Maël Kimmerlin, my colleague, for his
valuable suggestions, thoughtful explanations, and useful critiques. I would
also like to thank all EST team members for your advice and encouragement,
which kept my motivation high, so I could finish my thesis.

I also wish to thank Professor Danilo Gligoroski, my secondary professor
in NTNU, for his support for my thesis.

Finally, I wish to thank the SECCLO coordinators for building a won-
derful master’s program and bringing me to it.

Espoo, July 31, 2020

Nam Xuan Nguyen

3

Abbreviations and Acronyms

PoC Proof of Concept
ABAC Attribute Based Access Control
AMQP Advanced Message Queuing Protocol
RBAC Role-based Access Control
NoP Number of Pods
Mb/s Megabits per second
ms Millisecond
RTT Round Trip Time
TCP Transmission Control Protoco
IP Internet Protocol
TLS Transport Layer Security
MAC Media Access Control
DNS Domain Name System
NAT Network Address Translation
SNAT Source Network Address Translation
CA Certification Authority
API Application Programming Interface
CNI Container Networking Interface
SR-IOV Single-Root Input/Output Virtualization
IPIP IP in IP
PCIe Peripheral Component Interconnect express
VFs Virtual Functions
PFs Physical Function
YAML YAML Ain’t Markup Language (recursive acronym)
JSON JavaScript Object Notation
CRD Custom Resources Definition
OS Operating System
RAM Random-Access Memory

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Problem Statement . 8
1.2 Structure . 10

2 Background and Related Work 11
2.1 Kubernetes . 11

2.1.1 Kubernetes Objects . 11
2.1.2 Authentication and Authorization 12
2.1.3 Kubernetes Architecture 14

2.2 Kubernetes Network . 15
2.2.1 Linux Network Namespace 17
2.2.2 Calico . 17
2.2.3 Flannel . 19
2.2.4 Canal . 19
2.2.5 Macvlan . 20
2.2.6 SR-IOV . 20

2.3 Kubernetes Multi-Tenancy and Related Work 21
2.3.1 Soft Multi-Tenancy . 22
2.3.2 Hard Multi-Tenancy 23

3 Network Isolation Solution 25
3.1 One Kubernetes Namespace per Tenant 25
3.2 CNI-Specific Solutions . 25

3.2.1 Calico . 25
3.2.2 Flannel . 28
3.2.3 Macvlan and SR-IOV 29

3.3 CNI-Independent Solution . 29
3.3.1 IPTables . 30
3.3.2 Sidecar Container . 31

5

3.3.3 Admission Controller 32

4 Architecture and Implementation 34
4.1 IPTables in Pod Network Namespace 35
4.2 Sidecar Container Content . 36
4.3 Admission Controller . 37

5 Test Environment 40
5.1 Development Workstation . 40
5.2 Multi-Tenancy Setup . 42
5.3 Software Version and IP Address 44

6 Security Evaluation 48
6.1 Experiment 1 . 49
6.2 Experiment 2 . 49
6.3 Experiment 3 . 50
6.4 Experiment 4 . 53
6.5 Experiment 5 . 53
6.6 Experiment 6 . 55
6.7 Experiment 7 . 56
6.8 Experiment 8 . 58

7 Performance Evaluation 66
7.1 Test Environment . 66

7.1.1 Statistical Functions 68
7.2 Experiment 1 . 69
7.3 Experiment 2 . 73
7.4 Experiment 3 . 73
7.5 Experiment 4 . 76
7.6 Experiment 5 . 78
7.7 Experiment 6 . 79
7.8 Summary . 80

8 Conclusions and Discussion 82
8.1 Discussion . 82
8.2 Conclusions . 83

6

Chapter 1

Introduction

In the last few years, containers have become a widely used method for quick,
cheap, and reliable application deployments. Compared to virtual machines,
containers are more lightweight with higher performance [59]. A bare-metal
host can run ten times as many containers as virtual machines. As containers
become more and more popular, the application paradigm gradually moves
from monolithic to microservice architecture. In this model, an application
is a collection of independently deployable containers acting as portable com-
ponents, and they communicate to each other via simple network protocols,
including Hypertext Transfer Protocol (HTTP), Advanced Message Queu-
ing Protocol (AMQP), and Transmission Control Protocol (TCP) [61]. The
microservice model has been changing the software development and test-
ing procedures as well as the methods to deliver product to customers. As
the need of microservice application development continuously increases, we
need a container orchestration tool that automatically manages a large num-
ber of containers. Kubernetes [26] is one of the most widely used tools for
this purpose. It allows us to quickly provision, create, scale, and delete up
to 300000 [6] containers simultaneously. Especially, Kubernetes can form a
cluster, a set of nodes provisioned by Kubernetes. Containers inside these
nodes can easily interact with each other as if they were in the same node.

The increasing number of Kubernetes users leads to a scalability prob-
lem. One Kubernetes cluster was originally designed to serve one tenant, in
which a tenant is a group of users that absolutely trust each other, such as
members in a team. The involvement of multiple tenants in a cluster leads
to the issue that a misbehaving tenant can occupy all the cluster resources or
compromise the other tenants’ applications. One workaround of this problem
is to apply the single-tenant-per-cluster approach. Figure 1.1 shows a cluster
architecture following this approach.

In this architecture, on a pool of bare metal machines, a virtualization

7

CHAPTER 1. INTRODUCTION 8

K8S

VM VM VM

K8S

VM VM VM

Tenant 1 Tenant 2

Figure 1.1: Single tenant per cluster architecture

platform is deployed to monitor and distribute computing, storage, and net-
working resources and ensure that they are utilized securely and efficiently.
The virtualization hypervisor can spawn several virtual machines, and a Ku-
bernetes cluster runs on the top of them. As a result, each tenant can have
the full permission to access one dedicated Kubernetes cluster, which is iso-
lated from other tenants.

In this model, the virtualization platform acts as a management sys-
tem that provides the isolation between tenants. However, it also generates
overhead that we expected to avoid when replacing virtualization by con-
tainerization. Besides, deploying a dedicated cluster for each tenant can lead
to resource fragmentation. Although the single-tenant-per-cluster model can
solve the tenant isolation problem, it hinders the overall performance of the
physical cluster. To enjoy the benefit of the container technology, we need
to deploy a Kubernetes cluster directly to the physical hosts, as shown in
Figure 1.2.

1.1 Problem Statement

With the architecture above, it is essential to find another method for isola-
tion in multi-tenancy environments. Multi-tenancy can provide various levels
of isolation and management. Soft multi-tenancy solutions can be employed
if tenants can partially trust each other, e.g., tenants are teams or depart-
ments in a company. Hard multi-tenancy approaches are required when each
tenant can potentially be an attacker, and they cannot trust each other.
Section 2.3.2 describes these concepts in detail. Hard multi-tenancy attracts
more attention of researchers as well as engineers due to its advantages. The

CHAPTER 1. INTRODUCTION 9

K8S

Tenant 1 Tenant 2 Tenant 3

Figure 1.2: Kubernetes on bare metal hosts

main advantage is that this approach can serve more tenants from various
backgrounds and organizations. The tenant generally prefers to join an in-
stance of a hard multi-tenant cluster to avoid security and isolation concerns.
Besides, solving the hard multi-tenancy problem in containerization means
moving one step further to improve container security, which is one critical
point for the success of this technology.

To compare between soft and hard multi-tenancy, we can consider this
example. To provide soft multi-tenancy, it is possible to create a manage-
ment interface that only authenticated tenants can access and interact with
their resources in a shared cluster. However, this interface offers no actual
shared resources isolation between tenants, such as shared memory or shared
network, thus allowing a malicious tenant to compromise other tenants’ re-
sources. To handle this problem, it is critical to apply harder, more robust
mechanisms that can isolate the resources used by the tenants. This is the
reason that we need hard multi-tenancy.

While hard multi-tenancy requires hard isolation in workload, storage,
memory, and network, in this thesis, we focus on network isolation, which is
a critical requirement in multi-tenant environments.

The main network isolation issue in Kubernetes is due to the design of the
Kubernetes network (see Section 2.2). By default, a pod (see Section 2.1.1)
can connect to any other pods with no restrictions, even if they are in dif-
ferent namespaces. This thesis intents to solve this problem, blocking cross-
namespace pod communication. Assume that each tenant is assigned to a
namespace, the restriction of cross-namespace communication leads to the
network isolation between tenants.

To sum up, this thesis proposes a solution for blocking pod-to-pod com-

CHAPTER 1. INTRODUCTION 10

munication between the tenants in a multi-tenant Kubernetes cluster.

1.2 Structure

The rest of this thesis is organized as follows: Chapter 2 gives background
knowledge about Kubernetes. It also introduces more detail about the multi-
tenancy problem and related work. Chapter 3 proposes our ideas to solve the
network isolation problem. The main solution in this chapter is to modify the
inner pod firewall. Chapter 4 introduces an implementation of the solution
from the previous chapter. Chapter 5 explains the test environment used
to evaluate our solution. Chapter 6 and Chapter 7 discuss the methods
and results of our security and performance evaluation, respectively. Finally,
Chapter 8 concludes the thesis and discusses the future work.

Chapter 2

Background and Related Work

2.1 Kubernetes

Kubernetes is an open-source orchestrator designed for managing container-
ized applications. It supports a range of automatic operations, such as finding
a working node with available resources for running a workload, configuring
network, and maintaining the desired status of the cluster [47]. It originates
from Google before being maintained and developed by Cloud Native Com-
puting Foundation (CNCF). Kubernetes is predecessor of Borg [39], a Google
internal container-oriented cluster-management system.

Kubernetes possesses a declarative nature. It ensures that every object
in the cluster achieves and retains a desired state declared by the user with
the Kubernetes native application programming interface (API). The full list
of Kubernetes objects can be found in [12]. The objects which are related to
this thesis are described in the following section.

2.1.1 Kubernetes Objects

(i) Pods: To orchestrate containers, Kubernetes aggregates multiple con-
tainers into a pod, which is the basic scheduling unit [58]. Each pod
has its unique internet protocol (IP) address, and all pods in the cluster
can connect to it even if they are located in different physical hosts [36].
Inside a pod, containers share the same storage volume and network.
They are always located in the same physical host and can communi-
cate with each other on the localhost. However, containers in one pod
are unable to address containers in another pod [25] directly. They
need to use the pod IP addresses. Moreover, an application service
should not be accessed via the pod IP addresses. The reason is that
Kubernetes pod is ephemeral and can die anytime, thus being unreli-

11

CHAPTER 2. BACKGROUND AND RELATED WORK 12

able to become a network endpoint. For example, in a cluster, ten pods
run Nginx servers, and a client pod demands this a HTTP service. If
the client pod is set to connect to one specific server pod continually,
the communication will be broken when this server crashes or is termi-
nated. Therefore, the concept of Kubernetes service was introduced to
handle this problem.

(ii) Services: A service is a mechanism for forwarding traffic from client
pods to a specific set of server pods. In the example above, the client
pod can send packets to the IP address of the service. Then, the packets
are randomly (or based on a pre-defined scheduling policy) sent to one
of ten server pods, and a connection is established between the two
pods. If some of these pods die, the service can simply forward traffic
to live pods, and thus the operation is not interrupted.

(iii) Namespaces: Namespace is a mechanism that allows binding a group
of resources to a name. Namespaces are applied in cases where the
Kubernetes cluster has multiple users divided into different teams or
departments. They can be exploited for the multi-tenancy purpose.
Objects in the same namespace are required unique names, while ob-
jects in different namespaces can have the same name [21]. Namespaces
are also exploited to enforce resource quotas, access control, and isola-
tion for users. In terms of multi-tenancy, each tenant can be assigned
to one namespace, and any objects belonging to this tenant will bind
to this namespace.

(iv) Network Policy: A Network policy object is a set of rules that allows
or blocks the communication between a group of pods to a network
endpoint object, including pods or services. For example, one network
policy can deny the access of all pods in the namespace Alice to pods in
the namespace Bob, but grant the access to services in the namespace
Carol. In terms of Kubernetes multi-tenancy, network policy can be
used to solve the network isolation problem between different tenants.
However, since network policy is a namespace-scoped object [22], it can
be controlled by the tenant, leading to security risks for isolation. This
problem is explained in more detail in section 2.3.2.

2.1.2 Authentication and Authorization

For authentication, Kubernetes offers two categories of users: service ac-
count [13] and normal user [5]. While a service account enables pods to be
authenticated when connecting to the API server, the normal user provides

CHAPTER 2. BACKGROUND AND RELATED WORK 13

a method to authenticate a human user, e.g., using kubectl. The API server
can authenticate a normal user by several methods, including static token
file, bootstrap tokens, password [5], and X.509 [49] client certificates. The
last method provides strong security and undeniable convenience, which is
why we select it as the primary authentication method in our experiments.
It requires each user to possess a pair of a public key and a private key. The
user then requests a certificate for the public key. Next, the API server issues
and signs a certificate for the client public key using its own key pair. After
that, whenever the user interacts with the API server, it is required to estab-
lish a secure transport layer security (TLS) connection. The user needs the
client certificate and the private key to be authenticated by the server, and
it needs the certification authority (CA) certificate (a self-signed certificate
issued by the API server) to authenticate the API server.

For authorization, Kubernetes supports several widely known mechanisms
that can be used to grant permission for certain actions in the cluster us-
ing the Kubernetes API. These mechanisms include role-based access control
(RBAC) [43], attribute-based access control (ABAC) [75], Node [31], and
Webhook [32]. Among these mechanisms, only ABAC and RBAC provide
configurable policies. Although ABAC is a powerful tool that allows ad-
ministrators to fully customize their authorizer, it is difficult to employ and
manage. In contrast, RBAC is an easy-to-follow concept, and most develop-
ment efforts of the Kubernetes community are toward this mechanism. For
that reason, the RBAC approach is employed in this thesis.

In RBAC, a role is a set of permissions that allow particular operations.
When a user is assigned to a role, this user is granted all the permissions
included in that role. Therefore, two critical concepts in the RBAC model
are the role and the relationship between users and roles. In Kubernetes,
they are represented by two objects: Role and RoleBinding.

(i) Role: A role [43] object is a set of permissions consisting of only “allow”
rules because, by default, everything is forbidden. Role is namespace-
scoped objects, which means they can only include permissions in one
particular namespace.

(ii) RoleBinding: A role binding object binds a set of subjects, such as
service accounts, groups, and users, to a list of roles granted to these
subjects. Role binding objects can refer to role objects within the same
namespace. An overview of the relation between role, role binding and
user can be found in Figure 2.1.

A user can be included in many role binding objects, and a role binding
object can include many users. Similarly, a role binding object involves

CHAPTER 2. BACKGROUND AND RELATED WORK 14

User Role binding Role

Who is assigned to
what roles ?

A set of permissions
that can be granted to

someone

1..* 0..* 0..* 1..*

Figure 2.1: The relation between role, role binding and user

an unlimited number of role objects, and vice versa.

2.1.3 Kubernetes Architecture

Figure 2.2: Kubernetes cluster architecture

The Figure 2.2 describes an example Kubernetes architecture of a cluster
with three nodes, including two worker nodes for handling workloads and
one control plane node. The control plane ensures that every object in the
cluster achieves its declared state. The control plane consists of the following
main components:

• Kubernetes Api server receives requests and sends responses to the
user. By communicating with the Kubernetes Api server using the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Kubernetes API, users can load their pre-defined object configurations
to the cluster, including their choices of the application images, number
of replicas, CPU power and storage consumed by each container [12].
Besides, this server acts as the cluster gateway. More precisely, this
API server is the only endpoint to send commands and update cluster
information. For this reason, it is expected to be accessed from the
outside.

• Etcd is a key-value database that stores the records of all Kubernetes
objects, such as the current state and the configuration. Any declara-
tive configuration sent from users is persisted in etcd.

• Kubernetes controller manager controls the state of controllers. A
controller is a logical entity that maintains the status of one object,
and the controller manager is the daemon that implemented all the
controllers.

• Scheduler is responsible for allocating containers to worker nodes.
The scheduler guarantees that workloads are distributed within the
pre-defined constraints.

• Kubelet receives a set of pod specifications from the Kubernetes API
server and ensures that containers running on the worker nodes are
healthy and follow the pod specifications.

To interact with the cluster, cluster users, such as administrators or de-
velopers, need to communicate with the API server using the Kubernetes
API [29]. This API is actually a HTTP API, and thus users can use a HTTP
client, e.g., curl or wget, to send API requests. However, for convenience
and enhancing productivity, a dedicated tool, kubectl [24], is introduced for
controlling the Kubernetes cluster from a client endpoint. This useful tool
allows users to perform all possible actions, including to create, delete, get,
describe, and apply. The details of the actions can be found in [24].

2.2 Kubernetes Network

Kubernetes network provides an easy-to-use and convenient mechanism for
pod communication. In this network, every pod has a unique IP address.
The network design ensures that pod IP addresses are reachable by any pod
on any host in the cluster without the use of network address translation
(NAT). These IP addresses are also accessible by agents running on nodes,
including kubelet or system daemons [10]. This network model also handles

CHAPTER 2. BACKGROUND AND RELATED WORK 16

the communication between containers in a pod so that they can reach each
other on the localhost. In a pod, containers stay in the same Linux network
namespace [73], and share the same IP address (pod IP address) and port
space. More precisely, one container can connect to a port on another con-
tainer in the same pod on the localhost, which is the same as two processes
on the same host open ports and communicate on the loopback interface [34].

Although the Kubernetes network model requires specific network fea-
tures, it is open to a variety of implementations [10]. The Kubernetes commu-
nity provides a specification to explain their expectations of the pod commu-
nication. This specification is called Container Network Interface (CNI) [11].
CNI provides the requirements of the Kubernetes network, defines an inter-
face to integrate a network implementation to a cluster, and includes a library
used as the API for network implementation. The actual design and imple-
mentation of the Kubernetes network come from third-party companies, and
their products are called network plugin for Kubernetes. They can also be
called by the word “CNI”. Since Kubernetes constantly gains popularity with
cloud developers and providers, many organizations provide their CNIs to
the public as open-source projects. The CNI implementations vary from L2
and L3 overlay networks to reconfiguring the underlay network. Some widely
used CNIs include Calico, Flannel, Macvlan, Cilium, SR-IOV, Mutus, and
Weave [37].

Kubernetes network model is flat. That means any pod can connect to
any other pods with no restriction. This also applies to the communication
between two pods from different Kubernetes namespaces or different nodes
(see Figure 2.3). This results in a critical security issue when tenants sharing
the same Kubernetes cluster cannot trust each other. Unfortunately, the
issue exists in all CNIs.

K8S
Node 1

Pod Pod

Pod

Node 2

K8S Network

Pod Pod

Pod

Figure 2.3: Overview of the Kubernetes network

CHAPTER 2. BACKGROUND AND RELATED WORK 17

As mentioned above, CNIs implement the Kubernetes network in various
approaches. That means the path of a packet moving from pod to pod varies
between different CNIs. In the next subsection, we introduce more details of
the Linux network namespace before describing the widely known CNIs.

2.2.1 Linux Network Namespace

Linux network namespace [18] is a Linux mechanism that allows a process
or a set of processes to stay inside a logical copy of the network stack. More
precisely, processes inside a network namespace possess dedicated routing ta-
bles, firewall rules, network devices, and port space. In terms of Kubernetes,
each pod, including all processes in containers in the pod, is inside a Linux
network namespace. That means each pod has its own iptables, an internal
layer 3 firewall, leading to our main solution discussed in Section 3.3.

Introducing the Linux network namespace concepts can lead to confusion
while we also have the Kubernetes namespace. In fact, these two concepts are
independent. Besides, no relation exists between the Linux network names-
pace and Kubernetes network policies. The network policies can control the
connections between pods, while the Linux network namespace provides a
dedicated network stack to all the containers inside a pod.

2.2.2 Calico

Calico network plugin provides a layer 3 network solution. As mentioned
above, each pod is inside its own Linux network namespace. This CNI sets
up a virtual Ethernet (veth) between the pod network namespace and the
default network namespace of the host, in which physical network interfaces,
such as eth0, exist. A veth is a pair of virtual interfaces, and in this case,
one interface is in the pod network namespace, and the other is in the default
network namespace. Any packet that come to one interface will immediately
go out from the other interface. Figure 2.4 shows an example of pod-to-pod
communication in the Calico network. In this example, pod A is communi-
cating with pod B.

1. Pod A sends packets to veth0A.

2. The packets go out from veth1A in the default network namespace. The
kernel in the host uses a routing tables rule to decide the destination
of the packets.

3. The packets are routed to veth1B.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

4. The packets go out from veth0B and reach the pod B.

K8S

DEFAULT NETWORK NAMESPACE

Pod network namespace

Pod Aveth0A

veth0A

Pod network namespace

Pod Mveth0M

veth0M

Pod network namespace

Pod Bveth0B

veth0B

Routing tables10.0.0.9

10.0.0.10

10.0.0.11

1

2 3

4

Figure 2.4: Pod-to-pod communication in Calico

To allow pod-to-pod communication between different nodes, Calico em-
ploys IP in IP (IPIP) protocol [52]. In the IPIP tunnel, the sender endpoint
encapsulates the original packet in an IP packet, sends it to the receiver
endpoint. The receiver endpoint then decapsulates this packet and passes it
to the handler. Figure 2.5 explains the whole process of the communication
between pod A in node 1 and pod B in node 2.

1. After the packets come to the default network namespace, the kernel
scans the routing tables in the default network namespace and routes
the packets to ipip0. By default, any packets coming to this interface
are sent to the specific daemon that is responsible for IPIP tunnel.

2. The IPIP daemon encapsulates the packets in an IP packet. The new
packets have the IP address of node 1 as the source address, and the
IP address of node 2 as the destination address. These packets are
then sent on the node network, the underlay network that connects the
nodes.

3. The kernel in node 2 decapsulates and routes the packets to the desti-
nation pod.

To sum up, Calico CNI is a network L3 solution that uses the routing tables
to allow the pods to reach each other in one node and employ IPIP tunnel
to connect pods in different nodes.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

NODE 2

DEFAULT NETWORK NAMESPACE

NODE 1

DEFAULT NETWORK NAMESPACE

Pod network namespace

Pod Aveth0A

veth1A

Pod network namespace

Pod B veth0B

veth1B

Routing tables

1

1
1

3

ipip0 Physical
interface Routing tables21 ipip0Physical

interface

3 3

3

Figure 2.5: Pods in different nodes communicating in Calico

In addition, Calico CNI supports Kubernetes network policy. The CNI
provides a daemon, named Felix [7], that runs on every node of the cluster.
It translates the network policies to iptables rules. In other words, Felix
implements the network policies using iptables on each host.

2.2.3 Flannel

Flannel CNI [3] is a network L2 solution. In this CNI, pod network name-
space also connects to the host network namespace via veth. However, instead
of using the routing tables to guide packets to their destination pods, Flannel
adopts Docker bridges [53] for pod-to-pod communication in one node. More
precisely, in one node, all pods connect to a common bridge (docker0 by
default). During the pod creation process, the veth virtual interface in the
host network namespace of this pod is attached to that bridge. Therefore,
with Flannel CNI, pods in a node communicate on layer 2 of the network.

Flannel also utilizes network tunneling to operate the connection between
pods in different hosts. This CNI provides three options for the encapsulation
and packet handling methods [41]. These options are VXLAN, host-gw, and
UDP. According to [41], it is recommended to use VXLAN as this is the
default option, host-gw is for advanced users, and UDP should be used only
for debugging purposes. Since the details of the encapsulation techniques
are not related to other parts of this thesis, we would refer to [41] for more
details.

One shortcoming of this CNI is that it does not support the Kubernetes
network policy.

2.2.4 Canal

Canal CNI [17] is a hybrid CNI that combines Calico for policy and Flannel
for networking. In detail, Canal uses Flannel to provide Kubernetes network,

CHAPTER 2. BACKGROUND AND RELATED WORK 20

and it also provides a daemon running on each host (similar to Felix) to
implement the Kubernetes network policies. Therefore, this CNI is a solution
that overcomes the lack of support for the Kubernetes network policy support
of Flannel CNI.

2.2.5 Macvlan

Although Macvlan is a CNI, it is not designed for pod-to-pod communi-
cation. Instead, this CNI is usually used to provide a new network that
operates alongside a primary network provided by Calico or Flannel. This
other network allows a specific set of pods to perform particular operations
which require a dedicated pod network. Macvlan [40] is a mechanism that
will enable more than one media access control (MAC) addresses to exist
in one physical network interface. In detail, Macvlan allows users to config-
ure sub-interfaces of the physical one, and each subinterface is assigned to
a unique MAC address. Macvlan CNI binds each pod to a sub-interface, so
that from the outside, each pod appears to have a real MAC address and can
communicate on network layer 2. Figure 2.6 shows the Macvlan architecture.

2.2.6 SR-IOV

Single-root input/output virtualization (SR-IOV) allows a pod to directly
bind to a virtual interface and appear to possess a real network interface and
a real MAC address. SR-IOV is a specification that enables a peripheral com-
ponent interconnect express (PCIe) device to be split into several separate
instances [42]. Since the network interface cards follow PCIe standard, they
are also integrated SR-IOV implementation. In this implementation, there
are two types of functions that are introduced, namely Physical Functions
(PFs) and Virtual Functions (VFs). PFs provide the ability to fully control
the network card, including resource allocation and input/output manage-
ment. In other words, entities having access to PFs cannot only read and
send data, but also assign VFs instances to other objects.

On the other hand, a VF can only manipulate incoming and outgoing
data from its instance. According to [57], in one single PCIe device, there
can be up to 256 VF instances. These instances can be assigned to SR-IOV
Kubernetes pods, one instance to each pod. In this case, pods can “think”
that other pods have real, physical network interfaces with unique MAC ad-
dresses, and the traffic separation is enforced by the SR-IOV implementation
in the network card.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

netns1 netns2

macv1 macv2

macv1 macv2

eth0

switch

Figure 2.6: Macvlan Architecture

2.3 Kubernetes Multi-Tenancy and RelatedWork

Multi-tenancy is a mechanism that allows different customers to access one
software instance [54]. This mechanism saves costs for service providers by
leveraging the resource utilization and scalability of cloud-native solutions.
In a multi-tenant application, a tenant can be defined as a closed group of
users, such as team members, or colleagues in a company. In Kubernetes,
multi-tenant architectures enable a cluster to serve users from various back-
grounds. For example, they can be team members from different departments
in a company, or be teams from separate companies. Although multi-tenant
clusters inevitably reduce the cost of management overhead that exists in the
single-tenant clusters, they also come at a price.

Kubernetes, unfortunately, is originally designed to serve one tenant per
cluster only. Therefore, alongside the cost-effectiveness, Kubernetes multi-
tenancy introduces a new class of management and security issues. Issues re-
lated to management come from the difficulty of fairly distributing resources

CHAPTER 2. BACKGROUND AND RELATED WORK 22

to every tenant while holding the resource fragmentation at an acceptable
level. In other words, when several tenants share a cluster with a limited
amount of available resources, it is challenging to ensure that one tenant
cannot retain a large share at the resources, which hinders the other tenants’
activities. Resource quotas [28], which is a tool for administrators to limit
CPU and memory aggregate consumption per Kubernetes namespace, can
be employed to handle this fair resource allocation problem. Besides, in [74],
Xu et al. introduced a design for network management in Kubernetes. This
work enables the Kubernetes cluster to manage the network bandwidth as a
resource, which is similar to CPU and memory usage, and the administrator
can set a bandwidth quota for each tenant.

Another critical problem of Kubernetes multi-tenancy is security. The
main security problem in any multi-tenancy architecture is the isolation be-
tween tenants. When different customers share a cluster, several resources
need to be isolated, such as computation, memory, storage, and network.
The level of necessary isolation may depend on the degree of trust between
tenants, which decides the type of multi-tenancy architecture that needs to
be used. Soft multi-tenancy architecture is suitable in the case that tenants
can partially trust each other, e.g., tenants are different departments in a
company. On the other hand, hard multi-tenancy can be adopted in the
situation that tenants cannot trust others, and each tenant is a potential
attacker. Hard multi-tenancy is preferable when tenants from very different
backgrounds share the same cluster, e.g., customers from competing com-
panies or different countries. Open systems, such as a Kubernetes operator
that allows anyone to sign up as its customer, also requires stranger isolation
than closed systems with well-known tenants.

This thesis focuses on network isolation, one crucial requirement in hard
multi-tenant systems. The network isolation problem stems from the fact
that Kubernetes clusters are not prepared to operate in multi-tenant envi-
ronments, and thus there is no restriction in communication between two
pods even if they belong to different tenants.

2.3.1 Soft Multi-Tenancy

There are known methods that can be exploited to implement network isola-
tion in soft multi-tenancy. Kubernetes network policy can be used to enforce
the isolation. The administrator can assign each tenant to a Kubernetes
namespace, then create a network policy object for each of these names-
paces, and this object can block any traffic from other Kubernetes names-
paces. An example of the YAML file (the description of a Kubernetes object)
of this network policy object can be found in Figure 2.7. Besides, Istio [19]

CHAPTER 2. BACKGROUND AND RELATED WORK 23

provides a multi-tenancy solution using microservices and a service mesh.
Microservices [68] are loosely coupled services that work together to form
an application. Each microservice is an independently deployable program
acting as a component of the application. These microservices communicate
with each other using a lightweight and widely used protocol, e.g., HTTP.
The use of microservices reduces the complexity of the software design and
implementation by breaking it into smaller, manageable units. However, as
the number of microservices can grow significantly, the infra-connection and
the internal data transferring between them can be increasingly complex. To
that end, service mesh [68] is introduced to assist the management of these
infra-connections. This management with Istio service mesh can be used to
provide multi-tenancy on Kubernetes. Each pod can be treated as a mi-
croservice in Istio, and each tenant can be allocated an independent service
mesh.

1 kind: NetworkPolicy
2 apiVersion: networking.k8s.io/v1
3 metadata:
4 namespace: secondary
5 name: deny -from -other -namespaces
6 spec:
7 podSelector:
8 matchLabels:
9 ingress:

10 - from:
11 - podSelector: {}

Figure 2.7: Deny-all-traffic-from-other-namespaces network policy

2.3.2 Hard Multi-Tenancy

For hard multi-tenancy, as required for absolute isolation, network policy
and Istio service mesh may not fulfill this requirement. Network policy is
a namespace-scoped object, meaning that it needs to bind to a Kubernetes
namespace and be under the control of the tenant who can access that names-
pace. Since the tenants also want to create other network policy objects for
their use, it is likely that their custom network policies can unintentionally
overwrite the administrator’s default policies, thereby leading to the threat
that other tenants can connect to this tenant. On the other hand, the so-
lution from Istio can only solve the management problem. In detail, this
solution provides a management interface that only allows a tenant to ac-
cess their resources and prevent them from interacting with other tenants.

CHAPTER 2. BACKGROUND AND RELATED WORK 24

However, because the service mesh runs on top of the Kubernetes network,
it is impossible to isolate the network from the service mesh level. More
precisely, Istio adds a new overlay network on top of the default Kubernetes
network, and it allows the administrators of the cluster to control this over-
lay network by issuing rules, and thus they can restrict the communication
between tenants. However, this restriction can be applied only for the over-
lay network. While the pods and the other network endpoints in the cluster
using Istio are expected to communicate via the overlay network, a malicious
pod can intentionally connect to another pod of the other tenants using the
default Kubernetes network, because Istio provides no restriction for that
actions. Therefore, although Istio may solve the soft multi-tenancy problem,
a stronger mechanism is required to handle the network isolation problem in
multi-tenancy environments.

Currently, there is no standard method to solve the Kubernetes hard
multi-tenancy problem. Cluster administrators tackle this problem with their
approaches. However, there is an open-source community that is actively de-
voting efforts toward this problem. This group is SIG-Multitenancy [20]. One
interesting project of this group is Virtual Cluster. The idea of this project
is to deploy virtual Kubernetes clusters inside a real Kubernetes cluster.
Each tenant can access to their virtual cluster with full functionality of the
real cluster. However, this project is in an early implementation stage. An-
other large project is Hierarchical Namespace CRD, where CRD stands for
custom resources definition. Since each tenant can themselves create Kuber-
netes namespaces for their own use, this project aims to handle the problem
when the namespaces of different tenants are duplicate. One Kubernetes
namespace is required to be unique in one Kubernetes cluster. However, the
network isolation issue remains unsolved, and this master thesis will, for the
first time, provide a robust academic solution for this isolation problem.

Chapter 3

Network Isolation Solution

In this chapter, we discuss and propose solutions for the network isolation
problem in Kubernetes multi-tenant cluster. They include solutions for each
specific CNI, and a solution that can work on any CNIs. The latter is our
primary solution that is implemented and evaluated in the next chapters.

3.1 One Kubernetes Namespace per Tenant

In this thesis, we assign each tenant a Kubernetes namespace. This approach
allows the Kubernetes cluster to acknowledge which resources belong to which
tenant. For example, a pod inside the namespace Alice should belong to
tenant Alice. However, the cluster has no default mechanism to isolate the
network between two Kubernetes namespaces. That is the main problem
that we aim to solve using the solutions in the next sections.

3.2 CNI-Specific Solutions

3.2.1 Calico

As mentioned above, Kubernetes network policy can be exploited to provide
network isolation in the case of soft multi-tenancy only. It cannot satisfy
the requirement of hard multi-tenant systems because tenants can modify,
delete, or overwrite the network policy objects created by the administrator
for isolation purpose. Calico CNI, fortunately, introduces a variant of Kuber-
netes network policy, the global network policy (GNP) [16], which remedies
this shortcoming. The GNP functions similarly with the vanilla network pol-
icy, except that it is a cluster-scoped object. Tenants are unable to edit or
delete these objects since the administrator has created them, thus avoiding

25

CHAPTER 3. NETWORK ISOLATION SOLUTION 26

any accidental or malicious action by the tenants that impairs the network
isolation.

Figure 3.2 shows an example of a GNP that denies TCP traffic coming
from outside the Kubernetes namespace. In this example, the pods in the
namespace Alice are allocated to the IP range 10.0.0.0/28. This GNP object
issues two ingress rules (ingress rule is applied for incoming traffic). The
first rule enables the TCP inter-connections between pods in the namespace
Alice. The second rule blocks the communications from outer pods to the
inner pods. The parameter protocol can be utilized to choose other network
protocols that the rule enforces on.

We experimented with checking the security of this approach. It actually
provides the network isolation between pods in different Kubernetes names-
paces. However, one critical point is that tenants can overwrite these GNP
objects by issuing vanilla network policies. Figure 3.1 indicates a network
policy that can overwrite the GNP in the Figure 3.2. This policy permits
any incoming traffic from Bob, thus disabling the protection from the GNP
rule.

1 apiVersion: networking.k8s.io/v1
2 kind: NetworkPolicy
3 metadata:
4 name: overwrite
5 namespace: Alice
6 spec:
7 podSelector: {}
8 ingress:
9 - to:

10 - namespaceSelector:
11 matchLabels:
12 name: Alice
13 - namespaceSelector:
14 matchLabels:
15 name: Bob
16 policyTypes:
17 - Ingress

Figure 3.1: A network policy that overwrites the default GNP

To solve this problem, we can add the parameter order to the description
of the GNP object. This parameter defines the order of priority of the GNP
object. If two GNP objects issue rules that conflict with each other, Calico
enforces the rules from the higher-priority object. More precisely, to enforce
a network policy rule as well as a GNP rule, Calico CNI deploys a bunch
of iptables rules on the worker nodes. These iptables rules directly perform

CHAPTER 3. NETWORK ISOLATION SOLUTION 27

1 apiVersion: projectcalico.org/v3
2 kind: GlobalNetworkPolicy
3 metadata:
4 name: isolation -Alice -ns
5 spec:
6 selector: projectcalico.org/namespace == "Alice"
7 types:
8 - Ingress
9 - Egress

10 ingress:
11 - action: Allow
12 metadata:
13 annotations:
14 from: Alice
15 to: itself
16 protocol: TCP
17 source:
18 nets: [’10.0.0.0/28 ’]
19

20 - action: Deny
21 metadata:
22 annotations:
23 from: other_namespace
24 to: Alice
25 protocol: TCP
26 source:
27 notNets: [’10.0.0.0/28 ’]

Figure 3.2: An example of Global Network Policy

network operations, including allowing, blocking, or modifying the traffic in
the cluster. The rules corresponding to the higher priority GNP objects are
placed in higher order in iptables, which allows them to take effect. Although
vanilla Kubernetes network policy objects do not provide the parameter or-
der, Calico considers that their order value is 1000, and this value cannot
be changed by anyone. As a result, setting the order of GNP to a value that
is smaller than 1000 (in the example in Figure 3.3: 800) prevents efforts to
overwrite the rules issued by this object.

With the use of order parameter, GNP objects can be exploited to pro-
vide a network isolation solution for hard multi-tenancy. The benefit of this
approach is that GNP is fully configurable, enabling the administrator to
adopt the isolation policy to fulfill customer requirements. However, this
solution is limited to clusters using Calico CNI.

CHAPTER 3. NETWORK ISOLATION SOLUTION 28

1 apiVersion: projectcalico.org/v3
2 kind: GlobalNetworkPolicy
3 metadata:
4 name: isolation -Alice -ns
5 spec:
6 order: 800
7 selector: projectcalico.org/namespace == "Alice"
8 types:
9 - Ingress

10 - Egress
11 ingress:
12 - action: Allow
13 metadata:
14 annotations:
15 from: Alice
16 to: itself
17 protocol: TCP
18 source:
19 nets: [’10.0.0.0/28 ’]
20

21 - action: Deny
22 metadata:
23 annotations:
24 from: other_namespace
25 to: Alice
26 protocol: TCP
27 source:
28 notNets: [’10.0.0.0/28 ’]

Figure 3.3: An example of Global Network Policy with order parameter

3.2.2 Flannel

Flannel CNI does not support the Kubernetes network policy [22]. If we wish
to use Flannel as the only CNI in the cluster, it cannot enforce network iso-
lation using the network policy. To overcome this shortcoming, Flannel CNI
provides an ability to combine with Calico CNI, which becomes Canal 2.2.4.
Canal can also support GNP. Thus, the same solution for Calico can be
applied to Canal to handle the network isolation issue. This approach in
Canal offers the same advantages as in Calico. However, the drawback of
this approach is that Flannel CNI alone is unable to support this solution.

CHAPTER 3. NETWORK ISOLATION SOLUTION 29

3.2.3 Macvlan and SR-IOV

Unlike the two CNIs above, Macvlan and SR-IOV are not used for pod-to-
pod communication. These CNIs are employed to deploy dedicated networks
for particular purposes. Even so, pods in these networks can connect to
other pods in other networks in the cluster. Consequently, network isolation
is also necessary for networks using Macvlan and SR-IOV CNIs. However,
the solution for Calico and Flannel cannot be applied to these two CNIs. The
first reason is that these CNIs do not support network policy. The second is
that, these CNIs implement the network on Layer 2 (Macvlan) or the layer
of PCIe network cards (SR-IOV). In this case, traffic between pods cannot
go through iptables that processes traffic on network layer 3. Fortunately,
the next section describes a solution that can work on these CNIs.

3.3 CNI-Independent Solution

Adopting a solution that works on only one CNI may become a problem
when a cluster integrates more than one CNI [51]. Therefore, it is preferred to
apply a solution running on whatever CNIs we use to provide the Kubernetes
network. To achieve that, we need to design our solution based on common
elements shared between all CNIs.

As mentioned in Section 2.2, the Kubernetes pod is always inside a Linux
network namespace (see Section 2.2.1). A network namespace possesses a
dedicated port space, routing table, and iptables firewall. It can also be as-
signed to a dedicated IP address, which is different from the host IP address.
Using network namespace is required by Kubernetes design regardless of any
CNIs used to provide the cluster network. As a result, if a network isolation
solution utilizes the Linux network namespace of the pod, it can apply to any
CNIs. This is the critical point that leads to the primary solution introduced
in this thesis.

Network isolation can be achieved by setting up a firewall inside a pod
network namespace. Two resources that are suitable for these tasks are ipta-
bles and routing tables [44]. Routing tables can manipulate network routing,
while iptables has powerful capabilities to control network traffic coming in
and out from the network namespace. In this thesis, we select iptables as
the main tool to implement the network isolation since it can easily block a
packet if it matches a rule defined by the network administrator. In other
words, iptables inside the pod network namespace is selected as the internal
firewall used to provide network isolation. Note that the these iptables are
separate from the iptables on the host network namespace. Therefore, even

CHAPTER 3. NETWORK ISOLATION SOLUTION 30

with the CNIs implementing network on a lower layer than layer 3, such as
SR-IOV or MACVLAN, every pod is inside a dedicated network namespace
and possesses its own iptables, as explained in the previous paragraph. Con-
sequently, this approach works on these CNIs. More details about iptables,
benefits and drawbacks of using it can be found in Section 3.3.1.

This approach has advantages as well as disadvantages. The most impor-
tant advantage is that this solution can be used with all CNIs. This saves
time and effort to manage a multi-tenant cluster that integrates a variety of
CNIs. Besides, the design and configuration of this solution is simple and
straightforward. It is not necessary to patch the Kubernetes source code to
apply the solution. However, this solution may not provide 100% isolation.
In some cases, the isolation can be bypassed. However, it is rare, and the
impact is insignificant. More details can be found in Chapter 6.

3.3.1 IPTables

Iptables [48] is a legacy program that allows network administrators to set
up the Linux kernel firewall by issuing and configuring chains of IP packet
filter rules. When a packet comes in or out from the system, a kernel module
named Netfilter [71] is responsible for matching the packet to lists of iptables
rules. Each rule describes the desired packet and the action to do with
this packet. The action can be DROP, ALLOW, FORWARD, or to pass
the packet to another chain of rules. A table may contain several chains,
including built-in chains as well as user-defined chains. By default, iptables
consists of three essential tables: FILTER, NAT, and MANGLE. Inside the
FILTER table, the three main chains of rules are INPUT, OUTPUT, and
FORWARD. In this thesis, we use only the INPUT and OUTPUT chains in
the FILTER table for implementing network isolation. All incoming packets
have to be checked by rules in the INPUT chain, while packets coming out
from the system are monitored and manipulated by the OUTPUT chain.
More details in the use of these chains are provided in Chapter 4.

There are many benefits of using iptables. Firstly, iptables is easy to
configure. In this thesis, a few simple rules are sufficient to provide the
isolation. Secondly, iptables can also be used to build a fully customized
and featured-rich local firewall that allows to flexibly enable or block any
connections between pods from different Kubernetes namespaces. Finally,
iptables rules are portable, and therefore the same set of rules can be used
in all pods in one Kubernetes namespace. However, iptables also has its
drawbacks. It can quickly become complicated when the number of rules
increases. Besides, the network performance may be slowed as more rules
are added to the tables [48]. In our case, as the number of rules added to

CHAPTER 3. NETWORK ISOLATION SOLUTION 31

each pod network namespace is small, the overhead generated by iptables
should be low.

The network isolation solution is implemented by modifying the iptables
inside each pod network namespace. From the host terminal, we can access
the pod network namespaces to manually modify the iptables. However, this
method cannot serve the whole cluster since it frequently spawns and deletes
pods. To that end, the sidecar container and admission controller can be
employed to create an automatic system to deploy the network isolation.

3.3.2 Sidecar Container

As mentioned in Section 2.1.1, Kubernetes pod is the basic unit of deploy-
ment in a cluster. Although it is typical that only one container runs in
a pod, it is possible to create a pod with multiple containers inside. All
containers in the pod share the same network namespace, which means they
share a port space, routing tables, and especially, the same iptables. Subse-
quently, if one container changes its own iptables, the changed iptables will
affect not only that container, but also the other containers in the same pod.
This is the reason why we introduce the use of sidecar container. Sidecar
container [35] is an additional container added to a pod, providing extra
functionality that the main application container cannot provide. This extra
container can modify iptables to a firewall blocking any traffic from other ten-
ants. Figure 3.4 describes the containers inside a new pod. Inside this pod,
the application container provides the actual application, while the sidecar
container is responsible only for modifying the iptables of the pod.

Pod
Network namespace

Application
container

Sidecar
container

IP

port
spaces

IPTables
Setup

Figure 3.4: Inside a new pod that is injected a sidecar container

Obviously, the sidecar container should be added to the pod before it is

CHAPTER 3. NETWORK ISOLATION SOLUTION 32

entirely created and connects to the pod network. Otherwise, there will be a
short period when the pod runs without the network isolation, thus leading
to the race condition vulnerability [27]. Therefore, we need a mechanism to
inject the sidecar container during the pod creation process automatically.
Besides, this injection should be transparent to tenants. The sidecar should
be added even though the tenant can see only one main container in their
pod definition YAML file.

3.3.3 Admission Controller

Admission controller [30] is a mechanism in Kubernetes that allows inter-
cepting requests sent by Kubernetes user to the API server. Admission con-
trollers capture the API requests before they alter the cluster, but after they
are authenticated and authorized. There is a list of controllers, each of which
captures a certain type of requests [30]. In the list, there are two special con-
trollers: MutatingAdmissionWebhook and ValidatingAdmissionWebhook that
act as admission controller frameworks, allowing users to create customized
admission controllers. These controllers intercept the requests coming from
tenants, send them to a webhook server, a HTTP web server that is dedi-
cated to receiving requests from admission controllers, handles the requests,
and sends them back to the controllers. The webhook server then mutates
and validates the requests before returning them to the API server. Since
we need to inject a sidecar container to a pod during the pod creation, the
MutatingAdmissionWebhook can be exploited to capture and modify the pod
deployment requests. The modification is simply adding an extra container,
the sidecar, with a specific pre-defined image. Then, the requests coming to
the API server will contain the description of two containers: the main one
and the sidecar one. The cluster, after that, will deploy a pod corresponding
to that request. Figure 3.5 describes the flow of the pod creation request.

CHAPTER 3. NETWORK ISOLATION SOLUTION 33

K8S

Admission
controller

Create pod

handle requests

Webhook server

1 container
2 containers

1

2

3

4

Figure 3.5: The admission controller intercepts and modifies the pod creation
request

Chapter 4

Architecture and Implementation

In this section, we design a proof of concept (PoC) of the solution proposed
in Chapter 3. The goal of this PoC is to show that the solution is able to
isolate the network between pods from different Kubernetes namespaces. We
use this PoC to conduct several experiments and to evaluate the security and
performance of the proposed solution in Chapters 6 and 7.

K8S

Webhook

HTTP API Handler

Namespace: Alice
(Disable security solution)

Pod1

App
Container

Pod2

App
Container

Namespace: Bob
(Enable security solution)

Pod1

App
Container

Pod2

App
Container

Sidecar
Container

Sidecar
Container

Request Handlers

Mutation Admission
Controller

Create

Communication

Communication
Communication

Firewall

Send Pod Creation
Request

Send Pod Creation
Request

1

2

3

4

1

2

3
4

5

Figure 4.1: Overview of the solution

The PoC is an implementation of our network isolation solution. Fig-
ure 4.1 describes our solution at a high level. Alice and Bob are two tenants
in this system. Each tenant is assigned to a Kubernetes namespace. In this
figure, we disable the solution on Alice’s namespace to highlight the differ-
ence between applying and not applying our solution. When Alice sends a
pod creation request, it will come to the HTTP API handler before being

34

CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION 35

forwarded to the admission controller. Since we disable the solution on her
site, the admission controller ignores her request and passes it to the next
handlers. Other components of the cluster handle her request and create
pods in Alice’s namespace. These new pods comprise only Alice’s desired
containers, and the network isolation solution does not protect her pods.

While Bob’s pod creation requests follow mostly the same route as Al-
ice’s, the admission controller intercepts it and sends it to our webhook server.
The webhook modifies this request, injecting an extra container to new pods.
Therefore, Bob’s new pods consist of at least two containers: his application
containers, and the sidecar container. This sidecar executes a pre-defined
script that sets up the internal iptables inside itself. As mentioned in Sec-
tion 3.3.2, all containers in a pod share the same iptables. Therefore, the
modified firewall also works on the application containers and the whole pod.
In other words, Bob’s pods now are protected by their internal firewall and
cannot be accessed by Alice’s pods.

4.1 IPTables in Pod Network Namespace

The iptables rules added to the network namespace of each pod follow the
format in Figure 4.2:

1 -A INPUT -s <Alice ’s pod IP range > -d <Alice’s pod IP range >
-j ACCEPT

2 -A INPUT -s <All tenants pod IP range > -d <All tenants pod IP
range > -j DROP

3 -A OUTPUT -s <Alice ’s pod IP range > -d <Alice’s pod IP range >
-j ACCEPT

4 -A OUTPUT -s <All tenants pod IP range > -d <All tenants pod
IP range > -j DROP

Figure 4.2: Format of iptables in the network namespace of each pod in the
Alice’s namespace. Alice is a tenant

The first two rules are added to the INPUT chain, while the third and
the forth rules are added to the OUTPUT chain. The first rule allows all
connections between pods in the current tenant. The second rule is respon-
sible for dropping any traffic that comes from or reach a destination in other
tenants’ pods. The third and fourth rules are similar to the first and second,
respectively.

Figure 4.3 shows an example of rules added to a pod in the PoC

CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION 36

-A INPUT -s 172.16.2.0/24 -d 172.16.2.0/24 -j ACCEPT
-A INPUT -s 172.16.0.0/14 -d 172.16.0.0/14 -j DROP
-A OUTPUT -s 172.16.2.0/24 -d 172.16.2.0/24 -j ACCEPT
-A OUTPUT -s 172.16.0.0/14 -d 172.16.0.0/14 -j DROP

Figure 4.3: IPTables rules in a pod

In this example, 172.16.2.0/24 is the IP range allocated for the current
tenant. 172.16.0.0/14 is the IP range used for entire collection of pods
controlled by tenants in this cluster. The IP address allocation is explained
in Section 5.3.

4.2 Sidecar Container Content

This sidecar container should be deployed at the same time as the main
container, and it needs to be ready before the pod can be in use. After the
sidecar container has been successfully created, it executes a setup script,
which can be a compiled binary or a script, to add the required iptables rules
mentioned in the previous subsection. More details about input and output
of this script:

1. Input: Information about the Kubernetes namespace in which the cur-
rent pod is inside, including the name of the namespace, or the IP
range associated to the namespace (the IP range that is allocated to
the tenant who own this Kubernetes namespace).

2. Output: Deployment of iptables rules that provides the network isola-
tion. These rules follow the format in the previous section. The script
replaces the place holder <Alice’s pod IP range> by the IP range
extracted from the input.

Next, the script can proceed to the sleep mode (continue to run without
actually doing anything to keep the container alive) or work as a watchdog.
More details can be found in the discussion chapter.

In the PoC, the Dockerfile in Figure 4.4 is used to build the sidecar con-
tainer image. Two files are added to this image. multi-tenancy-sidecar.py
is a Python script that acts as the script for adding IPtables rules. It re-
ceives the name of the namespace as an input and then uses it to find the
corresponding IP range. In order to do that, it searches on a table mapping
between Kubernetes namespaces and their IP range, and this table is stored

CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION 37

in a JavaScript object notation (JSON) file. This JSON file is iplist.json,
which is the second file added to the image. The image is finally pushed to
the container registry [67]. After we push the sidecar image from the de-
velopment workstation to the registry, the image is available online, and the
cluster can pull it to deploy sidecar container.

1 FROM ubuntu :18.04
2 MAINTAINER Nam Xuan Nguyen
3 RUN apt update -y
4 RUN apt install -y python3 -pip iptables
5 RUN pip3 install python -iptables
6 ADD multi -tenancy -sidecar.py .
7 ADD iplist.json .
8 RUN chmod u+x multi -tenancy -sidecar.py
9 ENTRYPOINT ["./multi -tenancy -sidecar.py"]

Figure 4.4: The Dockerfile used to build an image for the sidecar container

4.3 Admission Controller

The use of the admission controller is to inject a sidecar container configura-
tion to pod creation requests automatically. Firstly, the MutatingAdmission-
Webhook controller needs to be configured to intercept pod creation requests
and send this traffic to a webhook server. This server can be deployed as a
Kubernetes pod or as an external server. It is responsible for listening to the
incoming request; extracting the namespace information from the request;
adding this information as a parameter to the sidecar container configura-
tion of the requests, and finally sending the modified request back to the
admission controller.

An admission controller is available through an instance of the target
controller. In the PoC, an instance of MutatingAdmissionWebhook is cre-
ated by a definition YAML file (Figure 4.5) This configuration file indi-
cates the information of the webhook server. The name of this webhook
is sidecar-injector.multi-tenancy.local, and it sits behind a service named
multi-tenancy-sidecar-injector-webhook-svc. When the admission controller
captures a request, it sends the request to the service, and the service then
forwards it to the webhook server. Another important point of the configu-
ration file is the namespaceSelector parameter. This parameter specifies
the namespace that uses this admission controller. In the PoC, the admis-
sion controller only works with the namespaces having the label: sidecar-
injector: enabled. More precisely, it only intercepts pod creation requests

CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION 38

1 apiVersion: admissionregistration.k8s.io/v1beta1
2 kind: MutatingWebhookConfiguration
3 metadata:
4 name: multi -tenancy -sidecar -injector -webhook -cfg
5 labels:
6 app: multi -tenancy -sidecar -injector
7 webhooks:
8 - name: sidecar -injector.multi -tenancy.local
9 clientConfig:

10 service:
11 name: multi -tenancy -sidecar -injector -webhook -svc
12 namespace: default
13 path: "/mutate"
14 caBundle: ${CA_BUNDLE}
15 rules:
16 - operations: ["CREATE"]
17 apiGroups: [""]
18 apiVersions: ["v1"]
19 resources: ["pods"]
20 namespaceSelector:
21 matchLabels:
22 sidecar -injector: enabled

Figure 4.5: Mutating webhook configuration

generated from these Kubernetes namespaces. This mechanism is useful for
the evaluation part of this thesis, and it is also an efficient method to apply
different security profiles to different Kubernetes namespaces, which can be
utilized in the future work.

The webhook server in the PoC is a derivative work of an open-source
project [50], which was initially designed to add a sidecar container to the
pod creation request. In this thesis, the webhook is modified to pass the
Kubernetes namespace where the request comes from to the sidecar container
configuration as a parameter. This parameter is used as the input of the
sidecar container.

In order to employ the image that is specially prepared for the sidecar (see
Section 3.3.2), a configmap (a Kubernetes object containing configuration
information) is deployed to provide the required specification (see Figure 4.6).
This configmap specifies the name of the sidecar image, which was prepared
and pushed to the container repository earlier (see Section 4.2), and the
capabilities [45] granted to the container. In order to access iptables, the
sidecar container needs to be granted the NET_ADMIN and NET_RAW
capabilities. More details about these capabilities can be found in Section 6.8.

CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION 39

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: multi -tenancy -sidecar -injector -webhook -configmap
5 data:
6 sidecarconfig.yaml: |
7 policy: enabled
8 containers:
9 - name: multi -tenancy -sidecar

10 image: namnx228/k8s -multitenancy -sidecar -container -
amd64 -${i}: latest

11 imagePullPolicy: IfNotPresent
12 securityContext:
13 capabilities:
14 add:
15 - NET_ADMIN
16 - NET_RAW
17 volumeMounts:
18 - name: multi -tenancy -output
19 mountPath: /out
20 volumes:
21 - name: multi -tenancy -output
22 hostPath:
23 path: /out
24 type: DirectoryOrCreate

Figure 4.6: The configmap YAML file

To sum up, when a tenant sends a pod deployment request, the admis-
sion controller intercepts it and sends it to a webhook server. The webhook
server adds the sidecar container configuration to the request before send-
ing it back to the admission controller to continue the pod creation process.
A new pod is subsequently created with two containers inside: the appli-
cation container and the sidecar container. The sidecar container executes
a script that adds the iptables rules to the network namespace of the pod.
These rules are applied to all containers in the pod and therefore ensure the
network isolation.

Chapter 5

Test Environment

This section introduces the methods and results of experiments conducted
to evaluate the security and performance impact of the solution described in
Chapter 4.

5.1 Development Workstation

We implemented and evaluated our solution, including developing the PoC,
hosting the virtual cluster, and running tests, on a Linux computer. The
system information of this computer can be found in Table 5.1.

The Kubernetes cluster used in the PoC and the evaluation runs on top
of virtual machines provided by Vagrant and VirtualBox. VirtualBox [55] is
a free and open-source hypervisor that provides virtualization for x86 and
x86_x64 hardware. It is a powerful tool to create virtual machines on top
of physical machines, such as laptops, desktops, and servers. Vagrant [46] is
also an open-source tool for automatically building and managing virtual ma-
chines in a simple workflow. Vagrant does not provide virtual machines, but
only it interacts with hypervisors, e.g., VirtualBox. The hypervisors perform

Model Dell-Latitude-7490
CPU Intel R©CoreTMi7-8650U CPU @ 1.90GHz * 8

Memory 32GB
Hard disk 500 GB

Operating system Ubuntu 18.04 bionic
Kernel x86_64 Linux 5.3.0-45-generic

Table 5.1: System information of the computer used for running experiments

40

CHAPTER 5. TEST ENVIRONMENT 41

the actual actions, such as creating new machines, starting, shutting down,
restarting, and networking. With Vagrant, we can add desired configura-
tions into a file, named Vagrantfile, and then run only one command vagrant
up. After that, Vagrant automatically creates the virtual machines and con-
figures them according to the Vagrantfile. The configurations in this file
include the machine name, CPU settings, amount of random-access memory
(RAM), type of network, IP address, and provisioning commands [63] that
run only once when the virtual machines start. Provisioning commands set
up necessary software and dependencies for deploying a Kubernetes cluster
and multi-tenancy environment. Vagrant supports several provisioners, such
as Shell, Salt, Chef, Puppet, and Ansible. Ansible [4] is an open-source tool
for provisioning and application deployment automation. It offers a simple
declarative language to describe the configuration of a machine. In this work,
Ansible is employed as the provisioner to download and install Docker, Ku-
bernetes, and git. It is also used to pull our source code from Github, then
run the code to set up a multi-tenancy environment and the PoC introduced
in Chapter 4. Figure 5.1 shows an overview of the cluster setup process
explained above.

Vagrant Virtualbox Ansible Virtual
machines

1: Vagrant up

2:Request machines

3: Create machines

4: Machines ready
5: Machines ready

6:Run Ansible scripts

7:Deploy Kubernetes cluster

8:Cluster ready
9: Finish running

10: "Vagrant up" successfully

Figure 5.1: An sequence diagram of the cluster setup

The cluster includes three virtual machines k8s-master, node-1, and
node-2. K8s-master is the master node containing the Kubernetes con-
trol plane (API server, etcd, scheduler, controller manager) while the other
two nodes are the worker nodes handling the actual workload. In addition,
tenants-machine, which is not a part of the cluster, is deployed and pre-

CHAPTER 5. TEST ENVIRONMENT 42

Machine k8s-master node-i tenants-machine
CPU (Number of cores) 2 4 2

Memory 3GB 8GB 8GB
OS Ubuntu 18.04 Ubuntu 18.04 Ubuntu 18.04

IP address 192.168.50.10 192.168.50.(i+10) 192.168.50.13

Table 5.2: System information of virtual machines (i=1,2)

pared as a place from which users can access and interact with the cluster.
The aim of using this machine is to prevent users from directly accessing
k8s-master because user activities in this node can cause security and per-
formance issues to the cluster. The method that users use the tenants-
machine to interact with the cluster is described in Section 5.2. Table 5.2
describes the system information of these machines. Figure 5.2 explains the
topology of the PoC system. For the development process, code from the
development machine (the host machine) is pushed into a Github remote
repository, after which the tenants-machine pulls the code down to its local
repository before executing it.

5.2 Multi-Tenancy Setup

To test our network isolation solution, a concrete soft-multi-tenant cluster
(see Section 2.3.1) is required to provide tenant isolation, at least from a
management point of view. A simple soft multi-tenancy solution allocates
each tenant a Kubernetes namespace. Within each Kubernetes namespace, a
role object (see Section 2.1.2) is created to define a set of permissions. A role
is then assigned to a normal user by a role binding object (see Section 2.1.2).
That means the normal user is granted the entire list of permissions included
in that role. The normal user (see Section 2.1.2) is a representation of a
human tenant. To send a command to the cluster, the tenant needs to access
tenants-machine, then use her certificate and private key to proceed with the
authentication process. If the API server can authenticate this tenant as a
legitimate normal user, it authorizes her based on her role and finally executes
her command. The tenant issues commands via kubectl (see Section 2.1.3), a
tool that allows interacting with the Kubernetes cluster using the Kubernetes
native HTTP API.

Figure 5.3 shows the relation between the components of the soft multi-
tenancy setup mentioned above. This setup aims to ensure that a tenant is
unable to access the resources of another tenant. For example, tenant Bob
cannot read the private key and certificate of tenant Alice since these files

CHAPTER 5. TEST ENVIRONMENT 43

Development workstation

K8s cluster

K8s-master node-1 node-2

tenants-
machine

Source code

Multitenancy
setup

sidecar
container
injector

Evaluation
code

github.com

git push

git
pullSendcommands

Include

Figure 5.2: The topology of the node setup in the PoC

are protected by Linux access control, and only Alice can read them. Bob is
also unable to bind to the role object of Alice because the role binding object
only defines the relation between the user Alice and the role Alice. For that
reason, Bob cannot do any actions in the Kubernetes namespace Alice, such
as to create pods or delete pods. To sum up, with this setup, a tenant cannot
access and perform any actions on another tenant’s Kubernetes namespace.

This multi-tenant environment is used only for testing purpose, and we
highly recommend to avoid this design in production. In reality, each tenant
should store their private key in their own computer, and from here, they
call HTTP API to interact with the cluster remotely. We can also deploy
one virtual machine for each tenant, but this creates extra workloads to the
physical Linux computer and affects its performance. For that reason, we
allow tenants to access a shared virtual machine tenants-machine using
SSH, and from here, they can call the Kubernetes API to work with the
cluster. Storing all tenant’s private keys used to log in to the cluster in
one virtual machine is not a secure approach, that is why we recommend to

CHAPTER 5. TEST ENVIRONMENT 44

K8S

Tenants-machine

Alice

Tenant Linux user:
Alice

Normal user:
Alice

Role: Alice

Kubernetes
namespace: Alice

Log in as

Be authenticated
as

Define actions
allowed to do in

Assigned
by

rolebinding

Client certificate of
Alice

Private key of Alice

Read

Bob

Tenant Linux user:
Bob

Normal user:
Bob

Role: Bob

Kubernetes
namespace: Bob

Log in as

Be authenticated
as

Define actions
allowed to do in

Assigned
by

rolebinding

Client certificate of
Bob

Private key of Bob

Read
Read

Assigned

Figure 5.3: An overview of the soft multi-tenancy setup

avoid it. Besides, an example of the role object in this setup can be found in
Figure 5.4.

According to this example, the role contains permissions to create, delete,
get pods, service, role, role binding, and other resources. Since Alice is
assigned to this role (by the role binding object in Figure 5.5), she is granted
all permissions in it. On the contrary, Bob is not assigned to this role, and
therefore he has no permissions in Alice’s namespace, because the default
action in Kubernetes RBAC is to deny everything.

5.3 Software Version and IP Address

In the PoC, several network endpoints need an IP address to join the network,
including nodes, pods, services. Table 5.3 introduces the IP ranges used in
the PoC.

The table indicates that the IP address range allocated for all pods of the
cluster is 172.16.0.0/13. This range is divided into smaller ranges for pods
within the default Kubernetes namespace and the tenant ones. Table 5.4
shows more details about these ranges.

CHAPTER 5. TEST ENVIRONMENT 45

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: Role
3 metadata:
4 namespace: Alice
5 name: Alice
6 rules:
7 - apiGroups: [""] # "" indicates the core API group
8 resources: ["pods", "networkpolicy", "services", "role", "

rolebinding", "deployments", "node", "pods/attach", "pods/
exec", "pods/log"]

9 verbs: ["view", "create", "get", "watch", "list", "edit", "
delete", "scale"]

10 - apiGroups: ["apps"] # "" indicates the core API group
11 resources: ["pods", "networkpolicy", "service", "role", "

rolebinding", "deployments", "deployments/scale","node"]
12 verbs: ["view", "create", "get", "watch", "list", "edit", "

delete", "scale", "patch"]
13 - apiGroups: ["networking.k8s.io"] # "" indicates the core

API group
14 resources: ["networkpolicies"]
15 verbs: ["view", "create", "get", "watch", "list", "edit", "

delete"]

Figure 5.4: An example of the role object

Endpoints IP range
Nodes 192.168.50.10/25
Services 10.92.0.0/12
Pods 172.16.0.0/13

Table 5.3: IP ranges of nodes, services and pods

We performed all IP range allocations in the table. The IP range allocated
for all tenants and the default Kubernetes namespace were set in the cluster
network configuration file before deploying the cluster. We allocated the
other IP ranges after the Kubernetes network had started. To dynamically
assign these ranges, calicoctl [8] was used as a means of communication
with the Calico network engine running in the cluster. The allocations were
written in YAML files and then sent to the engine. One example of the
YAML file can be found in Figure 5.6.

Version number of tools and programs, which are employed in the PoC,
are summarised in Table 5.5. The source code of all programs, test envi-
ronment and experiments that we implemented in this thesis is at https:
//github.com/namnx228/MasterThesis

https://github.com/namnx228/MasterThesis
https://github.com/namnx228/MasterThesis

CHAPTER 5. TEST ENVIRONMENT 46

Namespace IP range
Default 172.23.0.0/18

Tenant Alice 172.16.0.0/24
Tenant Bob 172.16.1.0/24

... ...
For all tenants 172.16.0.0/14

Table 5.4: IP ranges assigned to pods in default and tenant Kubernetes
namespaces

Tools Version
Vagrant 2.2.7

VirtualBox 6.1.4
Tenant test 2 172.16.1.0/28

Ubuntu 18.04
Ansible 2.9.7
Docker 19.03.8

Ubuntu (used in Docker images) 18.04
Kubernetes 1.18.3

Nginx (used in pods) 1.19.0
Python 2 2.7.17
Python 3 3.6.9

iperf 2.0.10
Calico 3.13.1

IPTables v1.6.1
Git 2.7.1

hping3 3.0.0-alpha-2

Table 5.5: Summary of the tools used in this thesis

CHAPTER 5. TEST ENVIRONMENT 47

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: RoleBinding
3 metadata:
4 name: Binding Alice to Alice role
5 namespace: Alice
6 subjects:
7 - kind: User
8 name: Alice # Name is case sensitive
9 apiGroup: rbac.authorization.k8s.io

10 roleRef:
11 kind: Role #this must be Role
12 name: Alice # this must match the name of the Role you wish

to bind to
13 apiGroup: rbac.authorization.k8s.io

Figure 5.5: An example of the role binding object

1 apiVersion: projectcalico.org/v3
2 kind: IPPool
3 metadata:
4 name: Alice -pool
5 spec:
6 cidr: 172.16.1.0/24
7 blockSize: 29
8 ipipMode: Always
9 natOutgoing: true

Figure 5.6: IP Allocation for tenant Alice

Chapter 6

Security Evaluation

This chapter demonstrates several experiments running on the multi-tenancy
platform described in Chapter 5 with the network isolation solution explained
in Chapter 4. This evaluation examines the security of the network isolation
method, analyzing its potential and weaknesses that can be improved.

In short, the network isolation method injects an extra container to tenant
pods. This container is called sidecar container, and its mission is to modify
the iptables of the pod. The added iptables rules act as a firewall that blocks
traffic coming from and to pods in different Kubernetes namespaces. In this
thesis, we assign each tenant a Kubernetes namespace. Therefore, the added
rules can provide the network isolation in the multi-tenancy environment.
Thus, this section examines the isolation that it can offer, leading to two
main questions:

1. In what cases can the isolation be broken?

2. How critically can the broken isolation impact the tenant?

These two questions can be answered by conducting a series of experi-
ments. Each experiment runs a test case, and this set of test cases is expected
to cover typical connections between pods. In the experiments, we set up
a multi-tenant cluster serving two tenants, Alice and Bob (see Section 5.2).
The network isolation solution is enabled for both tenants. Since the subject
in these experiments is the network isolation enforcement, it is necessary to
generate intra-tenant and inter-tenant network traffic. In our experiments,
the traffic is generated by wget [33], a HTTP client tool on one pod, and
sent to a Nginx [60] web server running on another pod. In the sender pod,
if wget receives the reply from the server, it saves the HTTP response into
a file or returns it to the standard output (stdout) [2]. Otherwise, wget re-
turns an error message to the standard error (stderr) [1]. This behavior can

48

CHAPTER 6. SECURITY EVALUATION 49

be exploited to determine whether the connection between the two pods is
successfully established or not.

6.1 Experiment 1

In this experiment, a pod running wget in the Kubernetes namespace Alice
attempted to connect to a pod running Nginx web server in the namespace
Bob. The goal of this experiment is to show that the network isolation
solution can successfully block the communication between two pods in the
namespaces of two different tenants. Figure 6.1 shows more details of the
experiment.

K8S
Kubernetes

namespace: Bob
Kubernetes

namespace: Alice

Communication
172.16.1.243 172.16.2.35

Pod: HTTP
client

Pod: HTTP
server

Figure 6.1: An overview of experiment 1 in the security evaluation

The result is the same as our expectation. The wget pod in tenant Alice
could not establish a connection to the HTTP server pod in tenant Bob (see
Figure 6.2). The reason is that the iptables in the source pod had been
configured by the sidecar container to block connections to the tenant Bob.

6.2 Experiment 2

In this experiment, two pods in tenant Alice attempted to connect to each
other. The experiment is expected to provide evidence that this connection
is allowed when we deploy the network isolation solution. Figure 6.3 depicts
this experiment. Figure 6.4 shows that the connection between the two pods
in the same Kubernetes namespace is allowed. This connection is enabled
by two rules (see Figure 6.5), which are injected to iptables of the pods in
tenant Alice.

CHAPTER 6. SECURITY EVALUATION 50

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 172.16.2.35
5 Connecting to 172.16.2.35 (172.16.2.35:80)
6 wget: can’t connect to remote host (172.16.2.35): Operation

timed out

Figure 6.2: The connection in experiment 1 is blocked

K8S
Kubernetes namespace: Alice

Communication

172.16.1.48 172.16.1.49

Pod: HTTP client Pod: HTTP server

Figure 6.3: An overview of experiment 2 in the security evaluation

6.3 Experiment 3

This experiment again verifies the ability to block traffic traveling between
different tenants of the network isolation solution. However, the sender in
this experiment communicates with a service deployed to forward packets to
two HTTP web servers. This experiment is depicted in Figure 6.6.

The basis of this experiment is that pods are ephemeral and can die
anytime. If a consumer contacts an application pod by its IP address, but
the pod dies and is replaced by another pod, the consumer will be unable
to access the application. More details can be found in Section 2.1.1. As
a result, the IP address of a service referring to the application pods is
more reliable and normally offered to the consumer. For example, in this
experiment, the HTTP client pod is a consumer, sending HTTP requests to
the HTTP load balancer service. The service then forwards the requests to
one of the two HTTP server endpoints. If the two pods were terminated, the
cluster would create new server pods to replace them. While the endpoint

CHAPTER 6. SECURITY EVALUATION 51

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 172.16.1.49
5 Connecting to 172.16.1.49 (172.16.1.49:80)
6 index.html 100% |***************| 612 0:00:00

ETA
7 / #

Figure 6.4: The connection in experiment 2 is allowed

Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 172.16.1.0/24 172.16.1.0/24
DROP all -- 172.16.0.0/14 172.16.0.0/14

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 172.16.1.0/24 172.16.1.0/24
DROP all -- 172.16.0.0/14 172.16.0.0/14

Figure 6.5: The iptables of pods in tenant Alice

IP addresses could change, the consumer would not be influenced since the
service is responsible for forwarding the traffic to the newborn servers.

Figure 6.6 shows that the service belongs to tenant Bob, the receiver,
not Alice, the sender. The reason is that Bob, who deploys the HTTP server
pods, needs to introduce the service as a load balancer to his two server pods.
Alice and other clients can then connect to the service and enjoy the HTTP
application provided by Bob’s pods without knowing the real IP addresses
of these pods. We discuss more details about Kubernetes service in the next
paragraph.

The result of this experiment is indicated in Figure 6.7. Again, the so-
lution blocked the connection from a pod in the tenant Alice to a service
referring to pods in tenant Bob. Understanding the implementation of Ku-
bernetes services is required to understand the necessity of this experiment.

CHAPTER 6. SECURITY EVALUATION 52

K8S
Namespace: BobNamespace: Alice

Communication

172.16.1.226

172.16.2.243

Service: HTTP load
balancer

172.16.2.242

10.110.191.208

HTTP client

HTTP
server

HTTP server

Figure 6.6: An overview of experiment 3 in the security evaluation

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test/$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 10.110.191.208
5 Connecting to 10.110.191.208 (10.110.191.208:80)
6 wget: can’t connect to remote host (10.110.191.208):

Operation timed out

Figure 6.7: The connection in experiment 3 is blocked

By default, services are fully implemented by the host iptables (the main
iptables in the host) in all nodes of the cluster. Although Bob, the server
side, is the one who defines a service object, it is implemented by the iptables
in every node of the cluster because Alice’s pods, the client, can be located
in any of the nodes. They can be even in the same node as the Bob’s server
pods. Figure 6.8 presents a set of rules used to forward traffic when it comes
to the service HTTP load balancer. These rules are added to the iptables
of every node in the cluster. However, only the netfilter module (the Linux
module handling iptables rules) in the node, where the client pods run, han-
dles packets sent from these pods. After being sent to the service IP address,
the traffic is handled by the rule 1. From this rule, the traffic has a 50%
possibility to flow to rule 2 or rule 3. If the traffic is processed by rule 2, it is
then passed to rule 4 before being forwarded to the endpoint at 172.16.2.243.
Otherwise, it will reach the IP address 172.16.2.242. Figure 6.9 represents
the flow of the traffic when it comes to the service HTTP service.

CHAPTER 6. SECURITY EVALUATION 53

1 1. -A KUBE -SERVICES -d 10.110.191.208/32 -p tcp -m comment --
comment "bob/nginx -deployment: cluster IP" -m tcp --dport
80 -j KUBE -SVC -JNZXJXY5BLALO2QH

2 2. -A KUBE -SVC -JNZXJXY5BLALO2QH -m comment --comment "bob/
nginx -deployment:" -m statistic --mode random --
probability 0.50000000000 -j KUBE -SEP -GMBG2FBMWB36ZA5Q

3 3. -A KUBE -SVC -JNZXJXY5BLALO2QH -m comment --comment "bob/
nginx -deployment:" -j KUBE -SEP -OX2VTKLOZBMIEOIJ

4 4. -A KUBE -SEP -GMBG2FBMWB36ZA5Q -p tcp -m comment --comment "
bob/nginx -deployment:" -m tcp -j DNAT --to-destination
172.16.2.242:80

5 5. -A KUBE -SEP -OX2VTKLOZBMIEOIJ -p tcp -m comment --comment "
bob/nginx -deployment:" -m tcp -j DNAT --to-destination
172.16.2.243:80

Figure 6.8: IPTables rules that implement service HTTP load balancer

As explained above, packets traveling to the service are processed by
the netfilter module on the client node, the destination of the packets is
the HTTP server pods, and the source IP addresses of the packets remain
unchanged. As a result, the iptables in the destination pods detect that the
packets come from a foreign pods, thus blocking them.

6.4 Experiment 4

This experiment explores the case when a pod communicates with a service
within the same tenant. The motivation of this experiment is the same as
in experiment 3. Since the iptables in the destination pods detects that the
source IP address of the incoming packet is in the IP range of tenant Alice,
it allows the packet to come through, and the connection is established. An
overview of this experiment can be found in Figure 6.10, and the result can
be observed in Figure 6.11.

6.5 Experiment 5

The goal of the network isolation method is to prevent communications be-
tween tenants. However, pods in a tenant Kubernetes namespace should be
able to connect to external services on the internet and to Kubernetes de-
fault services. The setup of this experiment is depicted in the Figure 6.12.
The pod in the namespace Alice can connect to google.com and interact with
the Kubernetes domain name system (DNS) service. The reason is that the

google.com

CHAPTER 6. SECURITY EVALUATION 54

K8S

172.16.1.226

172.16.2.243

172.16.2.242

10.110.191.208

2

3

4

5

1 Packet
forwading

Service: HTTP load
balancer

HTTP client

HTTP server

HTTP server

Figure 6.9: Implementation of service HTTP load balancer

“DROP” rules added to pod iptables only match tenant pod IP addresses.
These iptables rules do not block traffic traversing to the Internet or to the
Kubernetes default namespace. The result of this experiment is illustrated
in Figure 6.13 and Figure 6.14.

From a security point of view, enabling the connection between tenant
pods and external services can lead to security issues. If a tenant decides
to expose her pod to the outsider on the internet (this pod can be a web
service that is publicly available to clients on the internet), the network
isolation solution is incapable of stopping other tenants from connecting to
this exposed pod through the internet. A misbehaving tenant can exploit
these issues to compromise the isolation.

Figure 6.15 indicates one scenario this is possible. The red arrows rep-
resent the route that tenant Alice can exploit to connect to HTTP servers
in the Kubernetes namespace Bob. When packets from the namespace Alice
come to the kernel, their source IP addresses are masqueraded as the host IP
address (SNAT) before leaving to the internet. They then reach the public
IP address which the cloud provider allocates to Bob’s HTTP services. Sub-
sequently, their destination IP addresses are masqueraded as the IP address
of service External (DNAT), and they are sent to this service. Finally, the
service passes the traffic to the backend servers.

This security issue is not critical. In most cases, the issue is policy mis-
configuration. It simply is not feasible to block access by other tenants while
allowing access from the open internet. Before an application is ready to be
exposed to the internet, developers need to install security measures to the

CHAPTER 6. SECURITY EVALUATION 55

K8S
Kubernetes namespace: Alice

Communication

172.16.1.226

172.16.1.241

Service: HTTP
load balancer

172.16.1.231

10.109.30.156

HTTP client

HTTP
server

HTTP
server

Figure 6.10: An overview of experiment 4 in the security evaluation

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test/$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 10.109.30.156
5 Connecting to 10.109.30.156 (10.109.30.156:80)
6 index.html 100% |******************| 612

0:00:00 ETA

Figure 6.11: The connection in experiment 4 is allowed

application to prevent unauthorized access. For example, a web application
needs to equip authentication mechanisms and only provide services to legiti-
mate users. Consequently, it is possible to rely on this application protection
layer to block any unauthorized access from other tenants. Therefore, we
rate the critical level of this issue as low.

The solution for this issue is to keep in mind that in a data center, tenants
can connect to the other’s public services via the internet, regardless of the
approach we design and implement the isolation policy within the data center.

6.6 Experiment 6

In this experiment, we assume that the tenant Alice is an attacker who aims
to bypass the isolation and connect to other tenants. The attacker first drops
the iptables rules added to her pods as these rules prevent her from contacting
the other tenants. Next, she sends requests to the HTTP servers in tenant

CHAPTER 6. SECURITY EVALUATION 56

K8S
Kubernetes namespace: DefaultKubernetes

namespace: Alice

Communication

172.16.1.226
Service: DNS

10.109.30.156

INTERNET

NAT

Pod: HTTP client

Figure 6.12: An overview of experiment 5 in the security evaluation

1 al ice@tenant−machine : / home/vagrant /MasterThesis /main−t e s t $ kubect l get svc −o wide
2 NAME TYPE CLUSTER−IP EXTERNAL−IP PORT(S) AGE SELECTOR
3 nginx−deployment Cluster IP 10 . 109 . 30 . 156 <none> 80/TCP 162m app=nginx
4 al ice@tenant−machine : / home/vagrant /MasterThesis /main−t e s t $ kubect l exec dn s u t i l s − i t −−

/bin /sh
5 De fau l t ing conta ine r name to dn su t i l s .
6 Use ’ kubect l d e s c r i b e pod/ dn su t i l s −n a l i c e ’ to see a l l o f the con ta in e r s in t h i s pod .
7 / # nslookup nginx−deployment
8 Server : 1 0 . 9 6 . 0 . 1 0
9 Address : 1 0 . 9 6 . 0 . 1 0#53

10
11 Name : nginx−deployment . a l i c e . svc . c l u s t e r . l o c a l
12 Address : 10 . 109 . 30 . 156
13
14 / #

Figure 6.13: The tenant pod can connect to the default DNS service of the
cluster

Bob. Figure 6.16 describes an overview of this experiment, and the result is
in Figure 6.17.

Even though the traffic can survive through the sender’s IPtables since the
protection rules have been removed, it is blocked by the receiver’s iptables.

6.7 Experiment 7

As above, this experiment investigates the case that tenant Alice is an at-
tacker. However, in this experiment, the tenant Bob unintentionally de-
activates the firewall setting provided by our solution. An overview of this
experiment can be seen in Figure 6.18, and the result is shown in Figure 6.19.

CHAPTER 6. SECURITY EVALUATION 57

1 / # wget google.com
2 Connecting to google.com (172.217.21.174:80)
3 Connecting to www.google.com (172.217.20.36:80)
4 index.html 100% |*******************| 12910

0:00:00 ETA

Figure 6.14: The tenant pod can connect to a website on the internet

K8S
Kubernetes namespace: BobKubernetes

namespace: Alice

Communication
172.16.1.226

172.16.2.243

Service: Internal

172.16.2.242

10.110.191.208
DNAT

Service:
Extternal

NAT

INTERNET

Pod: HTTP client

Pod: HTTP
server

Pod: HTTP
server

Figure 6.15: An scenario describes the attack through the Internet

Tenant Alice successfully connected to the Kubernetes namespace Bob’s
HTTP server because the isolation had been disabled. The iptables rules
used for isolation in the sender and receiver pods had been removed. This
is one weakness of the inner-firewall, the type of firewall we employ for iso-
lation [66]. A misbehaving insider can turn off the security protection and
allow an outsider to come in. However, this issue is minor in our evaluation.
The main reason is that Kubernetes users regularly configure the network
and firewall at the namespace scale using services or network policies, be-
cause this approach simultaneously affects all the running pods, as well as
future pods. In other words, tenants rarely access the pod one by one and
change the network configuration, including the iptables.

Consequently, the probability that a tenant accesses a pod and carelessly
overrides or deletes the protection rules is low. Even if a malicious pod has
deactivated the security measurement, the other pods are not threatened
since their iptables remain unchanged. Therefore, bypassing the isolation of
one pod does not lead to compromise the isolation of the tenant’s other pods.
Thus, the impact is modest. However, this issue remains unsolved. For these
reasons, the risk level of this issue is medium.

CHAPTER 6. SECURITY EVALUATION 58

K8S
Kubernetes namespace:

Bob
Kubernetes

namespace: Alice

Communication

172.16.1.226 172.16.2.27

HTTP client

HTTP
server

Figure 6.16: An overview of experiment 6 in the security evaluation

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 172.16.2.27
5 Connecting to 172.16.2.27 (172.16.2.27:80)
6 wget: can’t connect to remote host (172.16.2.27): Operation

timed out

Figure 6.17: The connection in experiment 6 is blocked

6.8 Experiment 8

In this experiment, we investigate the case where the attacker is able to
run privileged pods. By default, a tenant can deploy a privileged pod [65].
Figure 6.20 shows an example of this powerful pod.

The root user in this pod has the same privilege as the root of the host.
Using this pod, tenant Alice (the attacker) can drop the protection rules
of the HTTP pod in tenant Bob (the victim) before connecting to it (see
Figure 6.21).

However, one fundamental condition to successfully perform this attack
is that the attacker pod and victim pod need to be in the same worker node.
The exploitation follows these steps:

1. Deploy a privileged pod using the YAML file in Figure 6.20. Note that
the pod needs to mount the /proc directory from the host.

2. Using /proc, we can view the entire list of IDs of processes running

CHAPTER 6. SECURITY EVALUATION 59

K8S
Kubernetes namespace:

Bob
Kubernetes

namespace: Alice

172.16.1.226

172.16.2.27Connected

Remove Remove

Pod: HTTP
client

Pod: HTTP
server

Figure 6.18: An overview of experiment 7 in the security evaluation

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test$
kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 172.16.2.27
5 Connecting to 172.16.2.27 (172.16.2.27:80)
6 index.html 100%

|**| 612
0:00:00 ETA

7 / #

Figure 6.19: The connection in the experiment 7 is allowed as protection
rules have been removed

on the host. This list includes IDs of the processes running in the
victim pods. Bruce force [38] attack can help to determine the right
IDs belonging to the victim. However, for the testing purpose, in this
experiment, we find this ID manually.

3. To manually find the process ID, it is possible to ssh to the worker
node, then run the command as in Figure 6.22.

4. The obtained ID is the input of a tool named Nsenter [23]. This tool
allows executing commands in the network namespace of a specific
process. Run the command as in Figure 6.23 to drop the iptables rules
of the victim.

5. Finally, the tenant Alice successfully connected to the tenant Bob (see
Figure 6.24).

CHAPTER 6. SECURITY EVALUATION 60

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: attacker
5 labels:
6 env: test
7 spec:
8 # shareProcessNamespace: true # To share the host PID space
9 containers:

10 - name: attacker
11 image: docker.io/namnx228/k8s -evaluation -security -

attacker -amd64
12 imagePullPolicy: Always
13 command:
14 - sleep
15 - "3600"
16 volumeMounts:
17 - mountPath: /hosts/proc/
18 name: proc -node -1
19

20 securityContext:
21 privileged: true # ---> Root permission
22 nodeSelector:
23 kubernetes.io/hostname: node -1
24 restartPolicy: Always
25 volumes:
26 - name: proc -node -1
27 hostPath:
28 path: /proc #----> mount the /proc file system
29 type: Directory

Figure 6.20: An example of the privileged pod

The attack enables a tenant to intentionally remove another tenant’s secu-
rity rules without their acknowledge and approval, thus wholly compromising
the isolation. However, one limitation of this exploitation is that the attacker
can only compromise the isolation of pods running within a common worker
node. Besides, the ability to create privileged pods empowers the tenant to
break the network isolation and compromise the whole worker node. As a
result, it is recommended to ban this critical feature. However, tenants may
require higher privileges than the default configuration to perform particular
operations (e.g., to ping, to access iptables). This situation can be handled
by using Linux capabilities. This Linux feature breaks the mighty privilege
of the root user into several smaller capabilities [45]. In total, Linux offers
40 capabilities.

CHAPTER 6. SECURITY EVALUATION 61

K8S
Kubernetes namespace: BobKubernetes

namespace: Alice

172.16.1.226

172.16.2.35Connected

Remove firewall rules

HTTP client

HTTP
server

Remove firewall rules

Figure 6.21: An overview of experiment 8 in the security evaluation

1 vagrant@node −2:~$ docker ps | awk ’ { f o r (i=NF; i >1; i−−) p r i n t f ("%s " , $ i) ; p r i n t $1 ; } ’
| awk ’ { p r in t $1} ’ | grep nginx−deployment−6b474476c4−v k j l r # −−> Name o f the

v ict im pod
2 k8s_perf−s idecar_nginx−deployment−6b474476c4−vkjlr_bob_b6113e61−3f7 f −4aee−bfb4−7

cd1f9beef20_0
3 k8s_nginx_nginx−deployment−6b474476c4−vkjlr_bob_b6113e61−3f7 f −4aee−bfb4−7cd1f9beef20_0
4 k8s_POD_nginx−deployment−6b474476c4−vkjlr_bob_b6113e61−3f7 f −4aee−bfb4−7cd1f9beef20_0
5 vagrant@node −2:~$ docker top k8s_nginx_nginx−deployment−6b474476c4−vkjlr_bob_b6113e61−3

f7 f −4aee−bfb4−7cd1f9beef20_0 # −−> Container i n s i d e the v ict im pod
6 UID PID
7 root 2009 (the ta rg e t PID)
8 systemd+ 2032
9 vagrant@node −2:~$

Figure 6.22: Commands to manually obtain the PID of a process running in
the victim pod

We investigated these capabilities and found three capabilities that are re-
quired to perform the attack. They are CAP_SYS_ADMIN, CAP_NET_RAW
and CAP_NET_ADMIN. The first capability grants the ability to access
another network namespace, while the other two are required to access ipt-
ables. To replace the privileged pod, we deployed a new pod which was
granted these three capabilities. Then, we repeated the exploitation steps in
the experiment. As was our expectation, the result was the same. The new
pod granted the three capabilities in tenant Alice can connect to the HTTP
pod in the namespace Bob. The definition of the new pod can be found in
Figure 6.25.

From this result, we invent an idea that bans the use of these capabilities
to prevent the attack. CAP_SYS_ADMIN is recommended not to use it
in products [9], as it is called “the new root” and it overlaps many other
capabilities. Therefore, this capability should not be granted. The two other
capabilities cannot be avoided because the sidecar containers need them to
modify the iptables inside the pod network namespace.

CHAPTER 6. SECURITY EVALUATION 62

1 root@attacker :/# nsenter -t 2009 --net=/ hosts/proc /2009/ ns/
net iptables -L

2 Chain INPUT (policy ACCEPT)
3 target prot opt source destination
4 ACCEPT all -- 172.16.2.0/24 172.16.2.0/24
5 DROP all -- 172.16.0.0/14 172.16.0.0/14
6

7 Chain FORWARD (policy ACCEPT)
8 target prot opt source destination
9

10 Chain OUTPUT (policy ACCEPT)
11 target prot opt source destination
12 ACCEPT all -- 172.16.2.0/24 172.16.2.0/24
13 DROP all -- 172.16.0.0/14 172.16.0.0/14
14 root@attacker :/# nsenter -t 2009 --net=/ hosts/proc /2009/ ns/

net iptables -F
15 root@attacker :/# nsenter -t 2009 --net=/ hosts/proc /2009/ ns/

net iptables -L
16 Chain INPUT (policy ACCEPT)
17 target prot opt source destination
18

19 Chain FORWARD (policy ACCEPT)
20 target prot opt source destination
21

22 Chain OUTPUT (policy ACCEPT)
23 target prot opt source destination
24 root@attacker :/#

Figure 6.23: The command removes all iptables rules of the victim

To sum up, the solution for this attack is to disallow the use of privileged
pods and the capability CAP_SYS_ADMIN. This restriction is straight-
forward and does not hinder the tenant experience. Tenants can continue
to perform operations requiring higher privileges while not able to access
each other’s network namespaces. With these countermeasures in place, we
evaluate the risk level of this attack as low.

In conclusion, our network isolation solution passes most of the security
tests in the evaluation. The remaining security issues are not significant.
Table 6.1 summarizes the results, risk levels, and solutions of the experiments
in this section.

Tables 6.2 summarizes vulnerabilities of our network isolation method.

CHAPTER 6. SECURITY EVALUATION 63

1 alice@tenant -machine :/home/vagrant/MasterThesis/main -test/
evaluation/security$ kubectl exec dnsutils -it -- /bin/sh

2 Defaulting container name to dnsutils.
3 Use ’kubectl describe pod/dnsutils -n alice ’ to see all of

the containers in this pod.
4 / # wget 172.16.2.35
5 Connecting to 172.16.2.35 (172.16.2.35:80)
6 index.html 100% |***************************| 612

0:00:00 ETA

Figure 6.24: The pod in tenant Alice can bypass the isolation to connect to
pod in tenant Bob

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: attacker -cap -sys -admin
5 labels:
6 env: test
7 spec:
8 # shareProcessNamespace: true # To share the host PID space
9 containers:

10 - name: attackercapsysadmin
11 image: docker.io/namnx228/k8s -evaluation -security -

attacker -amd64
12 imagePullPolicy: Always
13 volumeMounts:
14 - mountPath: /hosts/proc/
15 name: proc -node -1
16 command:
17 - sleep
18 - "3600"
19 securityContext:
20 # privileged: true # ---> Root permission
21 capabilities:
22 add: ["SYS_ADMIN", "CAP_NET_RAW", "CAP_NET_ADMIN"]
23 nodeSelector:
24 kubernetes.io/hostname: node -1
25 restartPolicy: Always
26 volumes:
27 - name: proc -node -1
28 hostPath:
29 path: /proc #----> mount the /proc file system
30 type: Directory

Figure 6.25: The YAML definition of the alternative attack pod

CHAPTER 6. SECURITY EVALUATION 64

Experiment Description Result Match ex-
pectation Risk level Solution

Experiment 1

Two pods
from dif-
ferent
Kubernetes
name-
spaces

Blocked

Experiment 2

Two pods
from dif-
ferent
Kubernetes
name-
spaces (use
service)

Blocked

Experiment 3

Two pods
from one
Kubernetes
namespace

Allowed

Experiment 4

Two pods
from one
Kubernetes
name-
space (use
service)

Allowed

Experiment 5

Pod con-
nects to
external
services

Allowed Low

Experiment 6
Attacker
drops her
firewall

Blocked

Experiment 7

Bob unin-
tentionally
disables
firewall
rules

Allowed Medium

Experiment 8 Privileged
pod Allowed Low

Table 6.1: Summary of the experiments in the security evaluation

CHAPTER 6. SECURITY EVALUATION 65

Security issue Experiment Solution available ? Risk level
Tenant pods exposed on the internet 5 Low

Victim unintentionally disables firewall rules 7 Medium
Privileged pod deployment 8 Low

Table 6.2: Summary of security issues of the network isolation method

Chapter 7

Performance Evaluation

7.1 Test Environment

The motivation of the performance evaluation is that when an additional
container is injected into a pod, the cluster may require more time to process
tenant requests, such as creating pods, deleting pods. Besides, the use of
iptables as the firewall for isolation can cause network delay. This delay
needs to be acknowledged so that we can understand its performance impact
on the cluster.

The experiments in this section are conducted on a cluster shared by two
tenants Alice and Bob. The configuration of these tenants is similar to the
configuration in Section 5.2. However, to measure the impact of our solution,
we create two security profiles. The first profile does not apply the network
isolation solution, and it is assigned to tenant Alice. The second profile
applies the solution, and tenant Bob adopts this profile. In other words, we
disable the network isolation solution on tenant Alice and enable it in tenant
Bob (see Figure 7.1).

Table 7.1 describes the the two security profiles mentioned above.
The experiments in this section are carried out with only two tenants.

While the test environment setup script can deploy up to 1000 tenants, it is
unnecessary and time-inefficient to do that. Therefore we only report results
obtained from a two-tenant cluster. The details of this can be found in

Profile name Kubernetes namespace Network isolation solution
Insecure profile Alice Disabled
Secure profile Bob Enabled

Table 7.1: Description of security profiles

66

CHAPTER 7. PERFORMANCE EVALUATION 67

$ kubectl get ns -L sidecar-injector
NAME STATUS AGE SIDECAR-INJECTOR
default Active 55d
kube-node-lease Active 55d
kube-public Active 55d
kube-system Active 55d
alice Active 29d disable
bob Active 29d enabled

Figure 7.1: The network isolation solution is disabled for the Kubernetes
namespace Alice and enabled for the namespace Bob

Chapter 8.
In a distributed system like a Kubernetes cluster, many system compo-

nents can indirectly influence the performance and create unpredictable per-
formance hits. These uncontrollable elements become noise that affects the
experiment results. Besides, the experiments are carried out on the virtual
platform that also produces a certain amount of noise from the hypervisor
activities and other processes running on the physical host. Thus, it is essen-
tial to remove or at least minimize the amount of noise in the experiments.
Subsequently, each experiment needs to run in several iterations. Then, av-
erage, standard deviation, and other statistic parameters are calculated on
the results obtained from these iterations. The definition of one iteration
depends on each experiment. However, an experiment does not finish its
iterations before starting the next one. For example, an experiment with N
iterations runs N/10 iterations in 10 different chucks. The purpose of this
action is that an unusual noise can occur over some time period, but it can
only affect the result of a small number of iterations. Therefore, running in
10 separate moments lessens the influence of this noise to the experiment.

We organize and schedule to run the experiments as the algorithm in
Figure 7.2. The outside loop consists of ten iterations. In the first iteration,
function Experiment1_Insecure_N/10 runs the first NA1/10 iterations of the
experiment 1, with NA1 is the total number of iteration in experiment 1 in the
Insecure profile. Next, the function Experiment1_Secure_N/10 runs the first
NB1/10 iterations of the experiment 1, with NB1 is the total number of itera-
tion in experiment 1 in the Secure profile. It is similar to other functions per-
forming other experiments. After the function Experiment6_Secure_N/10
finishes running, the next big iteration is executed until the iteration 10.
Besides, it is worth mentioning that the results obtained from each N/10
iterations in the function are used to compute the average of these results,

CHAPTER 7. PERFORMANCE EVALUATION 68

Start

i = 1

i <= 10

Experiment1_insecure_N/10() && Experiment1_secure_N/10()

Experiment2_insecure_N/10() && Experiment2_secure_N/10()

Experiment3_insecure_N/10() && Experiment3_secure_N/10()

Experiment5_insecure_N/10() && Experiment5_secure_N/10()

Experiment6_insecure_N/10() && Experiment6_secure_N/10()

Experiment4_insecure_N/10() && Experiment4_secure_N/10()

End

FALSE

i = i + 1

TRUE

Figure 7.2: The algorithm to runs the experiments in this section

then this average value is forwarded to other statistical measurements.

7.1.1 Statistical Functions

This section introduces the list of statistical methods adopted to scientifically
measure the difference in performance between the two security profiles.

1. Mean [72] is used as the average value of the results of a function after
each batch finishes.

2. F-Test [62] is employed to calculate the probability that the variances
of two populations are not significantly unequal. In this thesis, the two
populations are the test results of the two security profiles.

3. T-Test [62] measures the probability that the means of two populations
are statistically similar. Depending on the result of the F-Test, if the
variances of the two groups are equal, the two-sample equal variances
version of the T-Test is applied. Otherwise, the unequal variances
version is picked up. Besides, as the assumption is that the secure
profile may produce a delay, the mean of the population representing
this profile is regularly bigger than the mean of the insecure profile. As

CHAPTER 7. PERFORMANCE EVALUATION 69

a result, we apply the one-tailed T-Test [15], only check either one mean
value is bigger than the other, but not both cases. The one-tailed test
provides more power to detect an effect in one direction, in comparison
to the two-tailed test that tests the probability of both directions: that
the first mean is significantly greater than the second mean, and that
the first mean is less than the second one.

7.2 Experiment 1

This experiment investigates the delay in the pod creation process that our
network isolation solution can cause. The delay may come from the sidecar
containers added by the solution. To find this delay, we measured the pod
deployment time in both security profiles and compared them. With each
profile, P pods are deployed concurrently, and we measured the duration from
the beginning until a completion signal was triggered. The number of pods P
is assigned in turn to each value in the set {2, 5, 10, 15, 20, 25, 30, 35, 40}. The
tool used for time measurement is the built-in time command of the Bash
terminal [56]. The completion signal is the element replicas in the JSON
output obtained after we send the deployment status request. If the value of
this element equals to P, the deployment process is considered as completed.
The full command to send this request and filter out the replicas element can
be found in Figure 7.3.

1 kubectl get deployments.apps ${DEPLOYMENT_NAME} -o jsonpath
="{. status.replicas }"

Figure 7.3: Command used to receive and filter out the element replicas

The result of this process is the duration of the pod deployment process in
milliseconds (ms). The whole process was repeated multiple times. In total,
300 iterations were performed, divided into ten 30-iteration-chunks. Each
chunk returned a value that is the average duration of the iterations in that
chunk. Table 7.2 and Table 7.3 present the average value of ten chunks for
each number of pods (NoP) in the insecure profile and the security profile,
respectively.

For each NoP, we calculated the mean of 10 chunks, then compared these
mean values between the two profiles. The mean of 10 chunks is similar to
the mean of 300 iterations, and this chunking approach helps simplify the
measurement process while not losing much accuracy. Figure 7.4 indicates
the comparison between the mean values of the two profiles.

CHAPTER 7. PERFORMANCE EVALUATION 70

NoP
Chunk 1 2 3 4 5 6 7 8 9 10

NoP 2 0.11 0.09 0.11 0.11 0.12 0.10 0.11 0.09 0.10 0.09
NoP 5 0.14 0.15 0.14 0.13 0.15 0.16 0.15 0.14 0.12 0.14
NoP 10 0.21 0.20 0.21 0.21 0.23 0.23 0.20 0.18 0.19 0.22
NoP 15 0.26 0.24 0.24 0.27 0.29 0.29 0.27 0.23 0.28 0.24
NoP 20 0.27 0.34 0.30 0.29 0.33 0.34 0.36 0.26 0.34 0.37
NoP 25 0.43 0.46 0.43 0.50 0.54 0.47 0.78 0.35 0.42 0.41
NoP 30 0.58 0.76 0.66 0.80 0.81 1.10 0.96 0.56 0.61 0.65
NoP 35 0.94 1.09 1.00 1.46 1.51 1.26 1.41 0.85 0.97 0.98
NoP 40 1.22 1.36 1.37 1.69 1.56 1.50 1.84 1.08 1.22 1.26

Table 7.2: The results of ten chunks in the insecure profile in experiment 1
(seconds)

NoP
Chunk 1 2 3 4 5 6 7 8 9 10

NoP 2 0.20 0.17 0.11 0.11 0.11 0.11 0.12 1.13 0.11 0.11
NoP 5 0.21 0.19 0.21 0.17 0.22 0.22 0.19 0.24 0.24 0.19
NoP 10 0.29 0.27 0.25 0.40 0.34 0.46 0.32 0.31 0.35 0.30
NoP 15 0.44 0.46 0.33 0.54 0.45 0.81 0.54 0.47 0.40 0.45
NoP 20 0.65 0.73 0.71 0.94 1.18 0.99 0.89 0.54 0.59 0.56
NoP 25 0.88 0.93 1.22 1.02 0.93 1.21 1.03 0.68 0.62 0.61
NoP 30 1.01 1.13 1.14 1.25 1.43 1.34 1.25 0.84 0.88 0.82
NoP 35 1.33 1.64 1.34 1.66 1.62 1.77 1.49 1.19 1.15 1.12
NoP 40 1.75 1.92 1.99 1.92 2.09 2.05 1.86 1.54 1.44 1.44

Table 7.3: The results of ten chunks in the secure profile in experiment 1
(seconds)

CHAPTER 7. PERFORMANCE EVALUATION 71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NoP 2 NoP 5 NoP 10 NoP 15 NoP 20 NoP 25 NoP 30 NoP 35 NoP 40

Se
co

n
d

s

Pod Creation Time

Insecure Secure

Figure 7.4: A comparison between means of chunks in the two security pro-
files in experiment 1

According to this graph, the means of the insecure profile are smaller
than the secure profile for the whole range of NoP. Moreover, T-Test and
F-Test (as mentioned in Section 7.1.1) are taken to provide more scientific
evidence. Details of the F-Test are as following:

1. Null hypothesis H0: The variances of the two lists are equal.

2. Alternatives hypothesis H1: The variances of the two lists are unequal.

3. Input: The lists of 10 chunks of the two security profiles.

4. Significance level: 0.05. This means that the confidence level of the
test is 95%.

5. p-value: The probability that two variances are equal. It is identified
by the test.

6. Output: If the p-value is smaller than the significance level, the null
hypothesis can be rejected.

CHAPTER 7. PERFORMANCE EVALUATION 72

Number of pods F-Test T-Test Reject Null hypothesis
NoP 2 6.33E-12 0.12
NoP 5 0.05 9.73E-07
NoP 10 0.0004 6.85E-05
NoP 15 1.69E-05 0.0001
NoP 20 1.69E-05 3.61E-05
NoP 25 0.07 1.73E-05
NoP 30 0.52 0.0003
NoP 35 0.94 0.008
NoP 40 0.88 0.0009

Table 7.4: Results of the F-Test and T-Test in experiment 1

The output of F-Test decides whether using the equal variances T-Test or
unequal variances T-Test. Details of the one-tailed T-Test are as following:

1. Null hypothesis H0: The means of two lists are equal.

2. Alternatives hypothesis H1: The means of two lists are unequal.

3. Input: The lists of 10 chunks of the two security profiles; whether the
two variances are equal or not.

4. Significance level: 0.05. This means that the confidence level of the
test is 95%.

5. p-value: The probability that two means are equal. It is identified by
the test.

6. Output: If the p-value is smaller than the significance level, the null
hypothesis can be rejected.

Table 7.4 presents the result of the tests mentioned above. The table shows
that the null hypothesis is rejected for the entire range of NoP. Rejecting the
null hypothesis means that two mean values are statistical different, and it
implicates that the mean of the insecure profile is smaller than the secure
profile. We can conclude that the network isolation solution produces a delay
to the pod deployment process. However, Figure 7.4 shows that the delay is
within the bounds of acceptable.

CHAPTER 7. PERFORMANCE EVALUATION 73

NoP
Chunk 1 2 3 4 5 6 7 8 9 10

NoP 2 7.40 5.92 11.31 8.69 8.06 7.03 9.47 9.62 10.37 6.82
NoP 5 6.52 26.58 12.84 12.31 10.75 11.15 12.84 11.34 12.09 10.99
NoP 10 9.75 10.13 9.78 9.33 9.84 9.76 10.12 14.89 24.76 8.58
NoP 15 10.74 12.60 9.74 9.82 20.16 33.99 9.29 8.59 11.36 6.93
NoP 20 15.50 29.50 36.67 29.69 10.87 25.77 22.90 15.51 11.36 31.19
NoP 25 10.25 13.36 15.91 29.64 22.79 22.53 29.54 27.75 46.31 35.36
NoP 30 34.86 28.61 32.17 21.65 30.76 56.44 42.39 29.86 55.96 46.07
NoP 35 22.63 35.80 42.85 30.59 35.82 38.75 34.11 41.73 41.15 39.94
NoP 40 48.67 15.34 51.63 58.64 38.91 46.06 25.13 31.73 15.64 41.43

Table 7.5: The results of ten chunks in the insecure profile in experiment 2
(seconds)

7.3 Experiment 2

This experiment determines whether our solution creates a delay in the pod
deletion process. In the experiment, we apply a similar setup and statistic
methods to experiment 1. However, to detect the event that the pod deletion
process finishes, we continuously send commands to check the number of
remaining pods. If the entire list of pods is empty, the deletion process has
finished. Table 7.5 and Table 7.6 describe the results of ten chunks in the
insecure profile and the secure profile.

Table 7.7 shows the result of the F-Test and T-Test. It can be seen
from the table that the null hypothesis is rejected for six of the nine cases.
Unfortunately, it is hard to draw a conclusion based on this result. In fact,
the pod deletion process contains a great deal of noise due to the Kubernetes
cluster itself. Therefore, measuring the pod deletion time is an unreliable
approach.

7.4 Experiment 3

This experiment and the rest verify the assumption that the use of iptables
in the pods can produce network delay because the Netfilter needs to match
packets to the whole list of iptables rules. This experiment examines the case
of high bandwidth connections. The setup of the experiment is explained in
Figure 7.6.

Iperf [69] was adopted in this experiment to create network communi-
cation between the pods. It is a powerful tool to measure the maximum

CHAPTER 7. PERFORMANCE EVALUATION 74

NoP
Chunk 1 2 3 4 5 6 7 8 9 10

NoP 2 7.42 10.29 20.10 19.28 30.60 18.82 33.19 9.99 22.78 21.10
NoP 5 20.02 10.11 10.28 18.04 7.07 11.37 6.77 17.76 28.51 15.56
NoP 10 6.03 6.41 22.57 6.45 6.06 6.28 6.33 31.27 7.40 31.57
NoP 15 22.29 9.22 30.62 32.43 19.01 20.08 29.23 44.46 36.16 30.79
NoP 20 35.90 46.57 48.44 19.41 32.78 45.33 42.80 42.74 44.66 46.20
NoP 25 45.91 42.65 42.89 49.93 36.03 32.97 39.49 24.32 47.13 46.08
NoP 30 55.87 35.41 49.30 55.62 23.05 32.69 46.05 47.73 44.68 59.24
NoP 35 59.50 62.55 55.65 45.65 46.43 49.96 42.39 45.87 55.78 45.74
NoP 40 45.12 71.95 58.78 55.64 61.69 58.48 72.21 65.37 68.90 64.25

Table 7.6: The results of ten chunks in the secure profile in experiment 2
(seconds)

Number of pods F-test T-Test Reject Null hypothesis
NoP 2 5.80788E-05 0.001362449
NoP 5 0.439941611 0.255386815
NoP 10 0.025406248 0.363944698
NoP 15 0.539794053 0.001368701
NoP 20 0.944893459 0.000181504
NoP 25 0.335025209 0.000909529
NoP 30 0.925574402 0.095644236
NoP 35 0.735908402 4.63194E-05
NoP 40 0.091635587 0.000109036

Table 7.7: Results of the F-Test and T-Test in experiment 2

CHAPTER 7. PERFORMANCE EVALUATION 75

0

10

20

30

40

50

60

70

NoP 2 NoP 5 NoP 10 NoP 15 NoP 20 NoP 25 NoP 30 NoP 35 NoP 40

Se
co

n
d

s

Pod Deletion Time

Insecure Secure

Figure 7.5: A comparison between means of chunks in the two security pro-
files in experiment 2

bandwidth on IP networks. For each Kubernetes namespace in the security
profiles, we deployed two pods. One pod ran an Iperf server using the com-
mand in Figure 7.7. The server was listening on the port 5000. The second
pod ran an Iperf client using the command in Figure 7.8. The parameter
“-c” means the target that is connected by this client. In this case, we deploy
a service that forwards traffic to the Iperf server, and connect the client to
this service. “-t” means the amount of time the client sends traffic to the
server. “-i” means the duration between two periodic bandwidth reports.
“-p” is the server port. The amount of communication time is set to 30 se-
conds, and during this time, the client measured the bandwidth. After the
communication had finished, the client reported the bandwidth in megabits
per second. This experiment was repeated ten times based on the algorithm
in Section 7.1. The results of ten iterations are presented in Table 7.8.

The mean values of iterations in the two profiles are compared in Fig-
ure 7.9. The result of F-Test and T-Test are as following:

1. F-Test: 0.292257703 > 0.05 Therefore, the equal T-Test is selected in
this experiment.

CHAPTER 7. PERFORMANCE EVALUATION 76

K8S

Namespace

Pod: iperf client Pod: iperf serverService
Duration:

30 s

Figure 7.6: Setup of experiment 3 in the performance evaluation

1 iperf -s -p 5000

Figure 7.7: The command used to deploy an Iperf server

2. T-Test: 1.99658E − 06 < 0.05. Therefore, the null hypothesis can be
rejected.

According to the result of T-Test, the network isolation solution did cause a
bandwidth loss. However, it is shown in Figure 7.9 that the impact is not
excessive. The reason is that the number of iptables rules added to the pod
is small, only four. Therefore, it required a negligible amount of time to
process a packet through these rules.

7.5 Experiment 4

This experiment tests the case when a large number of connections are si-
multaneous active between two pods. It aims to answer whether the iptables
rules added by the sidecar container reduce the aggregate bandwidth of these
connections. The setup is similar to the experiment 3. The only exception is
the command that Iperf client used to deploy a large number of connections
to the server. The Figure 7.10 describes this command. “-P 100” means the
client generates 100 connections to the server.

Test No. 1 2 3 4 5 6 7 8 9 10
Insecure 2645 2765 2736 2409 2196 2720 2717 2744 2729 2689
Secure 1877 2236 1661 1719 2259 2261 1694 2297 1816 1710

Table 7.8: Results of ten iterations in experiment 3 (Mb/s)

CHAPTER 7. PERFORMANCE EVALUATION 77

1 iperf -c ${SERVICE} -t 30 -i 30 -p 5000 -f m

Figure 7.8: The command used to deploy an Iperf client

0

500

1000

1500

2000

2500

3000

Insecure Secure

M
b

/s

Average Bandwidth

Figure 7.9: A comparison between means of chunks in the two security pro-
files in experiment 3

Table 7.9 presents the results of ten iterations. Figure 7.11 compares the
means of the two profiles. The results of F-Test and T-Test are as following:

1. F-Test: 0.462198796 > 0.05 Therefore, the equal T-Test is selected in
this experiment

2. T-Test: 2.05956E − 06 < 0.05. Therefore, the null hypothesis can be
rejected.

According to the result of the T-Test, our solution caused a bandwidth loss
in this case. However, as shown in Figure 7.11, it was not excessive as the
number of iptables rules needed to be processed is small.

CHAPTER 7. PERFORMANCE EVALUATION 78

1 iperf -c ${SERVICE} -t 30 -i 30 -p 5000 -f m -P 100

Figure 7.10: The command used to deploy an Iperf client in experiment 4

Test No. 1 2 3 4 5 6 7 8 9 10
Insecure 826 819 806 810 806 836 802 812 834 763
Secure 722 755 720 764 755 751 684 768 726 766

Table 7.9: Results of ten iterations in experiment 4 (Mb/s)

7.6 Experiment 5

This experiment measures the round trip time (RTT) of packets traveling
between two pods and determines if the network isolation method increases
the RTTs. The setup of this experiment consisted of two pods deployed in
the same Kubernetes namespace. One pod ran a Hping3 client. Hping3 [64]
is an open-source packet generator and analyzer for the TCP protocol. This
tool is utilized in this experiment to send TCP packets and calculate their
RTTs. The command used to run the client can be found in Figure 7.12.
The second pod ran an Iperf server.

After being deployed, the client sent and measured the RTTs of 1000
TCP packets, then computed the average of these RTTs. As following the
algorithm in Section 7.1, the experiment was repeated ten times, therefore
in total, 10000 packets were sent. Table 7.10 recorded the average values
obtained from these ten times running the experiment. The mean of the ten
results are computed and compared in Figure 7.13. The result of F-Test and
T-Test are as following:

1. F-Test: 0.052 > 0.05 Therefore, the equal T-Test is selected in this
experiment

2. T-Test: 0.048 < 0.05. Therefore, the Null hypothesis can be rejected.

It can be seen from the result of the T-Test that the average RTT in the
secure profile was longer than in the insecure profile, and the deployment of
our solution caused this considerable additional amount of time.

Test No. 1 2 3 4 5 6 7 8 9 10
Insecure 0.42 0.43 0.28 0.31 1.87 1.29 2.08 0.34 3.37 1.40
Secure 0.30 0.99 0.33 0.26 1.64 0.22 0.24 0.93 0.25 0.24

Table 7.10: Results of ten iterations in experiment 5 (ms)

CHAPTER 7. PERFORMANCE EVALUATION 79

100

300

500

700

900

Insecure Secure

M
b

/s

Aggregate Bandwidth of 100 Connections

Figure 7.11: A comparison between means of chunks in two security profiles
in experiment 4

1 hping3 -S -p 8000 -c 1000 ${SERVICE}

Figure 7.12: The command used to deploy an Iperf client in experiment 5

7.7 Experiment 6

This experiment also checks if the RTTs increase due to our solution. How-
ever, instead of TCP packets, experiment 6 investigates the HTTP requests.
The setup is roundly the same with the previous experiment. The only dif-
ference is the client pod and server pod. The server pod ran a Nginx server,
while the client ran Curl [14], a widely known HTTP client on command-line
in Linux. The results of the experiment are recorded in Table 7.11, and the
means are compared in Figure 7.14.

The results of F-Test and T-Test are as following:

1. F-Test: 0.96 > 0.05 Therefore, the equal T-Test is selected in this
experiment.

CHAPTER 7. PERFORMANCE EVALUATION 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Insecure Secure

M
ili

se
co

n
d

s

TCP Round Trip Time

Figure 7.13: A comparison between means of chunks in the two security
profiles in experiment 5

Test No. 1 2 3 4 5 6 7 8 9 10
Insecure 11.88 10.49 8.87 7.77 6.23 12.99 8.33 9.85 8.83 9.85
Secure 10.95 7.01 7.48 11.33 12.41 7.20 9.39 9.10 9.93 10.99

Table 7.11: Results of ten iterations in experiment 6 (ms)

2. T-Test: 0.47 > 0.05. Therefore, the Null hypothesis cannot be rejected.

The T-Test output shows that the average RTT of HTTP requests in the
insecure profile and the secure profile are not significantly different. As the
test could not detect a delay in RTT, it could be negligible or not exist.

7.8 Summary

To sum up, we can conclude that our network isolation solution causes delay
on cluster operations, including creating, possibly deleting pods, and network
communication between pods. The delay in creating and deleting pods comes
from the sidecar container added to each pod while the network delay comes

CHAPTER 7. PERFORMANCE EVALUATION 81

1

6

11

Insecure Secure

M
ili

se
co

n
d

s

HTTP Round Trip Time

Figure 7.14: A comparison between means of chunks in the two security
profiles in experiment 6

from the iptables usage to block cross-namespace (Kubernetes namespace)
communication. However, the delay is noticeable but within the bounds
of acceptable, because only one extra container and four iptables rules are
added to a pod.

While we repeated the experiments several times to minimize noise, it
is unavoidable in a virtual testing platform. However, since the delay is
detected by running experiments on virtual machines, we can conclude that
the network isolation solution will also produce the delay when applied on a
native cloud platform.

Chapter 8

Conclusions and Discussion

8.1 Discussion

This section lists directions that we can move forward to improve the pro-
posed solution. The first idea is to leverage the sidecar container. In the
current solution, the sidecar container in a pod runs to set up the internal
firewall once this pod is created. Our idea is to transform it to a watch-
dog sidecar container: it continues to run after setting up the firewall, and
maintains the firewall configuration that provides network isolation. This
approach can prevent unintentional or malicious behaviors that alters the
firewall, as mentioned in Section 6.7, thus being one solution for this prob-
lem. However, it also has limitations. Firstly, a constantly running sidecar
container would consume more resources, including computing, memory, and
even networking, compared to a one-time run sidecar container. In other
words, adopting watchdog containers may generate more performance de-
lay to the cluster. Besides, this approach may not completely stop insider
attackers. An insider attacker can bypass this watchdog by exploiting the
a race condition vulnerability [70]. This vulnerability may come from the
implementation of the watchdog. Even with these weaknesses, the watchdog
can provide extra protection since launching a race condition attack may not
be straightforward and requires much time and effort to prepare.

In addition, it is worth mentioning that our test environment can deploy
up to 1000 tenants. However, we experimented and figured out that the
number of tenants does not influence the performance test results. The reason
is that the tenant number cannot affect the sidecar container inside each
pod. The internal iptables in each pod is also independent of this number.
Therefore, we can conclude that the tenant number cannot contribute to
the delay created by our solution. Thus, two tenants are enough for our

82

CHAPTER 8. CONCLUSIONS AND DISCUSSION 83

experiments.
Finally, as mentioned in Section 7.1, unpredictable behaviors of the vir-

tualization hypervisor and other processes running on the physical host can
create performance hits to the cluster, producing noise to our experiments.
Even so, our tests could detect the loss of performance when we apply our
solution, compared to the case that does not employ it. From this result, we
can conclude that our solution would also produce performance loss when
applied to a native cloud environment.

8.2 Conclusions

To sum up, this thesis introduces a network isolation method that can meet
one critical requirement of Kubernetes hard multi-tenant systems. This solu-
tion can work regardless of the variety of Kubernetes network implementation
since it leverages the internal firewall (iptables), an unchangeable component
in Kubernetes, inside each pod. This firewall is set up by a sidecar container
added to a pod by the admission controller. This solution can pass 5 out of
8 security tests, and 1 out of the remaining issues is solvable. Besides, we
recorded delays in performance due to using our solution. The delay is ob-
servable but nevertheless acceptable in all the tested cases. Finally, based on
this evidence, the proposed solution is feasible, and with the improvements
mentioned in the previous section, it can be considered to become a part of a
real Kubernetes multi-tenant cluster that provides fine-grained and reliable
security.

Bibliography

[1] stderr - C++ Reference. https://www.cplusplus.com/reference/
cstdio/stderr/?kw=stderr, Dec 2013. [Online; accessed 1. Jul. 2020].

[2] stdin - C++ Reference. https://www.cplusplus.com/reference/cstdio/
stdin, Dec 2013. [Online; accessed 1. Jul. 2020].

[3] Flannel-CNI. https://github.com/coreos/flannel-cni, Sep 2017. [On-
line; accessed 8. May 2020].

[4] Ansible is Simple IT Automation. https://www.ansible.com, May 2020.
[Online; accessed 31. May 2020].

[5] Authenticating. https://kubernetes.io/docs/reference/
access-authn-authz/authentication, Jun 2020. [Online; accessed
3. Jun. 2020].

[6] Building large clusters. https://kubernetes.io/docs/setup/
best-practices/cluster-large, Jul 2020. [Online; accessed 6.
Jul. 2020].

[7] Calico architecture. https://docs.projectcalico.org/reference/
architecture/overview#felix, Jul 2020. [Online; accessed 28. Jul. 2020].

[8] Calicoctl user reference. https://docs.projectcalico.org/reference/
calicoctl/overview, Jul 2020. [Online; accessed 29. Jul. 2020].

[9] Capabilities(7) - Linux manual page. https://man7.org/linux/
man-pages/man7/capabilities.7.html, Jul 2020. [Online; accessed 2.
Jul. 2020].

[10] Cluster Networking. https://kubernetes.io/docs/concepts/
cluster-administration/networking, Apr 2020. [Online; accessed
18. Apr. 2020].

84

https://www.cplusplus.com/reference/cstdio/stderr/?kw=stderr
https://www.cplusplus.com/reference/cstdio/stderr/?kw=stderr
https://www.cplusplus.com/reference/cstdio/stdin
https://www.cplusplus.com/reference/cstdio/stdin
https://github.com/coreos/flannel-cni
https://www.ansible.com
https://kubernetes.io/docs/reference/access-authn-authz/authentication
https://kubernetes.io/docs/reference/access-authn-authz/authentication
https://kubernetes.io/docs/setup/best-practices/cluster-large
https://kubernetes.io/docs/setup/best-practices/cluster-large
https://docs.projectcalico.org/reference/architecture/overview#felix
https://docs.projectcalico.org/reference/architecture/overview#felix
https://docs.projectcalico.org/reference/calicoctl/overview
https://docs.projectcalico.org/reference/calicoctl/overview
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/cluster-administration/networking

BIBLIOGRAPHY 85

[11] CNI. https://github.com/containernetworking/cni, Apr 2020. [Online;
accessed 8. May 2020].

[12] Concepts. https://kubernetes.io/docs/concepts, May 2020. [Online;
accessed 7. May 2020].

[13] Configure Service Accounts for Pods. https://kubernetes.io/docs/
tasks/configure-pod-container/configure-service-account, Jun
2020. [Online; accessed 3. Jun. 2020].

[14] Curl. https://curl.haxx.se, Jul 2020. [Online; accessed 2. Jul. 2020].

[15] FAQ: What are the differences between one-tailed and two-tailed
tests? https://stats.idre.ucla.edu/other/mult-pkg/faq/general/
faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests,
Jul 2020. [Online; accessed 2. Jul. 2020].

[16] Global network policy. https://docs.projectcalico.org/reference/
resources/globalnetworkpolicy, Jul 2020. [Online; accessed 5. Jul.
2020].

[17] Install Calico for policy and flannel (aka Canal) for network-
ing. https://docs.projectcalico.org/getting-started/kubernetes/
flannel/flannel, Jul 2020. [Online; accessed 28. Jul. 2020].

[18] ip-netns(8) - Linux manual page. https://man7.org/linux/man-pages/
man8/ip-netns.8.html, Jul 2020. [Online; accessed 7. Jul. 2020].

[19] Istio. https://github.com/istio/istio, May 2020. [Online; accessed 9.
May 2020].

[20] Multi-tenancy. https://github.com/kubernetes-sigs/multi-tenancy,
May 2020. [Online; accessed 9. May 2020].

[21] Namespaces. https://kubernetes.io/docs/concepts/overview/
working-with-objects/namespaces, Apr 2020. [Online; accessed 9. Apr.
2020].

[22] Network Policies. https://kubernetes.io/docs/concepts/
services-networking/network-policies, May 2020. [Online; accessed
8. May 2020].

[23] nsenter(1) - Linux manual page. https://man7.org/linux/man-pages/
man1/nsenter.1.html, Jul 2020. [Online; accessed 1. Jul. 2020].

https://github.com/containernetworking/cni
https://kubernetes.io/docs/concepts
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account
https://curl.haxx.se
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests
https://docs.projectcalico.org/reference/resources/globalnetworkpolicy
https://docs.projectcalico.org/reference/resources/globalnetworkpolicy
https://docs.projectcalico.org/getting-started/kubernetes/flannel/flannel
https://docs.projectcalico.org/getting-started/kubernetes/flannel/flannel
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://github.com/istio/istio
https://github.com/kubernetes-sigs/multi-tenancy
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://man7.org/linux/man-pages/man1/nsenter.1.html
https://man7.org/linux/man-pages/man1/nsenter.1.html

BIBLIOGRAPHY 86

[24] Overview of kubectl. https://kubernetes.io/docs/reference/kubectl/
overview, Jun 2020. [Online; accessed 3. Jun. 2020].

[25] Pods. https://kubernetes.io/docs/concepts/workloads/pods/pod, Apr
2020. [Online; accessed 8. Apr. 2020].

[26] Production-Grade Container Orchestration. https://kubernetes.io,
May 2020. [Online; accessed 9. May 2020].

[27] Race condition | Wikiwand. https://www.wikiwand.com/en/Race_
condition, May 2020. [Online; accessed 25. May 2020].

[28] Resource Quotas. https://kubernetes.io/docs/concepts/policy/
resource-quotas, May 2020. [Online; accessed 5. May 2020].

[29] The Kubernetes API. https://kubernetes.io/docs/concepts/
overview/kubernetes-api, Jul 2020. [Online; accessed 7. Jul. 2020].

[30] Using Admission Controllers. https://kubernetes.io/
docs/reference/access-authn-authz/admission-controllers/
#what-does-each-admission-controller-do, May 2020. [Online;
accessed 25. May 2020].

[31] Using Node Authorization. https://kubernetes.io/docs/reference/
access-authn-authz/node, Jun 2020. [Online; accessed 4. Jun. 2020].

[32] Webhook Mode. https://kubernetes.io/docs/reference/
access-authn-authz/webhook, Jun 2020. [Online; accessed 4. Jun.
2020].

[33] Wget. https://www.gnu.org/software/wget, Jul 2020. [Online; accessed
1. Jul. 2020].

[34] What is loopback interface in a Cisco Router. https:
//www.omnisecu.com/cisco-certified-network-associate-ccna/
what-is-loopback-interface-in-a-router.php, Jul 2020. [Online;
accessed 27. Jul. 2020].

[35] Ahmed, M. The Sidecar Pattern, May 2020. [Online; accessed 25. May
2020].

[36] Bernstein, D. Containers and cloud: From lxc to docker to kuber-
netes. IEEE Cloud Computing 1, 3 (2014), 81–84.

https://kubernetes.io/docs/reference/kubectl/overview
https://kubernetes.io/docs/reference/kubectl/overview
https://kubernetes.io/docs/concepts/workloads/pods/pod
https://kubernetes.io
https://www.wikiwand.com/en/Race_condition
https://www.wikiwand.com/en/Race_condition
https://kubernetes.io/docs/concepts/policy/resource-quotas
https://kubernetes.io/docs/concepts/policy/resource-quotas
https://kubernetes.io/docs/concepts/overview/kubernetes-api
https://kubernetes.io/docs/concepts/overview/kubernetes-api
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/node
https://kubernetes.io/docs/reference/access-authn-authz/node
https://kubernetes.io/docs/reference/access-authn-authz/webhook
https://kubernetes.io/docs/reference/access-authn-authz/webhook
https://www.gnu.org/software/wget
https://www.omnisecu.com/cisco-certified-network-associate-ccna/what-is-loopback-interface-in-a-router.php
https://www.omnisecu.com/cisco-certified-network-associate-ccna/what-is-loopback-interface-in-a-router.php
https://www.omnisecu.com/cisco-certified-network-associate-ccna/what-is-loopback-interface-in-a-router.php

BIBLIOGRAPHY 87

[37] Bischoff, M. Design and implementation of a framework for validating
kubernetes policies through automatic test generation.

[38] Bosnjak, L., Sres, J., and Brumen, B. Brute-force and dictionary
attack on hashed real-world passwords. pp. 1161–1166.

[39] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. Borg, omega, and kubernetes. Queue 14, 1 (2016), 70–
93.

[40] Claassen, J., Koning, R., and Grosso, P. Linux containers net-
working: Performance and scalability of kernel modules. In NOMS
2016-2016 IEEE/IFIP Network Operations and Management Sympo-
sium (2016), IEEE, pp. 713–717.

[41] coreos. Flannel. https://github.com/coreos/flannel/blob/master/
Documentation/backends.md, May 2020. [Online; accessed 8. May 2020].

[42] Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., and Guan, H.
High performance network virtualization with sr-iov. Journal of Parallel
and Distributed Computing 72, 11 (2012), 1471–1480.

[43] Ferraiolo, D., Cugini, J., and Kuhn, D. R. Role-based access con-
trol (RBAC): Features and motivations. In Proceedings of 11th annual
computer security application conference (1995), pp. 241–48.

[44] Frederickson, G. N., and Janardan, R. Designing networks with
compact routing tables. Algorithmica 3, 1-4 (1988), 171–190.

[45] Hallyn, S. E., and Morgan, A. G. Linux capabilities: Making them
work.

[46] Hashimoto, M. Vagrant: up and running: create and manage virtual-
ized development environments. O’Reilly Media, Inc., 2013.

[47] Hightower, K., Burns, B., and Beda, J. Kubernetes: up and
running: dive into the future of infrastructure. O’Reilly Media, Inc.,
2017.

[48] Hoffman, D., Prabhakar, D., and Strooper, P. Testing iptables.
In Proceedings of the 2003 conference of the Centre for Advanced Studies
on Collaborative research (2003), IBM Press, pp. 80–91.

https://github.com/coreos/flannel/blob/master/Documentation/backends.md
https://github.com/coreos/flannel/blob/master/Documentation/backends.md

BIBLIOGRAPHY 88

[49] Housley, R., Ford, W., Polk, W., and Solo, D. Internet x. 509
public key infrastructure certificate and CRL profile. Tech. rep., RFC
2459, January, 1999.

[50] Ibm. perf-sidecar-injector. https://github.com/IBM/
perf-sidecar-injector, Jul 2020. [Online; accessed 3. Jul. 2020].

[51] intel. multus-cni. https://github.com/intel/multus-cni, Jul 2020.
[Online; accessed 7. Jul. 2020].

[52] Ioannidis, J., Duchamp, D., and Maguire Jr, G. Q. Ip-based
protocols for mobile internetworking. ACM SIGCOMM Computer Com-
munication Review 21, 4 (1991), 235–245.

[53] James, T. Y. Performance evaluation of linux bridge. In Telecommu-
nications System Management Conference (2004).

[54] Krebs, R., Momm, C., and Kounev, S. Architectural concerns in
multi-tenant saas applications. Closer 12 (2012), 426–431.

[55] Li, P. Selecting and using virtualization solutions: our experiences with
VMware and VirtualBox. Journal of Computing Sciences in Colleges 25,
3 (2010), 11–17.

[56] Linuxize. Linux Time Command. Linuxize (Mar 2019).

[57] Lowe, S. What is SR-IOV? - Scott’s Weblog - The weblog of an IT
pro focusing on cloud computing, Kubernetes, Linux, containers, and
networking, Jan 2020. [Online; accessed 3. May 2020].

[58] Medel, V., Tolosana-Calasanz, R., Bañares, J. Á., Ar-
ronategui, U., and Rana, O. F. Characterising resource manage-
ment performance in kubernetes. Computers & Electrical Engineering
68 (2018), 286–297.

[59] Morabito, R., Kjällman, J., and Komu, M. Hypervisors vs.
lightweight virtualization: a performance comparison. In 2015 IEEE
International Conference on Cloud Engineering (2015), IEEE, pp. 386–
393.

[60] Nedelcu, C. Nginx HTTP Server: Adopt Nginx for Your Web Appli-
cations to Make the Most of Your Infrastructure and Serve Pages Faster
Than Ever. Packt Publishing Ltd, 2010.

https://github.com/IBM/perf-sidecar-injector
https://github.com/IBM/perf-sidecar-injector
https://github.com/intel/multus-cni

BIBLIOGRAPHY 89

[61] nishanil. Communication in a microservice architecture, May 2020.
[Online; accessed 9. May 2020].

[62] Riffenburgh, R. Chapter 24 - sequential analysis and time series.
In Statistics in Medicine (Third Edition), R. Riffenburgh, Ed., third
edition ed. Academic Press, San Diego, 2012, pp. 509 – 533.

[63] Rouse, M. provisioning. WhatIs.com (Aug 2010).

[64] Sanfilippo, S. hping3 (8)-linux man page. Online: https://linux. die.
net/man/8/hping3 (2005).

[65] Sarkale, V. V., Rad, P., and Lee, W. Secure Cloud Container:
Runtime Behavior Monitoring Using Most Privileged Container (MPC).
In 2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud) (2017), IEEE, pp. 351–356.

[66] Schultz, E. E. A framework for understanding and predicting insider
attacks. Computers & Security 21, 6 (2002), 526–531.

[67] Suarez, A. J., Windsor, S. K., Hayrapetyan, N., Gerdesmeier,
D. R., and Prakash, P. K. Software container registry service,
Apr. 16 2019. US Patent 10,261,782.

[68] Thönes, J. Microservices. IEEE Software 32, 1 (2015), 116–116.

[69] Tirumala, A. Iperf: The TCP/UDP bandwidth measurement tool.
http://dast. nlanr. net/Projects/Iperf/ (1999).

[70] Tsyrklevich, E., and Yee, B. Dynamic detection and prevention
of race conditions in file accesses. PhD thesis, University of California,
San Diego, 2003.

[71] Welte, H. The netfilter framework in linux 2.4. In Proceedings of
Linux Kongress (2000).

[72] Witte, R., and Witte, J. Statistics. Wiley, 2013.

[73] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. F. Performance evaluation of
container-based virtualization for high performance computing environ-
ments. In 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (2013), pp. 233–240.

BIBLIOGRAPHY 90

[74] Xu, C., Rajamani, K., and Felter, W. Nbwguard: Realizing net-
work QoS for Kubernetes. In Proceedings of the 19th International Mid-
dleware Conference Industry (2018), pp. 32–38.

[75] Yuan, E., and Tong, J. Attributed based access control (ABAC)
for Web services. In IEEE International Conference on Web Services
(ICWS’05) (2005), p. 569.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure

	2 Background and Related Work
	2.1 Kubernetes
	2.1.1 Kubernetes Objects
	2.1.2 Authentication and Authorization
	2.1.3 Kubernetes Architecture

	2.2 Kubernetes Network
	2.2.1 Linux Network Namespace
	2.2.2 Calico
	2.2.3 Flannel
	2.2.4 Canal
	2.2.5 Macvlan
	2.2.6 SR-IOV

	2.3 Kubernetes Multi-Tenancy and Related Work
	2.3.1 Soft Multi-Tenancy
	2.3.2 Hard Multi-Tenancy

	3 Network Isolation Solution
	3.1 One Kubernetes Namespace per Tenant
	3.2 CNI-Specific Solutions
	3.2.1 Calico
	3.2.2 Flannel
	3.2.3 Macvlan and SR-IOV

	3.3 CNI-Independent Solution
	3.3.1 IPTables
	3.3.2 Sidecar Container
	3.3.3 Admission Controller

	4 Architecture and Implementation
	4.1 IPTables in Pod Network Namespace
	4.2 Sidecar Container Content
	4.3 Admission Controller

	5 Test Environment
	5.1 Development Workstation
	5.2 Multi-Tenancy Setup
	5.3 Software Version and IP Address

	6 Security Evaluation
	6.1 Experiment 1
	6.2 Experiment 2
	6.3 Experiment 3
	6.4 Experiment 4
	6.5 Experiment 5
	6.6 Experiment 6
	6.7 Experiment 7
	6.8 Experiment 8

	7 Performance Evaluation
	7.1 Test Environment
	7.1.1 Statistical Functions

	7.2 Experiment 1
	7.3 Experiment 2
	7.4 Experiment 3
	7.5 Experiment 4
	7.6 Experiment 5
	7.7 Experiment 6
	7.8 Summary

	8 Conclusions and Discussion
	8.1 Discussion
	8.2 Conclusions

