Aalto University
School of Electrical Engineering
Degree Programme in Automation and Information Technology

Antti Paloposki

Enabling Continuous Integration through
deployment automation

Case Study: Property transaction system of
Finnish National Land Survey

Master’s Thesis
Espoo, January 17, 2018

January 17, 2018

Supervisors: Professor Valeriy Vyatkin, Aalto University
Advisor: Tatu Kairi M.Sc. (Tech.)

A' Aalto University
|
Aalto University

School of Electrical Engineering

Degree Programme in Automation and Information Technol- ABSTRACT OF
ogy MASTER’S THESIS
Author: Antti Paloposki

Title:
Enabling Continuous Integration through deployment automation Case Study:
Property transaction system of Finnish National Land Survey

Date: January 17, 2018 Pages: 42

Major: Information and Computer Systems in Code: T-110
Automation

Supervisors: Professor Valeriy Vyatkin

Advisor: Tatu Kairi M.Sc. (Tech.)

Finnish National Land Survey has commissioned Eficode to develop a service
called Property Transaction Service for handling property issues electronically.
As part of the development work, Eficode set up automated acceptance testing
in a dedicated acceptance test environment but there was no deployment au-
tomation that is required for proper Continuous Integration and only time when
new versions were deployed was the dedicated acceptance test period for release
candidate.

Scope of this thesis was to implement a deployment automation which would
enable frequent and effortless deployments to the acceptance testing and devel-
opment environment using an I'T automation tool called Ansible. The result was
an automated deployment process that released new versions for acceptance test-
ing with very little input from the developers. Research and industry consensus
both support the assertion that frequent automated deployments with automated
testing improve software quality and increase predictability in software projects.
In this thesis it is demonstrated that implementing a deployment process that is
as far automated as possible will significantly increase the frequency of deploy-
ments without comparable investment in workload.

Keywords: Continuous Integration, Software Development, Ansible, De-
vops
Language: English

Acknowledgements

I wish to thank both Eficode and the National Finnish Land Survey for the
opportunity to write my thesis for them. I would like to thank my instructor
Tatu Kairi for his extensive feedback and my supervisor Valeriy Vyatkin for
directing the thesis work.

I would also like thank Mei, my friends, colleagues and family for the
encouragement and support they have given me throughout this final stretch
of my studies.

Helsinki, January 17, 2018

Antti Paloposki

Abbreviations and Acronyms

NLS
PTS
CI
DNS
NF'S
WAR

National Land Survey
Property Transaction Service
Continuous Integration
Domain Name System
Network File System

Web Application Archive

Contents

Abbreviations and Acronyms

1

Introduction

1.1 Problem statement

1.2 Structure of the Thesis

Background

2.1 Continuous Integration and Delivery
2.1.1 Jenkins Clserver
2.1.2 Software Testing and Test Automation

2.1.2.1 Stubbs and Mocks

2.2 Microservice architectureo

2.3 Software Configuration Management
2.3.1 Ansible

Environment

3.1 Property Transaction Service in National Land Survey

3.2 Software architecture of the product

3.3 Current environments

3.4 Previous deployment automation

Implementation

4.1 Automating deployments with Ansible

4.1.1 Rolling updates
4.2 Scheduling deployments from Jenkins CI
4.3 Automating deployments in elevated security network

Evaluation

5.1 Current status of CI in Property Transaction Service
5.2 Deployment frequency
5.3 Deployment workload

10
11
13
13
14
14
17
18

22
22
23
24
25

28
28
29
30
31

6 Discussion 35

6.1 Other metrics 35
6.2 Futurework 36
6.2.1 Infrastructure automation 36

6.2.2 Developer access 37

6.2.3 Accelerated test automation 37

6.3 Other possible deployment strategies 38

7 Conclusions 39

Chapter 1

Introduction

Eficode Oy (later Eficode) has been developing a property transaction service
for the Finnish National Land Survey in order to fulfill the Finnish Land
Code requirement for an electronic property transaction that is open for
every Finnish resident wishing to conduct their real estate business. Purpose
of this thesis is to measure how application deployment automation enables
and affects the level of Continuous Integration and what are the implications
in terms of software quality and time savings.

1.1 Problem statement

Changing the architecture of the product under development from monolithic
to microservices complicated the deployments of the service and created a
need to review the deployment process that had become a time consuming
task. Since product is running on six different environments and consisted
of eight different services, releasing new version used up a lot of time that
was away from development work. Complicated release also meant that new
versions would be released to acceptance testing environments at relatively
slow intervals and automated tests in user acceptance testing environments
would be running old versions of the software, making them redundant.

In the optimal case, every time new commits are added to development
branch of the version control, new version of the product would be packaged
and shipped for final quality assurance on the condition that automated
acceptance tests developed by Eficode would pass. By automating the de-
ployment process as far as possible, development team would have more time
to develop new features, extend test coverage and implement other techni-
cal improvements. Also any problems that might have gone unnoticed when
specifying new features would be visible faster with fast release cycle.

CHAPTER 1. INTRODUCTION 8

Aim of this thesis is to give an overlook on the development practices of a
complicated, modern web software product, identify potential improvements
and present one example of a practical technical improvement to decrease the
manual workload of developers and improve the development process. The
research question of the thesis can be summarized as:

How does deployment automation affect the software
development process

To measure the effects of deployment automation we observe two metrics

Metric 1: How much faster does the cycle of deployments get?

Metric 2: How much working time is saved with automated deployments?

1.2 Structure of the Thesis

In Chapter 2, an outlook of Software Development methods, Continuous In-
tegration and Deployment as well as Configuration management is presented
to give some background information as to why deployment automation mat-
ters and why automatically triggered deployments are useful. Following that,
there is a more accurate technical description of this particular project and
current infrastructure setup which has partly created the demand for de-
ployment automation. In this section there is an overview on the software
development practices to get the reader introduced on the processes that
guide software development and thus prepare them for the practical section
as well as evaluation. An I'T automation tool called Ansible is also presented
to give information on how the new release automation works and what kind
of things it enables us to do.

Chapter 3, the Environment gives a detailed description of the system
currently under development, it’s infrastructure, architecture and informa-
tion about motivations for National Land Survey to develop the product
and weaknesses in the current process that the practical work in this thesis
attempts to fix.

The practical part in Chapter 4 of the thesis will be presented in imple-
mentation section, which presents the previous process of releasing a new
software and what kind of changes were made to it. Practical part outlines
how the previously presented product and it’s configurations can be auto-
mated to provide faster and easier deployments.

In the Chapter 6 , discussion goes through the additional improvements
that could be made to reach the goals that National Land Survey wants to

CHAPTER 1. INTRODUCTION 9

achieve with this product, including the development process from specifica-
tions to release as well as technical and cultural improvements. Finally in
Chapter 7 there is a conclusion giving an outlook on what was done, why it’s
important for this type of software project and how did it change the process
of releasing new software.

Chapter 2

Background

Development of a large application with multiple developers requires prac-
tices and ways to organize work in order to maintain control over the complex-
ity of the project. In the software industry, these methods typically borrow
from Agile movement and are referred to as frameworks, which project man-
agers and teams can apply to retain control over their products and conflict-
ing demands for its development from different stakeholders. Typical large
software project follows some of these frameworks, such as Scrum, which is
an iterative and incremental framework designed to optimize predictability
and control risk [21]. Agile itself is a mindset that was summarized in Agile
manifesto [2] as following principles:

e Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over comprehensive documentation

Responding to change over following the plan

Agile methods were created to mitigate the real and perceived weaknesses
in conventional software engineering and waterfall method, but are not ap-
plicable to all projects [20]. The motivation with adopting Agile methods
was that predicting the future developments of a complex software product
is hard and sometimes impossible, therefore it should be Agile in order re-
spond to changing business environment and requirements. Agility in this
case means ability to effectively respond to changes, by trying to deliver op-
erational intermediate versions of working software in short intervals. It also
recognizes that human planning is prone to error and should therefore not
be trusted too much. Any long-term plan will probably change before the
project is completed, so project plan should be flexible from the start. A

10

CHAPTER 2. BACKGROUND 11

number of topics related to modern application development is listed under
this topic to give the reader an introduction to the practices relevant to the
project related to this thesis. In this kind of methodology, it is recognized
that making small, frequent, incremental changes and quickly fixing the fail-
ing build and tests during every change is crucial to achieving high quality
and fast delivery of desired features. [26]

Applying Agile methodology into practice requires several practical im-
provements that have developed over time as the industry best practices for
managing complexity and implementing the Agile software development ideas
into practice and ways that software development teams build new software
[27]. The most important ones of these practical improvements are listed
as their own separate sections in this Chapter to give an idea of the overall
infrastructure and tools needed for a team developing complex software.

2.1 Continuous Integration and Delivery

Continuous Integration was developed to counter the problems of sequential
software development model. After the requirements, analysis, design and
implementation stages were finished, substantial problems were often met at
the integration stage of software project [23]. When large amount of changes
is brought into a complex system, the more likely it becomes that parts of
the system either will not work together as intended, or cause unexpected
behavior. These problems are difficult to fix and often require large rewrites
of code that was already supposed to be finished. As the number of changes
and interdependent services grow, the more difficult it gets to integrate them
to work as intended.

The process that eliminates a dedicated integration stage in software de-
velopment is usually referred to as pipeline. This is the process of doing
integration work continuously where all changes in the version control will
be submitted into a process referred to as deployment pipeline. When the
deployment pipeline detects new commits in the development or any other
user defined repository, automated testing and deployment process will be-
gin to ensure feedback is received swiftly and problems with integrating the
related systems will become visible as early as possible, preventing problems.
There is no standard pipeline, but typical pipeline will contain automation
for build and deployment automation with automated testing. [12]

Continuous Integration an Agile method that increases the responsiveness
of project since the functionality of its core parts is maintained at all times.
Even if the integration testing succeeds, some functionality might still be
missing and product is not necessarily ready for release before acceptance

CHAPTER 2. BACKGROUND 12

Delivery team Version control Build & unit Automated User acceptance Release
tests acceptance tests tests

1
Check in ! [
Trigger !
F =fail
Feedbfack P = pass

1l
]
|
F |
I
. :
Check in ' i i
Trigger ! '
I
Feedbdck P Trigger _ll_
r -
:
1
1
1
1
1
|
1
1
1
1
|
1
P
-~

Feedback

Check in
P Trigger

Feedback

Trigger

Approval

Feedback

Approval

e
.__.'EI___

1
1
1
1
1
1
:
1
! Feedback
[]
1
T
1
1
1
1
1

Figure 2.1: Visualization of the process of getting software from version
control to release known as Continuous Integration/Delivery pipeline [18].
Feedback at every stage determines whether changes flow downstream. Fail-
ure gives immediate feedback for developers, stops the process and waits for
for new changes to restart the process.

testing.

Continuous Delivery takes a more extreme attitude towards automating
the development and release processes by enabling new changes to be pub-
lished in production whenever the owner of the product wishes so. The idea
here is to automate everything related to releasing software as far as possible
so that the human error is eliminated from the process. Continuous Delivery
still leaves the option open for human involvement in the quality assurance
instead of relying on purely automated tests. In Continuous Deployment, hu-
man involvement has been completely eliminated and the deployment process
happens based on the feedback of automated steps in the release pipeline.

Both Continuous Integration and Delivery are ultimately about provid-
ing value faster for the product owner, improving communication between
developers and eliminating the human error related to a new release.

CHAPTER 2. BACKGROUND 13

2.1.1 Jenkins CI server

When software is built and ran, there are typically multiple steps involved,
which can include cloning the right version from version control, building
it, provisioning the machines that run the program and deploying the built
software in these machines. When implementing Continuous Integration in
practice, a Continuous Integration server is needed to coordinate, schedule
and trigger all of these tasks. Jenkins is one of the currently used open source
automation server in the industry. It enables the implementation of all the
steps required for a CI pipeline and provides a simple user interface for mod-
ifying the existing CI setup. Once software has been deployed, automated
tests can also be triggered from Jenkins server, in order to gather test result
and allows users to monitor the statuses of different test suites. [30]

Usually tasks automated by Jenkins are referred to as jobs in the Jenkins
user interface. One job is simply a collection of steps on the path to building,
releasing and testing software.. A job might also be just something that user
wants to easily and repeatedly trigger without manually going through every
step required.

Overall a deployment probably consists of multiple jobs, which can be set
to trigger based on status of ’downstream’ jobs and other conditions, such
as time, or change in version control system. This will create what is usually
called a pipeline

2.1.2 Software Testing and Test Automation

Continuous Integration and Delivery naturally increases the demand for inte-
gration and acceptance testing, since new, deployable versions of the software
are expected in very short intervals. Since Continuous Delivery should be
independent of human action, it requires a highly automated quality assur-
ance, where automated tests should be executed at unit, integration, system
and acceptance level.

First layer of automated testing is unit tests to make sure that the mod-
ified function or class is still working as intended. When code under unit
tests needs to access some other functionality they are provided as mocks or
stubs which are explained later in the chapter. This is the most basic level
of testing and is usually done before any other type of testing occurs.

Integration testing is done in order to make sure that different software
components work together as intended and is performed after unit testing
and before acceptance testing.

Acceptance testing is the process of comparing the software functionality
against the initial requirements from project stakeholders. It is usually done

CHAPTER 2. BACKGROUND 14

when new features are being added to make sure that changes didn’t destroy
any other required functionality and that new features fulfill the requirements
of software.

CI is essential to integration and acceptance testing since the premise
of it is to provide feedback from these levels continuously, rather than in
a dedicated integration stage. Therefore automation testing at Cl-server
mostly focuses on the integration and acceptance level testing, while lower
level testing is done before publishing the work to other developers.

2.1.2.1 Stubbs and Mocks

Often in development work, developers have to rely on external services to
ensure the full functionality of their software. For example, a website might
need to access the population registry to ensure the identity of the person
who just signed as enterprise user from the national enterprise register and
testing this feature requires the developers to be able to use either a test
version of the register or a real person tied to a certain company and his
social security ID.

Relying on external services can result in impediments if they have service
breaks or extra work to compensate for features that are not yet delivered,
so instead of relying on external service, it’s possible to develop a ’Stub’
that mimics the functionality of desired service in the development and test
stages and use the real system in the QA stage and once product goes live
with actual customers[14]. Mock is a slightly smarter version of Stub that
does not only define a predetermined response, but also mimics the behaviour
of the object it’s replacing in a controlled way. [13]

2.2 Microservice architecture

Microservices developed to counter problems related to monolithic architec-
ture, where modules of software cannot be executed independently, but rather
as a part of larger subset with other modules as dependencies. This makes
monolithic software function poorly in distributed systems, which in turn are
required to achieve scalability. These attributes and some other general prob-
lems related to monolithic architecture were listed in paper "Microservices:
yesterday, today, and tomorrow’ [7]:

e Large-size monoliths are difficult to maintain and evolve due to their
complexity. Tracking down bugs requires long perusals through their
code base.

CHAPTER 2. BACKGROUND 15

e Problematic dependencies where updating or adding new modules re-
sults in inconsistent systems that do not compile, run or misbehaves

e Any change in the system requires rebooting the entire application for
changes to take place making it cumbersome to develop new features
in an Agile way.

e Lack of scalability. The usual strategy for handling increments of in-
bound requests is to create new instances of the same application and to
split the load among said instances. However, it could be the case that
the increased traffic stresses only a subset of the modules, making the
allocation of the new resources for the other components inconvenient

e Technology lock in, where all the new features have to be developed
using the same language, framework and version as the rest of the
application resulting in complex legacy solutions.

Microservice architecture has been an industry trend during the past years
to mitigate the problems listed above [8]. A microservice is an independent
process that interacts with other processes via some kind of messaging. For
example, a food delivery app might have a separate service that keeps track of
available restaurants and returns lists of those matching the queries coming
from main application.

The way microservices try to answer problems rising from monolithic
architecture are [8]:

e A more limited amount of functionality limits the scope where a bug
might be originated from.

e Bringing up gradual transitions where a new, improved service can be
brought up along the old service.

e Changing a single module does not require rebooting the entire system,
but rather just a small part of functionality that can go offline for a
limited time. Because of the small size of microservices, reboot time is
also decreased, thus increasing availability for end users.

e Microservices are independent of each other and if one service becomes
a bottleneck, more instances of it can be deployed to handle the traffic.

These days microservice architecture is a trending topic in software en-
gineering and projects with service-oriented architecture being increasingly
migrated to microservice architecture and distributed systems to achieve the
benefits listed above [8]. However, in addition to their strengths, microser-
vices have also weaknesses, greatest of these being the communications over-
head [9]. When services have to communicate with each other over network,

CHAPTER 2. BACKGROUND 16

Monolithic Microservices Architecture
Architecture
User Interface
User Interface \
Microservice
Business Logic \
Data Interface Microservice Microservice Microservice Microservice
DB DB DB ’ DB ’ DB ‘
o N 4 o o o

Example 2.2: Microservice vs. Monolithic architecture [25]

it might cause significant overhead compared to monolithic architecture. An-
other issue is ensuring interoperability between services, when product gets
very complicated with many services communicating with each other over
network, a substantial amount of infrastructure is needed just to run tests
for the product. Network problems such as latency might create extra cases
to take into account in when programming a service, this creates extra com-
plexity into the product. A team using microservices might also run into
trouble if the project becomes very heterogenous with each developer prefer-
ring to work with his preferred stack and, thus, making the project harder
to approach for new developers.

When introducing microservices into a product the importance of auto-
mated testing, continuous integration, configuration management and other
software engineering processes are highlighted as the integration of different
services together becomes more complicated.

CHAPTER 2. BACKGROUND 17

2.3 Software Configuration Management

Software configuration management is the task of tracking and controlling
changes in the software and is part of the larger cross-disciplinary field of
configuration management [28].

Automating tasks related to the server configurations and application
deployment is a mechanism to ensure that servers reach the state defined by
developer consistently and that documentation of the application setup and
infrastructure persists in the . The most important benefit of configuration
management is to avoid creating setups that are difficult to reproduce [16].
An industry term for this type of problem is 'Snowflake Server’, which means
that over time after numerous manual updates and configuration changes,
user has difficulties in reproducing the server where application is running
and there is uncertainty of which configurations are important and why.

One example countermeasure to the configuration drift of Snowflake Servers
is using an [T-automation tool to re-sync any used servers to match the con-
figurations any configuration that the automation tool has been set to modify
will be consistent with other servers in the same environment, stopping the
drift towards Snowflake servers. [15]

In large systems, infrastructure automation also helps to decrease the
workload of developers and system administrators as well as eliminates hu-
man error from configuration management. In addition to automated tests,
automated configuration management is also essential to achieving shorter
release cycle and faster feedback from the development work. [10]

Manual releases have been identified as one of the common design prob-
lems in software development [17]. The symptoms of this design problem
include extensive and detailed documentation for deployment steps where
there are multiple chances for mistakes, reliance on manual testing to ver-
ify product is working, different configurations for environments, such as
connection pool settings, releases take longer than few minutes to perform,
frequent rollbacks to older versions because of problems [19]. Some sources
have established that manual deployments are sometimes suitable when the
service to be deployed is very simple and is deployed to only few nodes in
one or two environments [32]. Large software projects consisting of several
services that are deployed into multiple different environments benefit from
automated deployment system in order to save time and minimize mistakes
made during the deployment. [32]

Another design problem is the manual configuration management of the
environments.

CHAPTER 2. BACKGROUND 18

2.3.1 Ansible

Ansible is an open source I'T automation tool for configuration management,
deployment and orchestration released in 2012. It was designed to be mini-
malistic, consistent, secure and highly reliable with as low learning curve as
possible. [5]

The problem which Ansible was created to address was the lack of ro-
bust and easy to manage solution for solving the orchestration, deployment
and configuration management problems at the same time. The problem
with other solution was the need for configuration management agents in
target machines and the desire to create a configuration management tool
that would not require maintenance on its own. This solution eliminates
the problem of managing the management that persists in tools that use
agentful architecture. Like other configuration management tools Ansible
differentiates servers into control machine and nodes, but due to its agentless
architecture, only the control node needs to have Ansible installed. [29]

State driven resource model of Ansible means that it is goal oriented
instead of scripted and thus allows repeatable and reliable I'T infrastructure
configuration. The declarative play only states the desired end state of node
instead of the paths needed to reach the state. This makes Ansible tasks very
minimalistic and human-readable. Ansible uses declarative YAML-language
[6] to list its tasks and sorts them in different 'plays’. One play typically
consists of a large set of tasks associated with some activity and can be broken
down to smaller 'roles’ which further isolate tasks to their own groups [? |.
One task with Ansible might be to stop httpd service, another one to update
its configuration file and third one to restart httpd service. Together these
tasks could form a role, eg. 'update configurations and restart httpd’, that
is part of larger play that makes sure all the configurations on application
servers are consistent with the latest release. A playbook is always matched
with a set of hosts that it’s run again and which are defined in Ansibles
inventory file. Inventory file is where all the names of relevant applications
servers, or hosts, are listed and where they can be grouped as the developer
sees fit.

Ansible can be extended with custom modules that allow user to define
their own tasks, written in Python, Ruby, Perl, or similar scripting language.
Users can create their own custom modules and share them with other An-
sible users for increased functionality. At the moment of writing this thesis,
modules are grouped as Core, Extra and third-party modules, where Core
modules are the ones associated with basic functionality, Extras contain lots
of other product-related modules, such as cloud service provider modules and
third-party is community generated content.

CHAPTER 2. BACKGROUND 19

Currently Ansible is released as an open source software, but it’s owned
by Red Hat which sells subscriptions to Ansible Tower that includes GUI for
monitoring, scheduling and inventory management. [29]

CHAPTER 2. BACKGROUND 20

inventories/
production/

hosts

group_vars/
group]
group2

host_vars/
hostname1
hostname2

staging/

hosts

group_vars/
group]
group2

host_vars/
stagehost1
stagehost2

library/
module_utils/
filter_plugins/

site.yml
webservers.yml
dbservers.yml

roles/
common/
webtier/
monitoring/
fooapp/

*

inventory file for production servers

here we assign variables to particular groups

nn

if systems need specific variables, put them here

]

inventory file for staging environment

here we assign variables to particular groups

nn

if systems need specific variables, put them here

nn

Example 2.3: Example of Ansible project structure [4] Group variables and
hosts are in their separate inventory directories

CHAPTER 2. BACKGROUND 21

- hosts: webservers
vars:
http_port: 80
max_clients: 200
remote_user: root
tasks:
- name: ensure apache is at the latest version
yum:
name: httpd
state: latest
- name: write the apache config file
template:
src: /srv/httpd. j2
dest: /etc/httpd.conf
notify:
- restart apache
- name: ensure apache is running
service:
name: httpd
state: started
handlers:
- name: restart apache
service:
name: httpd
state: restarted

Example 2.4: Example of Ansible Playbook structure [6]. The purpose of
this playbook is to update the Apache web server, and restart it immediately
afterwards. It should be noted that the Ansible handler will not restart
Apache web server if it was already in the latest version as there is no change
to trigger handler.

Chapter 3

Environment

3.1 Property Transaction Service in National
Land Survey

National Land Survey of Finland (NLS) is an official body that deals with
cartography and cadastre issues subordinated by Finnish Ministry of Agri-
culture and Forestry. The service being developed is one of the electronic
services offered by National Land Survey for cadastre issues and aligns with
the overall trend of digitizing public services for easier access, lighter bureau-
cracy and faster process.

Property Transaction Service was created by National Land Survey of
Finland to handle property issues electronically in an easier and faster way
[22]. Electronic handling of property issues serves the future aim of NLS
to resolve property issues automatically and without delay and currently
provides multiple services to Finnish land owners, sellers, buyers, as well as
real estate agents and banks such as:

e Authorize another person, such as a real estate agent or a bank, to act
on persons behalf

e Make a preliminary purchase agreement
e Write and sign a bill of sale or a deed of gift
e Give consent to transfer real estate property

e Apply for a mortgage on a property you own or a property when reg-
istration of title in your name is pending

e Supplement an incomplete application of registration of title

22

CHAPTER 3. ENVIRONMENT 23

e Transfer electronic mortgage deeds

e In conjunction with a conveyance, give a written commitment to trans-
fer mortgage deeds of which you are the holder

e Register a Leasehold or Special Right

e To write and sign a bill of sale, apply for a mortgage, or sign a prelim-
inary purchase agreement etc.

Currently the Property Transaction Service (PTS) is being developed by
Eficode Oy and this thesis is delivered as a part of development work from
Eficode. The requirements engineering has included close cooperation with
the Central Federation of Finnish Real Estate Agencies, Federation of Finnish
Financial Services and the National Land Survey. [22]

The service is accessible via a browser or HT'TP API consisting of several
different services that communicate between each other and other public
sector services such as authentication services for private and company users
and property register. The end vision of the product is to handle property
issues easier, faster and enable electronic services defined by Finnish Code of
Real Estate. [24]

3.2 Software architecture of the product

Product has been broken down into seven parts in order to separate different
functionality into their own services and follow the microservice design prin-
ciples. One of these services is only related to the development stage as it is
a Stub for external services which the service needs in order to function as
specified. Therefore only six of the services are running in production. The
services product consists of include: The HTTP API service that takes in in-
coming documents from integrating users such as banks or real estate agents,
Issue list service that keeps record of the ongoing issues that users has in the
service, pdf service that generates pdf documents from the structured data
for user to view, admin service for NLS personnel to perform managerial
tasks, ownership service that forwards the ownership registration applica-
tions to Property Register and the main application where applications are
received and signed via browser interface by the customers, excluding the
ownership registrations.

The Property Transaction Service integrates to other public services us-
ing an enterprise service bus. Integrated services include internal services
within the NLS, such as Property Register, which keeps track of all the real

CHAPTER 3. ENVIRONMENT 24

estate ownerships and their mortgages in Finland as well as other external
public services that are required for authentication, electronic payments and
determining user rights within the service, such as role as company represen-
tative.

3.3 Current environments
Currently the product is deployed to six different environments, each con-
sisting several application servers running either the entire product or subset

of the services:

e Local development environment

Internal development environment

Acceptance testing environment

External development environment

External training environment

Production test environment

e Production environment

This means that certain versions of the software have to be maintained
and updated in six separate environments at all the time. In this list, local
development environment means developers personal computers, while others
are publicly available either in the internal network of NLS or public internet.
Increasing workload related to the release of new versions and hotfixes was
the motivation for work that led to this thesis.

One of the challenges in these environments is that production environ-
ment and production test are classified [3] as elevated security networks.
This means that only authorized people with very high level security clear-
ance have access to the application servers where the production version is
running and root access is denied for developers. This complicates the cre-
ation of proper release pipeline significantly since updates have to still be
launched manually by the select people from NLS. In practice, an automated
release pipeline can only be implemented to the acceptance test environment
because of the I'T policy restrictions, but given the dependency of other NLS
background systems, shrinking the release cycle is so far out of reach. At
the moment when practical implementation of deployment automation was

CHAPTER 3. ENVIRONMENT 25

about to begin, the first objectives were to create at least capability for con-
tinuous delivery and for this purpose, the acceptance test environment is
more than enough.

3.4 Previous deployment automation

Deploying the services was already partly automated with shell scripts, but
the project containing scripts was poorly maintained and difficulties had
started to rise when deploying new versions of the software for acceptance
testing or production. As there are multiple services running on multiple
application servers, the old deployment scripts that had been developed for
monolithic application started to become a serious impediment and took time
from development work with all the manual steps required. There was also a
demand for storing the configurations of web servers, HI'TP proxies, etc in
Git version control system in case there would be any changes to the server
configurations.

Another flaw in the shell script approach was that it’s significantly more
difficult to reach idempotent solutions i.e. operations can be repeated with-
out getting a different outcome, in changing the configuration of applica-
tion server on multiple nodes since shell scripting is not declarative, unlike
YAML. It also added to the challenge, that maintenance of these application
servers was outsourced to another stakeholder, which maintains with little
communication or documentation, creating a real demand for idempotent
configuration management solution.

CHAPTER 3. ENVIRONMENT

26
Privatg Users
User Interface
""-..___H_ ""-m._h_“_
. AR > ¢ Admin Interface .
Organisation Users Traffic Manager Land Survey Administration

Property

Property !

Transaction Transaction
Service Service

QWD

Database
External System

Internal System

N

External Systam

Example 3.1: Network architecture of Property Transaction Service

CHAPTER 3. ENVIRONMENT

Private

Organizatjon User

ovpws.nls.fi

T ™

Ownership S

QH

Ownership DB

kiinteistoasiat.fi

person Land Surdey Admin

admin url

HF

%

Y

5
w
J
m

o

Issues DB
Issues Service

ESB Internal

Internal Services

q

PDF Service

TR

ESB External External Services

Example 3.2: Application level architecture of Property Transaction Service

Chapter 4

Implementation

4.1 Automating deployments with Ansible

First part about deployment is packaging the correct software version for
future deployment. With the correct software version and configurations
related to the target environment. Once package is created it can be stored
for later use in case there is a need for reverting to older version or deployed
immediately. Local actions that take place on the Ansible control node where
the package creation takes place include:

1.

Cloning the source code from version control system to match the user-
defined version

Installing all dependency libraries for the application using dedicated
dependency management tool

Creating the WAR-package which contains the compiled application in
binary format for the Java Servlet Container

Schema migrations file in SQL format for possible changes to database
schema

Conditional notification to the instant messaging application channel
used by the development team

. Adding all the necessary Ansible resources such as: playbook, inven-

tory, roles, migration files and the WAR-package into an archive that
can be transferred to elevated security network if package is going to
be deployed to production

After all the local tasks are finished and installation package is complete,
Ansible opens SSH connections to all the application servers that have been

28

CHAPTER 4. IMPLEMENTATION 29

defined in the Ansible inventory file. Once setup is done, Ansible starts
running the remote tasks. Remote tasks can also be run without first creating
a package. These actions are:

1. Stopping the application and HTTP servers

2. Removing old deployment, copying new WAR-files to Java Servlet Con-
tainer applications and updating relevant configurations

3. Running database schema migrations (only once regardless of the num-
ber of application servers)

4. Archiving logs from the previous version in tar archive

5. Restart application and HTTP servers and check that service is re-
sponding normally

6. Destroying and re-creating the job queue for scheduled tasks, such as
sending pending applications to property register

7. Notify the instant messaging application channel used by the develop-
ment team that new version has been released

Like the local tasks, remote tasks can also be ran any time separately by
giving the installation package as a parameter. Services can also be deployed
individually or all at once depending on the need. As program runs in an
elevated security network, installation package in transfered to NLS personel
who can start an update with a single command. When installing from ele-
vated security network, a special installer script is created that gives Ansible
all the parameters it needs, meaning that NLS personel don’t need to worry
about giving them.

Another set of tasks was to update the all the user interface texts as
a separate part unrelated to the normal database migrations. Instruction,
message and rule texts that are available in the user interface can thus be
modified in the administration view by NLS personnel in any environment
and exported to the desired environment using the text update task. The
normal process for this is that Eficode writes and exports tasks from devel-
opment to acceptance testing environment where NLS verifies them and fixes
potential mistakes. After NLS has approved texts in the acceptance testing,
they are exported to other environments.

4.1.1 Rolling updates

One of the built-in features in Ansible enables software to be updated with-
out maintenance breaks. By shutting down one application at the time, load

CHAPTER 4. IMPLEMENTATION 30

balancer will automatically redirect the incoming requests to other applica-
tion servers. When update is finished and web server starts, load balancer
will start to redirect traffic to that server and perform the identical steps with
the next application server. This type of 'rotation’ eliminates the need for
maintenance breaks, since one or more of the application servers will always
provide a working implementation of the product.

In case of this particular project, there is option to disable rolling updates
and release to production environment is done with a maintenance break if
there are changes to the database schema or HTTP API. Reasoning here is
to make sure that the applications that service receives are in same version.
Since software is updated together with a variety of other products devel-
oped by other teams, an organizational decision was made not to develop
the pipeline into continuous delivery since receiving different kinds of docu-
ments from customers requires extensive integration with other NLS internal
systems, such as property register.

At the moment whenever a new release is scheduled, there is a mainte-
nance break for updating all the other related systems as well to support
new features. However, in case of a hotfix, the service can be updated in
a zero-downtime fashion since changes only affect the service developed by

Eficode.

4.2 Scheduling deployments from Jenkins CI

Once the manual work and shell scripts had been rewritten with Ansible, an-
other step was to identify the conditions that would require new deployment
of the software. A decision was made by the team to update internal devel-
opment as a rolling update whenever new changes were detected in master-
and development-branches in the version control. This way the internal de-
velopment environment would reflect the latest status of the product and
publish the changes for the entire team for quality assurance phase.

Since the external development and training environments still had a long
release cycle, it was decided to run the deployments on the internal devel-
opment environment as well as external acceptance testing environments on
the condition that unit- and integration-level tests were successful. Then
the nightly job at Jenkins CI machine would run automated acceptance test
suites for the document interface would add the final part of the automated
quality assurance and acceptance testing that was performed by Eficode be-
fore handing the software over to National Land Survey for their quality
assurance.

CHAPTER 4. IMPLEMENTATION 31

4.3 Automating deployments in elevated se-
curity network

Since extending the Jenkins CI machine to continue the delivery pipeline to
production test and production environments is not possible due to infor-
mation security policies at NLS, the the built version of software is simply
packaged into compressed package with all relevant configuration files and
transferred to the elevated security network for NLS personel to inspect and
deploy. Once the installation package is ready, Ansible playbooks for per-
forming the installation can be launched manually from the control machine
in elevated security network to finish the release.

Chapter 5

Evaluation

In this Chapter the state of new deployment process is presented and the re-
sults of new deployment automation are reviewed by using two different met-
rics. As it has been previously established from literature review, adopting
continuous integration increases the project predictability, developer produc-
tivity and communication between teams [31]. The old deployment process
had long intervals between deployments to acceptance testing environments
and the difference between intervals of deployments to the system which is
running the automated acceptance tests is examined.

5.1 Current status of CI in Property Trans-
action Service

Development team utilizes a Jenkins CI server for controlling it’s deployment
process for development and user acceptance testing environments. Normally
changes are tested and deployed to shared development environment auto-
matically multiple times per day and nightly to the acceptance testing en-
vironment if all unit and integration tests are passing for the development
branch. Real-time reporting for team is helpful in explaining why some ap-
plication servers might not be unresponsive at the moment and give the team
feedback on the number of new changes being merged into version control.
Around midnight if build is stable and unit and integration tests are pass-
ing, new version will be deployed to the acceptance testing environment and
automated acceptance tests are triggered to provide additional on the func-
tionality of the application on a system level. Automated acceptance tests in
this environment are not only testing the internal functionality of the system,
but also that the product is functioning with other Land Survey systems as
expected.

32

CHAPTER 5. EVALUATION 33

Deploying new versions of software is done with Ansible, by first building
new version of the software with desired dependencies, copying these packages
to the target environment application servers and updating configuration
files related to the infrastructure and application at the target environment.
When all of these tasks are finished, web servers are restarted and application
deploys for the end users.

5.2 Deployment frequency

In previous setup, deployments to the user acceptance testing environment
were performed approximately once a month. History of deployments in
to the User Acceptance Testing environment is presented in list format in
accordance to the Land Survey internal documentation [11] Table 5.1 lists
dates and components installed into user acceptance testing environment
before November 2016 when deployment process was remodeled.

Over a period of four months, June 2016 to October 2016, there was total
number of 26 deployments to user acceptance testing environment. In 2017,
during a similar time frame of June to October (109 workdays), there were
149 deployments to user acceptance testing environment. During the old de-
ployment process, intervals between deployments were substantially longer,
meaning that automated acceptance tests would be testing the same version
for extensive periods of time. On an average, there was one deployment per
4,19 workdays. In the new setup, it is uncommon to have even delay of one
week in deployments and in an average there was new deployment per 0,73
workdays. Even though the benefits of implementing continuous integration
have been widely accepted in the field of software development, the improve-
ments in quality are difficult to measure quantitatively. As deployment cycle
has shrunk to approximately less than one fifth of the previous cycle, a con-
clusion can be drawn that significant improvement has been achieved.

5.3 Deployment workload

Previous deployment process required one of the developers to run series of
multi-stage deployment scripts that was reported as a problematic and time
consuming process which caused lots of errors.

Considering the frequency of deployments that new architecture requires
to achieve Continuous Delivery, it could be estimated that for a developer to
manually run deployments in the same pace as current process, one manual
deployment taking approximately an hour, it would take approximately 40

CHAPTER 5. EVALUATION 34

[Deployments 2017 [Deployments 2016

30

22,5

15

7,5

Number of service deployments

0
222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44

Week number

Example 5.1: Visualization of the deployment history of PTS to user accep-
tance test environment, a substantial increase in deployments can be observed

hours per month to achieve the same result as automated process. In the
old process, every deployment meant that one of the developers was required
to be physically present an set correct configurations for the environment,
thus taking these 40 hours away from developing features, writing tests, etc.
slowing down the work of development team. As the previous process can
immediately be judged as very labor intensive, it can be concluded that au-
tomating deployment process also saves developers working time on top of
other benefits. The time that was previously spent on preparing for deploy-
ments and performing them has been directly transferred into development,
testing and support for the end users, enhancing the productivity of the team.
It is difficult to estimate the exact increase in productivity, but as just before
a new release has typically been the most busy part of the release life cycle,
it is helpful that the most routine parts of the work are automated.

Chapter 6

Discussion

As the application deployment and parts of infrastructure were automated,
a great deal of work still remains in the product development. In its cur-
rent state, it would seem that the bottleneck for development speed is not
the deployment automation, but rather the multiple dependencies to other
internal systems inside NLS. For example, receiving new types of documents
through the property transaction service interface requires property register
to be able to receive them after application parties have given their signa-
tures. When releasing a new version, all these integrated services must be
updated as well to support new functionality, making every new release com-
plex and difficult to test on the system level. In the discussion part there is
a review of some other topics in this project related to the deployment and
development process.

6.1 Other metrics

In addition to the two metrics that were presented in the evaluation chapters,,
there are other benefits that are more difficult to quantify as precisely as the
two main metrics. First possible improvement is the higher availability of up
to date User acceptance testing environment and internal development envi-
ronment. Since latest development version is installed on both environments
at high frequency with rolling update, doing quality assurance work is faster
since these environments are available under all normal conditions. Man-
ually deploying to these environments would be extremely time consuming
and standard update without the zero downtime feature would repeatedly
take these environments offline

Since server configurations are also checked or verified by the automated
deployment process, the risk of accidentally changing them decreases. Cor-

35

CHAPTER 6. DISCUSSION 36

rect configurations are stored in version control together with the deployment
scripts and deployment process checks whether or not the target configu-
rations are matching to the ones found from version control. If there are
conflicts, deployment process automatically overwrites the configurations to
match the version defined in the beginning of new deployment. This decreases
the risk for configuration errors for the configurations that the deployment
process includes. As Eficode only delivers the software and does not have
full access to the infrastructure, some of the infrastructure configurations are
out of Eficodes control and therefore not in the scope of this thesis.

6.2 Future work

6.2.1 Infrastructure automation

Martin Fowler introduced a vision of 'phoenix’ server [15] which means reg-
ularly burning down and provisioning new instances to run software on peri-
odically to avoid ’snowflake servers’ which are difficult and time-consuming
to get up and running. Configuration drift in the application servers becomes
problematic since it gets more and more difficult to understand which parts
of the configuration affect what. When developers have limited access to
production environments it makes solving issues and bugs from production
more complicated from developer perspective because of the restricted access
to view the configurations, logs and database that is used in production. [16]
It is also more difficult to practice deployments or try to replicate production
system for debugging if the complete configurations of production servers are
not known to developers.

To speed up the deployments of new versions, new virtual machines could
be provisioned with Ansible, containing the latest software version and then
Load Balancer or DNS name server could start redirecting traffic to new
application servers. Currently, this kind of automation was not possible to
implement due to constraints from IT service provider used by NLS but in
an advanced setup, both the product developed by Eficode and its integrated
services could be provisioned into internal network for testing. After quality
assurance verifies that systems are working as intended, similar process could
be replicated in the production environment by replacing one by one the
virtual machines hosting previous version with the new version.

CHAPTER 6. DISCUSSION 37

6.2.2 Developer access

Since developers are also responsible for supporting the application, doing
their work effectively requires them to have some kind of access to production
servers in order to read the logs and determine what has caused the issue they
are trying to solve. As developers are providing the software that runs in
production it would be consistent with the DevOps culture that they can also
have some visibility to the logs and configurations that exist in production
back ends. If the information security requirements of NLS restrtict access
from non-essential persons, maybe at least one member of the development
team should have read access to the production servers in order to be able
to assist properly with the issues customers may have experienced.

6.2.3 Accelerated test automation

As ability to do Continuous Delivery depends heavily on the length of the
feedback cycle, it’s important to get fast feedback on fresh changes. While
working on the feature branch, changes are tested with unit and integration
tests before merging into development branch. On the largest service, run-
ning the integration tests takes about 32 minutes, being thus the slowest feed-
back cycle on before merging the changes into development branch. When
the entire principle of DevOps focuses on capability to introduce changes fast
and reliably, getting the tests to run as fast as possible is a high priority..

API test suites are even more problematic than unit- and integration-level
tests. Those are ran nightly on the user acceptance testing environment and
running them the entire test set on a single API version takes around four
hours. Typically two versions of the API have to be maintained meaning that
one night is barely enough to run all the tests. If new features of issue types
are developed for the product, one night won’t be enough to comprehensively
test the development branch. To ensure faster test results, suites should be
ran in parallel and rewritten to support parallel runs of the test suites.

As the automated acceptance tests take a long time, a smaller subset
of critical test cases could also be created for verifying some of the core
functionality and most common use cases. For example, document signatures
and state could be tested only for once for each type, and receiving a new
document through API in XML format would be tested in multiple different
ways, including negative cases,.

CHAPTER 6. DISCUSSION 38

6.3 Other possible deployment strategies

One particularly interesting case of automated deployments would be blue-
green deployment, which achieves zero-downtime update to a service built
for receiving data continuously from Internet of Things devices where high
availability is critical to prevent data loss [1]. In this case the developed ser-
vice enjoyed higher degree of flexibility as the operations side of the project
was using a cloud service provider for provisioning virtual machines and was
able to implement blue-green deployments by changing the DNS configu-
rations. The process of blue-green deployment means that the deployment
process would initialize new server instances in cloud providers infrastructure
with newer versions of software and change DNS configurations to point to a
new load balancer once instances were ready for use and running the latest
release. Persistent data still existed in the database during deployment.

As a result of the zero-downtime update features, the project was able
to release with higher frequency and save time from the manual work [1].
It also offered a backup plan in case a deployment went wrong since the
old instances were still running and DNS configurations could be reverted to
older version.

Chapter 7

Conclusions

Configuration management and automated application deployment are pre-
requisites for minimizing feedback cycle and feature lead time that are pri-
mary goal of Continuous Delivery.

Especially in a case where the application actually consists of multiple
microservices, the downsides of manual deployments are particularly high-
lighted. With automated deployments, the risks and downsides of manual
deployments can be alleviated, as there is an easy, repeatable and reliable
process that maintains documentation of the infrastructure and dependencies
in itself.

The solution for automatic deployments that was created as the practical
work of this thesis and delivered to the National Land Survey helped the
team to release software faster and focus on developing new features instead
of doing the manual work related to the stages of release cycle. It also
made releasing hotfixes more Agile, as no maintenance break needs to be
scheduled and communicated to the development team, acceptance testers,
integrating services and in the future - hopefully - end users of the application
in production server.

As Eficode is not the product owner, this work also provided value for
the National Land Survey in the form of automating some of the develop-
ment process and making them more independent of the domain knowledge
that has built up in the Eficode team during the past years. Since the docu-
mentation of previous installation scripts and manual steps related to them
was in poor condition, a complete rewrite of self-documenting configuration
management software will give the National Land Survey better control over
the product.

39

Bibliography

1]

MARKUS JUOPPERI. Deployment automation with chatops and ansi-
ble, 2017. https://www.theseus.fi/bitstream/handle/10024/127446/
Deploymentj20automation’20with%20Chat0ps%20and’20Ansible.pdf?
sequence=1.

BEcK, K., COCKBURN, A., JEFFRIES, R., AND HIGHSMITH, J. Agile
Manifesto, 2002.

BoaArDp, T. G. I. S. M. Instructions on Implementing the Decree on
Information Security in Central Government, 2b/2010, 2010.

DOCUMENTATION, A. Playbooks - Best Practices , 2017. https:
//docs.ansible.com/ansible/latest/playbooks_best_practices.html.

Accessed 17.8.2017.

DOCUMENTATION, A. Use case: Configuration management ,
2017. https://www.ansible.com/configuration-management. Accessed

8.11.2017.

DOCUMENTATION, A. Playbooks - Intro to Playbooks, 2017. https:
//docs.ansible.com/ansible/latest/playbooks_intro.html. Accessed

17.8.2017.

DRrAGONI, N., GIALLORENZO, S., LAFUENTE, A. L., MONTESI, M.
M. F., MUSTAFIN, R., AND SAFINA, L. Microservices: yesterday,
today, and tomorrow - Chapter 1, 2017. https://arxiv.org/pdf/1606.
04036.pdf. Accessed 8.11.2017.

DRrRAGONI, N., GIALLORENZO, S., LAFUENTE, A. L., MONTESI, M.
M. F., MUSTAFIN, R., AND SAFINA, L. Microservices: yesterday,
today, and tomorrow - Chapter 3, 2017. https://arxiv.org/pdf/1606.
04036.pdf. Accessed 8.11.2017.

40

https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1
https://docs.ansible.com/ansible/latest/playbooks_best_practices.html
https://docs.ansible.com/ansible/latest/playbooks_best_practices.html
https://www.ansible.com/configuration-management
https://docs.ansible.com/ansible/latest/playbooks_intro.html
https://docs.ansible.com/ansible/latest/playbooks_intro.html
https://arxiv.org/pdf/1606.04036.pdf
https://arxiv.org/pdf/1606.04036.pdf
https://arxiv.org/pdf/1606.04036.pdf
https://arxiv.org/pdf/1606.04036.pdf

BIBLIOGRAPHY 41

[9]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

DrAGONI, N., GIALLORENZO, S., LAFUENTE, A. L., MONTESI, M.
M. F., MUSTAFIN, R., AND SAFINA, L. Microservices: yesterday, to-
day, and tomorrow, page 9, 2017. https://arxiv.org/pdf/1606.04036.
pdf. Accessed 8.11.2017.

EBERT, C., GALLARDO, G., HERNANTES, J., AND SERRANO, N.
DevOps, IEEE Software May/June 2016, 2016.

EricoDpE Oy. Property transaction service deployment history, 2017.
https://confluence.nls.fi/display/MMLSKV/KVP+asennushistoria.
Accessed 14.10.2017. National Land Survey internal material.

FowLER, M. Continuous Integration, 2006. https://martinfowler.
com/articles/continuousIntegration.html. Accessed 11.10.2017.

FOWLER, M. Mocks Aren’t Stubs , 2012. https://martinfowler.com/
articles/mocksArentStubs.html. Accessed 8.11.2017.

FOWLER, M. Service Stub , 2012. https://martinfowler.com/
eaaCatalog/serviceStub.html. Accessed 7.7.2017.

FOWLER, M. Phoenix Server, 2012. https://martinfowler.com/bliki/
PhoenixServer.html. Accessed 2.6.2017.

FowLER, M. Snowflake Server, 2012. https://martinfowler.com/
bliki/SnowflakeServer.html. Accessed 2.6.2017.

JEZ HUMBLE, D. F. Continuous delivery : Reliable software releases
through build, test, and deployment automation, Chapter 1: The Prob-
lem of Delivering Software. 2010.

JEzZ HUMBLE, D. F. Continuous delivery : Reliable software releases
through build, test, and deployment automation, Page 109 . 2010.

JEZ HUMBLE, D. F. Continuous delivery : Reliable software releases
through build, test, and deployment automation, Page 5. 2010.

KEN SCHWABER. SCRUM Development Process, Chapter 2: Overview,
1997.

KEN SCHWABER, JEFF SUTHERLAND. The Definitive Guide to
Scrum: The Rules of the Game, Scrum Theory, 2014. https:
//www.scrumguides.org/docs/scrumguide/vl/scrum-guide-us.pdf, Ac-

cessed 29.10.2017.

https://arxiv.org/pdf/1606.04036.pdf
https://arxiv.org/pdf/1606.04036.pdf
https://confluence.nls.fi/display/MMLSKV/KVP+asennushistoria
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/eaaCatalog/serviceStub.html
https://martinfowler.com/eaaCatalog/serviceStub.html
https://martinfowler.com/bliki/PhoenixServer.html
https://martinfowler.com/bliki/PhoenixServer.html
https://martinfowler.com/bliki/SnowflakeServer.html
https://martinfowler.com/bliki/SnowflakeServer.html
https://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
https://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

BIBLIOGRAPHY 42

22]

[23]
[24]

[25]

[26]

[27]

MAANMITTAUSLAITOS. Property Transaction Service , 2017. https:
//www.kiinteistoasiat.fi/english_info. Accessed 11.5.2017.

MARY PoPPENDIECK, T. P.

MINISTRY OF JUSTICE, FINLAND. Code of real estate, chapter 9
a, 2017. http://www.finlex.fi/fi/laki/ajantasa/1995/19950540#L9a.
Accessed 2.6.2017.

MoHAN, V. Microservices, Supergiant Architecture for
Stability and Scale, 2017. https://supergiant.io/blog/
microservices-supergiant-architecture-stability-scale. Accessed

21.8.2017.

PEKKA ABRAHAMSON, OUTI SALO, JUSSI RONKAINEN, JUHANI
WARSTA. Agile Software Development Methods: Review and Analysis
Chapter 2.1 What does it mean to be Agile. 2002.

PEKKA ABRAHAMSON, OUTI SALO, JUSSI RONKAINEN, JUHANI
WARSTA. Agile Software Development Methods: Review and Analysis,
Chapter 2.2 Selection of Agile methods . 2002.

PrRESSMAN, R. S. Software Engineering: A Practitioner’s Approach
(7th International ed.), 2009.

RED HAT INC. The Benefits of Agentless Architecture , 2016.

SMART, J. F. Jenkins: The Definitive Guide, Chapter 1: introducing
Jenkins. 2011.

STAHL, DANIEL AND BoscH, JAN. Experienced benefits of continuous
integration in industry software product development: A case study.

VANISH TALWAR, QINYI WU, CALTON PU, WENCHANG YAN, GUEY-
OUNG JUNG, DEJAN MiLoJicic. Comparison of approaches to service
deployment. Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems.

https://www.kiinteistoasiat.fi/english_info
https://www.kiinteistoasiat.fi/english_info
http://www.finlex.fi/fi/laki/ajantasa/1995/19950540#L9a
https://supergiant.io/blog/microservices-supergiant-architecture-stability-scale
https://supergiant.io/blog/microservices-supergiant-architecture-stability-scale

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Continuous Integration and Delivery
	2.1.1 Jenkins CI server
	2.1.2 Software Testing and Test Automation
	2.1.2.1 Stubbs and Mocks

	2.2 Microservice architecture
	2.3 Software Configuration Management
	2.3.1 Ansible

	3 Environment
	3.1 Property Transaction Service in National Land Survey
	3.2 Software architecture of the product
	3.3 Current environments
	3.4 Previous deployment automation

	4 Implementation
	4.1 Automating deployments with Ansible
	4.1.1 Rolling updates

	4.2 Scheduling deployments from Jenkins CI
	4.3 Automating deployments in elevated security network

	5 Evaluation
	5.1 Current status of CI in Property Transaction Service
	5.2 Deployment frequency
	5.3 Deployment workload

	6 Discussion
	6.1 Other metrics
	6.2 Future work
	6.2.1 Infrastructure automation
	6.2.2 Developer access
	6.2.3 Accelerated test automation

	6.3 Other possible deployment strategies

	7 Conclusions

