Link quality prediction in wireless community networks using deep recurrent neural networks
Loading...
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2020-10
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
3531-3543
3531-3543
Series
Alexandria Engineering Journal, Volume 59, issue 5
Abstract
Wireless community networks (WCNs) are large, heterogeneous, dynamic, and decentralized networks. Such complex characteristics raise different challenges, such as the effect of wireless communications on the performance of networks and routing protocols. The prediction approaches of link quality (LQ) can improve the performance of routing algorithms of WCNs while avoiding weak links. The prediction of LQ in WCNs can be a complex task because of the fluctuated nature of LQ measurements due to the dynamic wireless environment. In this paper, a deep learning based approach is proposed to accurately predict LQ in WCNs. Specifically, we propose the use of two variants of deep recurrent neural network (RNN): long short-term memory recurrent neural networks (LSTM-RNN) and gated recurrent unit (GRU). The positive feature of the proposed variants is that they can handle the fluctuating nature of LQ due to their ability to learn and exploit the context in LQ time-series. The experimental results on data collected from a real-world WCN show that the proposed LSTM-RNN and GRU models accurately predict LQ in WCNs compared to related methods. The proposed approach could be a helpful tool for accurately predicting LQ, thereby improving the performance of routing protocols of WCNs.Description
Keywords
Link quality prediction, Time-series analysis, Deep learning, RNN, LSTM, GRU
Citation
Abdel-Nasser , M , Mahmoud , K , A. Omer , O , Lehtonen , M & Puig , D 2020 , ' Link quality prediction in wireless community networks using deep recurrent neural networks ' , Alexandria Engineering Journal , vol. 59 , no. 5 , pp. 3531-3543 . https://doi.org/10.1016/j.aej.2020.05.037