An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGuan, Zhenen_US
dc.contributor.authorHeinonen, Vilien_US
dc.contributor.authorLowengrub, Johnen_US
dc.contributor.authorWang, Chengen_US
dc.contributor.authorWise, Steven M.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.organizationUniversity of California, Santa Barbaraen_US
dc.contributor.organizationUniversity of Massachusetts Dartmouthen_US
dc.contributor.organizationUniversity of Tennessee Systemen_US
dc.date.accessioned2021-05-12T06:36:33Z
dc.date.available2021-05-12T06:36:33Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2017-07-21en_US
dc.date.issued2016-09-15en_US
dc.description.abstractIn this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.en
dc.description.versionPeer revieweden
dc.format.extent29
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGuan, Z, Heinonen, V, Lowengrub, J, Wang, C & Wise, S M 2016, 'An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations', Journal of Computational Physics, vol. 321, pp. 1026-1054. https://doi.org/10.1016/j.jcp.2016.06.007en
dc.identifier.doi10.1016/j.jcp.2016.06.007en_US
dc.identifier.issn0021-9991
dc.identifier.issn1090-2716
dc.identifier.otherPURE UUID: 8b485d92-f536-4b10-8b6c-fa45565a10ffen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/8b485d92-f536-4b10-8b6c-fa45565a10ffen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84975481040&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/62503971/Guan_An_Energy_Stable.S0021999116302327.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/107428
dc.identifier.urnURN:NBN:fi:aalto-202105126692
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Computational Physicsen
dc.relation.ispartofseriesVolume 321, pp. 1026-1054en
dc.rightsopenAccessen
dc.subject.keywordAmplitude equationsen_US
dc.subject.keywordEnergy stable schemeen_US
dc.subject.keywordHexagonal finite differencesen_US
dc.subject.keywordMultigriden_US
dc.subject.keywordPhase field crystalen_US
dc.titleAn energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equationsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files