DNA rendering of polyhedral meshes at the nanoscale
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2015
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
441-444
Series
NATURE, Volume 523, issue 7561
Abstract
It was suggested1 more than thirty years ago that Watson–Crick base pairing might be used for the rational design of nanometre-scale structures from nucleic acids. Since then, and especially since the introduction of the origami technique2, DNA nanotechnology has enabled increasingly more complex structures3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. But although general approaches for creating DNA origami polygonal meshes and design software are available14,16,17,19,20,21, there are still important constraints arising from DNA geometry and sense/antisense pairing, necessitating some manual adjustment during the design process. Here we present a general method of folding arbitrary polygonal digital meshes in DNA that readily produces structures that would be very difficult to realize using previous approaches. The design process is highly automated, using a routeing algorithm based on graph theory and a relaxation simulation that traces scaffold strands through the target structures. Moreover, unlike conventional origami designs built from close-packed helices, our structures have a more open conformation with one helix per edge and are therefore stable under the ionic conditions usually used in biological assays.Description
VK: Orponen, P.; NC; TRITON
Keywords
DNA nanostructures, DNA origami, graph algorithms, self-assembly
Other note
Citation
Benson, E, Mohammed, A, Gardell, J, Masich, S, Czeizler, E, Orponen, P & Högberg, B 2015, ' DNA rendering of polyhedral meshes at the nanoscale ', Nature, vol. 523, no. 7561, pp. 441-444 . https://doi.org/10.1038/nature14586