Electricity demand time series forecasting based on empirical mode decomposition and long short-term memory

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTaheri, Samanen_US
dc.contributor.authorTalebjedi, Behnamen_US
dc.contributor.authorLaukkanen, Timoen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy efficiency and systemsen
dc.contributor.organizationIndiana University-Purdue University Indianapolisen_US
dc.date.accessioned2021-09-29T10:00:17Z
dc.date.available2021-09-29T10:00:17Z
dc.date.issued2021en_US
dc.descriptionPublisher Copyright: © 2021, Tech Science Press. All rights reserved.
dc.description.abstractLoad forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable of learning temporal dependencies, has been extensively integrated into load forecasting in recent years. To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm breaks down a load time-series data into several sub-series called intrinsic mode functions (IMFs). For each of the derived IMFs, a different LSTM model is trained. Finally, the outputs of all the individual LSTM learners are fed to a meta-learner to provide an aggregated output for the energy demand prediction. The suggested methodology is applied to the California ISO dataset to demonstrate its applicability. Additionally, we compare the output of the proposed algorithm to a single LSTM and two state-of-the-art data-driven models, specifically XGBoost, and logistic regression (LR). The proposed hybrid model outperforms single LSTM, LR, and XGBoost by, 35.19%, 54%, and 49.25% for short-term, and 36.3%, 34.04%, 32% for long-term prediction in mean absolute percentage error, respectively.en
dc.description.versionPeer revieweden
dc.format.extent18
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTaheri, S, Talebjedi, B & Laukkanen, T 2021, 'Electricity demand time series forecasting based on empirical mode decomposition and long short-term memory', Energy Engineering: Journal of the Association of Energy Engineering, vol. 118, no. 6, pp. 1577-1594. https://doi.org/10.32604/EE.2021.017795en
dc.identifier.doi10.32604/EE.2021.017795en_US
dc.identifier.issn0199-8595
dc.identifier.issn1546-0118
dc.identifier.otherPURE UUID: cfc2e492-0eb5-4876-b8f7-a311af85b704en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cfc2e492-0eb5-4876-b8f7-a311af85b704en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85115164095&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/67744080/ENG_Taheri_et_al_Electricity_demand_time_series_Energy_Engineering.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/110195
dc.identifier.urnURN:NBN:fi:aalto-202109299395
dc.language.isoenen
dc.publisherTech Science Press
dc.relation.ispartofseriesEnergy Engineering: Journal of the Association of Energy Engineeringen
dc.relation.ispartofseriesVolume 118, issue 6, pp. 1577-1594en
dc.rightsopenAccessen
dc.subject.keywordEmpirical mode decompositionen_US
dc.subject.keywordLoad forecastingen_US
dc.subject.keywordLogistic regression (LR)en_US
dc.subject.keywordLSTMen_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordXGBoosten_US
dc.titleElectricity demand time series forecasting based on empirical mode decomposition and long short-term memoryen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files