Workload-aware materialization for efficient variable elimination on Bayesian networks
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Aslay, Cigdem | en_US |
dc.contributor.author | Ciaperoni, Martino | en_US |
dc.contributor.author | Gionis, Aristides | en_US |
dc.contributor.author | Mathioudakis, Michael | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Adj. Prof. Gionis Aris group | en |
dc.date.accessioned | 2021-09-29T09:58:28Z | |
dc.date.available | 2021-09-29T09:58:28Z | |
dc.date.issued | 2021-04 | en_US |
dc.description | | openaire: EC/H2020/871042/EU//SoBigData-PlusPlus | |
dc.description.abstract | Bayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 12 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Aslay, C, Ciaperoni, M, Gionis, A & Mathioudakis, M 2021, Workload-aware materialization for efficient variable elimination on Bayesian networks. in Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021., 9458677, Proceedings - International Conference on Data Engineering, vol. 2021-April, IEEE, pp. 1152-1163, International Conference on Data Engineering, Chania, Greece, 19/04/2021. https://doi.org/10.1109/ICDE51399.2021.00104 | en |
dc.identifier.doi | 10.1109/ICDE51399.2021.00104 | en_US |
dc.identifier.isbn | 9781728191843 | |
dc.identifier.issn | 1084-4627 | |
dc.identifier.other | PURE UUID: 4e046626-ff52-41bc-99ed-6fff73f48d0b | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/4e046626-ff52-41bc-99ed-6fff73f48d0b | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85112865571&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/67670657/Workload_aware_materialization_for_efficient_variable_elimination_on_Bayesian_networks.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/110159 | |
dc.identifier.urn | URN:NBN:fi:aalto-202109299359 | |
dc.language.iso | en | en |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/871042/EU//SoBigData-PlusPlus | en_US |
dc.relation.ispartof | International Conference on Data Engineering | en |
dc.relation.ispartofseries | Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021 | en |
dc.relation.ispartofseries | pp. 1152-1163 | en |
dc.relation.ispartofseries | Proceedings - International Conference on Data Engineering ; Volume 2021-April | en |
dc.rights | openAccess | en |
dc.subject.keyword | Materialization | en_US |
dc.subject.keyword | Probabilistic inference | en_US |
dc.title | Workload-aware materialization for efficient variable elimination on Bayesian networks | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |