Workload-aware materialization for efficient variable elimination on Bayesian networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAslay, Cigdemen_US
dc.contributor.authorCiaperoni, Martinoen_US
dc.contributor.authorGionis, Aristidesen_US
dc.contributor.authorMathioudakis, Michaelen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.date.accessioned2021-09-29T09:58:28Z
dc.date.available2021-09-29T09:58:28Z
dc.date.issued2021-04en_US
dc.description| openaire: EC/H2020/871042/EU//SoBigData-PlusPlus
dc.description.abstractBayesian networks are general, well-studied probabilistic models that capture dependencies among a set of variables. Variable Elimination is a fundamental algorithm for probabilistic inference over Bayesian networks. In this paper, we propose a novel materialization method, which can lead to significant efficiency gains when processing inference queries using the Variable Elimination algorithm. In particular, we address the problem of choosing a set of intermediate results to precompute and materialize, so as to maximize the expected efficiency gain over a given query workload. For the problem we consider, we provide an optimal polynomial-time algorithm and discuss alternative methods. We validate our technique using real-world Bayesian networks. Our experimental results confirm that a modest amount of materialization can lead to significant improvements in the running time of queries, with an average gain of 70%, and reaching up to a gain of 99%, for a uniform workload of queries. Moreover, in comparison with existing junction tree methods that also rely on materialization, our approach achieves competitive efficiency during inference using significantly lighter materialization.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAslay, C, Ciaperoni, M, Gionis, A & Mathioudakis, M 2021, Workload-aware materialization for efficient variable elimination on Bayesian networks. in Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021., 9458677, Proceedings - International Conference on Data Engineering, vol. 2021-April, IEEE, pp. 1152-1163, International Conference on Data Engineering, Chania, Greece, 19/04/2021. https://doi.org/10.1109/ICDE51399.2021.00104en
dc.identifier.doi10.1109/ICDE51399.2021.00104en_US
dc.identifier.isbn9781728191843
dc.identifier.issn1084-4627
dc.identifier.otherPURE UUID: 4e046626-ff52-41bc-99ed-6fff73f48d0ben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/4e046626-ff52-41bc-99ed-6fff73f48d0ben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85112865571&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/67670657/Workload_aware_materialization_for_efficient_variable_elimination_on_Bayesian_networks.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/110159
dc.identifier.urnURN:NBN:fi:aalto-202109299359
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/871042/EU//SoBigData-PlusPlusen_US
dc.relation.ispartofInternational Conference on Data Engineeringen
dc.relation.ispartofseriesProceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021en
dc.relation.ispartofseriespp. 1152-1163en
dc.relation.ispartofseriesProceedings - International Conference on Data Engineering ; Volume 2021-Aprilen
dc.rightsopenAccessen
dc.subject.keywordMaterializationen_US
dc.subject.keywordProbabilistic inferenceen_US
dc.titleWorkload-aware materialization for efficient variable elimination on Bayesian networksen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files