Separation of Synchronous Sources
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.advisor | Vigário, Ricardo, Dr., Universidade Nova de Lisboa, Portugal | |
dc.contributor.author | Almeida, Miguel | |
dc.contributor.department | Tietotekniikan laitos | fi |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.lab | Instituto Superior Técnico | en |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.contributor.supervisor | Oja, Erkki, Prof. Emeritus, Aalto University, Department of Computer Science, Finland | |
dc.contributor.supervisor | Bioucas-Dias, José, Associate Prof., Instituto Superior Técnico, Portugal | |
dc.date.accessioned | 2016-06-30T09:01:22Z | |
dc.date.available | 2016-06-30T09:01:22Z | |
dc.date.defence | 2016-06-06 | |
dc.date.issued | 2016 | |
dc.description.abstract | This thesis studies the Separation of Synchronous Sources (SSS) problem, which deals with the separation of signals resulting from a linear mixing of sources whose phases are synchronous. While this study is made in a form independent of the application, a motivation from a neuroscience perspective is presented. Traditional methods for Blind Source Separation, such as Independent Component Analysis (ICA), cannot address this problem because synchronous sources are highly dependent. We provide sufficient conditions for SSS to be an identifiable problem, and quantify the effect of prewhitening on the difficulty of SSS. We also present two algorithms to solve SSS. Extensive studies on simulated data illustrate that these algorithms yield substantially better results when compared with ICA methods. We conclude that these algorithms can successfully perform SSS in varying configurations (number of sources, number of sensors, level of additive noise, phase lag between sources, among others). Theoretical properties of one of these algorithms are also presented. Future work is discussed extensively, showing that this area of study is far from resolved and still presents interesting challenges. | en |
dc.format.extent | 99 + app. 152 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.isbn | 978-952-60-6784-1 (electronic) | |
dc.identifier.isbn | 978-952-60-6783-4 (printed) | |
dc.identifier.issn | 1799-4942 (electronic) | |
dc.identifier.issn | 1799-4934 (printed) | |
dc.identifier.issn | 1799-4934 (ISSN-L) | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/21218 | |
dc.identifier.urn | URN:ISBN:978-952-60-6784-1 | |
dc.language.iso | en | en |
dc.opn | Christian Jutten, Prof., Joseph Fourier University, France | |
dc.publisher | Aalto University | en |
dc.publisher | Aalto-yliopisto | fi |
dc.relation.haspart | [Publication 1]: Miguel Almeida, Ricardo Vigário. Source Separation of Phase-Locked Subspaces. In Proceedings of the Independent Component Analysis Conference (ICA), 203–210, March 2009. | |
dc.relation.haspart | [Publication 2]: Miguel Almeida, José Bioucas-Dias, Ricardo Vigário. Independent Phase Analysis: Separating Phase-Locked Subspaces. In Proceedings of the Latent Variable Analysis Conference (LVA), 189–196, September 2010. | |
dc.relation.haspart | [Publication 3]: Miguel Almeida, Jan-Hendrik Schleimer, José Bioucas-Dias, Ricardo Vigário. Source Separation and Clustering of Phase-Locked Subspaces. IEEE Transactions on Neural Networks, 22(9):1419–1434, 2011. DOI: 10.1109/TNN.2011.2161674 | |
dc.relation.haspart | [Publication 4]: Miguel Almeida, Jan-Hendrik Schleimer, José Bioucas-Dias, Ricardo Vigário. Source Separation and Clustering of Phase-Locked Subspaces: Derivations and Proofs. arXiv:1106.2474, 2011. | |
dc.relation.haspart | [Publication 5]: Miguel Almeida, José Bioucas-Dias, Ricardo Vigário. Separation of Phase-Locked Sources in Pseudo-Real MEG Data. EURASIP Journal on Advances in Signal Processing, 2013:32, 2013. DOI: 10.1186/1687-6180-2013-32 | |
dc.relation.haspart | [Publication 6]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Phase Locked Matrix Factorization. In Proceedings of the European Signal Processing Conference (EUSIPCO), 1728–1732, August 2011. | |
dc.relation.haspart | [Publication 7]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Estimation of the Common Oscillation for Phase Locked Matrix Factorization. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), 78–85, February 2012. | |
dc.relation.haspart | [Publication 8]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Phase-Locked Matrix Factorization with Estimation of the Common Oscillation. Mathematical Methodologies in Pattern Recognition and Machine Learning, 51–66, 2013. DOI: 10.1007/978-1-4614-5076-4_4 | |
dc.relation.haspart | [Publication 9]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. The Role of Whitening for Separation of Synchronous Sources. In Proceedings of the Latent Variable Analysis Conference (LVA), 139–146, March 2012. | |
dc.relation.haspart | [Publication 10]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. A Comparison of Algorithms for Separation of Synchronous Subspaces. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60:455–460, 2012. DOI: 10.2478/v10175-012-0057-y | |
dc.relation.haspart | [Publication 11]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Separation of Synchronous Sources Through Phase Locked Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 25(10):1894–1908, 2014. DOI: 10.1109/TNNLS.2013.2297791 | |
dc.relation.ispartofseries | Aalto University publication series DOCTORAL DISSERTATIONS | en |
dc.relation.ispartofseries | 80/2016 | |
dc.rev | Jensen, Ole, Dr., Centre for Cognitive Neuroimaging, Netherlands | |
dc.rev | Kuruoglu, Ercan, Dr., Italian National Council of Research, Italy | |
dc.subject.keyword | synchronous sources | en |
dc.subject.keyword | SSS | en |
dc.subject.keyword | separation of signals | en |
dc.subject.keyword | algorithms | en |
dc.subject.other | Computer science | en |
dc.title | Separation of Synchronous Sources | en |
dc.type | G5 Artikkeliväitöskirja | fi |
dc.type.dcmitype | text | en |
dc.type.ontasot | Doctoral dissertation (article-based) | en |
dc.type.ontasot | Väitöskirja (artikkeli) | fi |
local.aalto.archive | yes | |
local.aalto.formfolder | 2016_06_30_klo_09_47 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- isbn9789526067841.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format