Separation of Synchronous Sources

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorVigário, Ricardo, Dr., Universidade Nova de Lisboa, Portugal
dc.contributor.authorAlmeida, Miguel
dc.contributor.departmentTietotekniikan laitosfi
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.labInstituto Superior Técnicoen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorOja, Erkki, Prof. Emeritus, Aalto University, Department of Computer Science, Finland
dc.contributor.supervisorBioucas-Dias, José, Associate Prof., Instituto Superior Técnico, Portugal
dc.date.accessioned2016-06-30T09:01:22Z
dc.date.available2016-06-30T09:01:22Z
dc.date.defence2016-06-06
dc.date.issued2016
dc.description.abstractThis thesis studies the Separation of Synchronous Sources (SSS) problem, which deals with the separation of signals resulting from a linear mixing of sources whose phases are synchronous. While this study is made in a form independent of the application, a motivation from a neuroscience perspective is presented. Traditional methods for Blind Source Separation, such as Independent Component Analysis (ICA), cannot address this problem because synchronous sources are highly dependent. We provide sufficient conditions for SSS to be an identifiable problem, and quantify the effect of prewhitening on the difficulty of SSS. We also present two algorithms to solve SSS. Extensive studies on simulated data illustrate that these algorithms yield substantially better results when compared with ICA methods. We conclude that these algorithms can successfully perform SSS in varying configurations (number of sources, number of sensors, level of additive noise, phase lag between sources, among others). Theoretical properties of one of these algorithms are also presented. Future work is discussed extensively, showing that this area of study is far from resolved and still presents interesting challenges.en
dc.format.extent99 + app. 152
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-60-6784-1 (electronic)
dc.identifier.isbn978-952-60-6783-4 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/21218
dc.identifier.urnURN:ISBN:978-952-60-6784-1
dc.language.isoenen
dc.opnChristian Jutten, Prof., Joseph Fourier University, France
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Miguel Almeida, Ricardo Vigário. Source Separation of Phase-Locked Subspaces. In Proceedings of the Independent Component Analysis Conference (ICA), 203–210, March 2009.
dc.relation.haspart[Publication 2]: Miguel Almeida, José Bioucas-Dias, Ricardo Vigário. Independent Phase Analysis: Separating Phase-Locked Subspaces. In Proceedings of the Latent Variable Analysis Conference (LVA), 189–196, September 2010.
dc.relation.haspart[Publication 3]: Miguel Almeida, Jan-Hendrik Schleimer, José Bioucas-Dias, Ricardo Vigário. Source Separation and Clustering of Phase-Locked Subspaces. IEEE Transactions on Neural Networks, 22(9):1419–1434, 2011. DOI: 10.1109/TNN.2011.2161674
dc.relation.haspart[Publication 4]: Miguel Almeida, Jan-Hendrik Schleimer, José Bioucas-Dias, Ricardo Vigário. Source Separation and Clustering of Phase-Locked Subspaces: Derivations and Proofs. arXiv:1106.2474, 2011.
dc.relation.haspart[Publication 5]: Miguel Almeida, José Bioucas-Dias, Ricardo Vigário. Separation of Phase-Locked Sources in Pseudo-Real MEG Data. EURASIP Journal on Advances in Signal Processing, 2013:32, 2013. DOI: 10.1186/1687-6180-2013-32
dc.relation.haspart[Publication 6]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Phase Locked Matrix Factorization. In Proceedings of the European Signal Processing Conference (EUSIPCO), 1728–1732, August 2011.
dc.relation.haspart[Publication 7]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Estimation of the Common Oscillation for Phase Locked Matrix Factorization. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), 78–85, February 2012.
dc.relation.haspart[Publication 8]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Phase-Locked Matrix Factorization with Estimation of the Common Oscillation. Mathematical Methodologies in Pattern Recognition and Machine Learning, 51–66, 2013. DOI: 10.1007/978-1-4614-5076-4_4
dc.relation.haspart[Publication 9]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. The Role of Whitening for Separation of Synchronous Sources. In Proceedings of the Latent Variable Analysis Conference (LVA), 139–146, March 2012.
dc.relation.haspart[Publication 10]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. A Comparison of Algorithms for Separation of Synchronous Subspaces. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60:455–460, 2012. DOI: 10.2478/v10175-012-0057-y
dc.relation.haspart[Publication 11]: Miguel Almeida, Ricardo Vigário, José Bioucas-Dias. Separation of Synchronous Sources Through Phase Locked Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 25(10):1894–1908, 2014. DOI: 10.1109/TNNLS.2013.2297791
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries80/2016
dc.revJensen, Ole, Dr., Centre for Cognitive Neuroimaging, Netherlands
dc.revKuruoglu, Ercan, Dr., Italian National Council of Research, Italy
dc.subject.keywordsynchronous sourcesen
dc.subject.keywordSSSen
dc.subject.keywordseparation of signalsen
dc.subject.keywordalgorithmsen
dc.subject.otherComputer scienceen
dc.titleSeparation of Synchronous Sourcesen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.archiveyes
local.aalto.formfolder2016_06_30_klo_09_47

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526067841.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format