Efficient Online Convolutional Dictionary Learning Using Approximate Sparse Components

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGhorbani Veshki, Farshad
dc.contributor.authorVorobyov, Sergiy A.
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.date.accessioned2025-01-17T10:32:42Z
dc.date.available2025-01-17T10:32:42Z
dc.date.issued2023
dc.descriptionPublisher Copyright: © 2023 IEEE.
dc.description.abstractMost available convolutional dictionary learning (CDL) methods use a batch-learning strategy, which consists of alternating optimization of the dictionary and the sparse representations using a training dataset. The computational efficiency of CDL can be improved using an online-learning approach, where the dictionary is optimized incrementally following a sparse approximation of each training sample. However, the existing online CDL (OCDL) methods are still computationally costly when learning large dictionaries. In this paper, we propose an OCDL approach that incorporates decomposed sparse approximations instead of the training samples and substantially improves the computational costs of the existing CDL methods. The resulting optimization problem is addressed using the alternating direction method of multipliers (ADMM).en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdf
dc.identifier.citationGhorbani Veshki, F & Vorobyov, S A 2023, Efficient Online Convolutional Dictionary Learning Using Approximate Sparse Components. in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, IEEE, IEEE International Conference on Acoustics, Speech, and Signal Processing, Rhodes Island, Greece, 04/06/2023. https://doi.org/10.1109/ICASSP49357.2023.10096444en
dc.identifier.doi10.1109/ICASSP49357.2023.10096444
dc.identifier.isbn978-1-7281-6327-7
dc.identifier.issn1520-6149
dc.identifier.otherPURE UUID: 7be23557-0d32-460b-a3b9-4cdfdae679e5
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/7be23557-0d32-460b-a3b9-4cdfdae679e5
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85180569166&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/170710000/OCDL_ICASS_2023.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132991
dc.identifier.urnURN:NBN:fi:aalto-202501171283
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Acoustics, Speech, and Signal Processingen
dc.relation.ispartofseriesProceedings of the International Conference on Acoustics, Speech, and Signal Processingen
dc.relation.ispartofseriesICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsen
dc.rightsopenAccessen
dc.titleEfficient Online Convolutional Dictionary Learning Using Approximate Sparse Componentsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files