Compression of room impulse responses for compact storage and fast low-latency convolution

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJälmby, Martin
dc.contributor.authorElvander, Filip
dc.contributor.authorvan Waterschoot, Toon
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorStructured and Stochastic Modelingen
dc.contributor.organizationKU Leuven
dc.date.accessioned2024-10-02T06:46:24Z
dc.date.available2024-10-02T06:46:24Z
dc.date.issued2024-12
dc.descriptionPublisher Copyright: © The Author(s) 2024.
dc.description.abstractRoom impulse responses (RIRs) are used in several applications, such as augmented reality and virtual reality. These applications require a large number of RIRs to be convolved with audio, under strict latency constraints. In this paper, we consider the compression of RIRs, in conjunction with fast time-domain convolution. We consider three different methods of RIR approximation for the purpose of RIR compression and compare them to state-of-the-art compression. The methods are evaluated using several standard objective quality measures, both channel-based and signal-based. We also propose a novel low-rank-based algorithm for fast time-domain convolution and show how the convolution can be carried out without the need to decompress the RIR. Numerical simulations are performed using RIRs of different lengths, recorded in three different rooms. It is shown that compression using low-rank approximation is a very compelling option to the state-of-the-art Opus compression, as it performs as well or better than on all but one considered measure, with the added benefit of being amenable to fast time-domain convolution.en
dc.description.versionPeer revieweden
dc.format.extent23
dc.format.mimetypeapplication/pdf
dc.identifier.citationJälmby, M, Elvander, F & van Waterschoot, T 2024, 'Compression of room impulse responses for compact storage and fast low-latency convolution', Eurasip Journal on Audio, Speech, and Music Processing, vol. 2024, no. 1, 45. https://doi.org/10.1186/s13636-024-00363-5en
dc.identifier.doi10.1186/s13636-024-00363-5
dc.identifier.issn1687-4714
dc.identifier.issn1687-4722
dc.identifier.otherPURE UUID: 82ecdfa7-ec00-4af5-8d09-1e45ee9b2b3b
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/82ecdfa7-ec00-4af5-8d09-1e45ee9b2b3b
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85203868726&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/160213493/s13636-024-00363-5.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131067
dc.identifier.urnURN:NBN:fi:aalto-202410026607
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesEurasip Journal on Audio, Speech, and Music Processingen
dc.relation.ispartofseriesVolume 2024, issue 1en
dc.rightsopenAccessen
dc.subject.keywordConvolution
dc.subject.keywordLow-rank modeling
dc.subject.keywordRoom impulse responses
dc.subject.keywordTensor decomposition
dc.titleCompression of room impulse responses for compact storage and fast low-latency convolutionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files