Design Parameter Modeling of Solar Power Tower System Using Adaptive Neuro-Fuzzy Inference System Optimized with a Combination of Genetic Algorithm and Teaching Learning-Based Optimization Algorithm

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKhosravi, Alien_US
dc.contributor.authorMalekan, Mohammaden_US
dc.contributor.authorPabon, J. J. G.en_US
dc.contributor.authorZhao, Xiaoweien_US
dc.contributor.authorEl Haj Assad, Mamdouhen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorEnergy efficiency and systemsen
dc.contributor.organizationAarhus Universityen_US
dc.contributor.organizationUniversidade Federal de Itajubáen_US
dc.contributor.organizationUniversity of Warwicken_US
dc.contributor.organizationUniversity of Sharjahen_US
dc.date.accessioned2020-01-17T13:27:11Z
dc.date.available2020-01-17T13:27:11Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2021-10-17en_US
dc.date.issued2020-01-20en_US
dc.description.abstractDetermining the optimal sizing of a solar power tower system (SPTS) with a thermal energy storage system is subject to finding the optimum values of design parameters including the solar multiple (SM), design direct normal irradiance (DNI) and thermal storage hours. These design parameters are determined for each station separately and have remarkable effects on the thermo-economic performance of the system. This paper aims to demonstrate how artificial intelligence (AI) techniques may play an important role in addressing the above-mentioned need and help determine the optimum design parameters for different stations. For this purpose, we developed a thermo-economic model of a 100 MW SPTS with a molten salt storage system for five stations (two stations in India, and one each in Bangladesh, Pakistan, and Afghanistan). A method-based AI is utilized in this paper to ascertain the design parameters of the system. Additionally, a novel hybrid method based on adaptive neuro-fuzzy inference system optimized with a combination of genetic algorithm and teaching-learning-based optimization algorithm (ANFIS-GATLBO) is employed. The input parameters are latitude, longitude, design point DNI and SM, while the annual energy produced, levelized cost of energy and capacity factor are the target variables. The results of the study show that although the annual energy produced by SPTS rises by increasing the SM and decreasing design point DNI, optimum design parameters should be determined by the economic factors. In addition, it was found that the ANFIS-GATLBO method used in this study successfully predicted the targets with a correlation coefficient close to 1.en
dc.description.versionPeer revieweden
dc.format.extent20
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKhosravi, A, Malekan, M, Pabon, J J G, Zhao, X & El Haj Assad, M 2020, ' Design Parameter Modeling of Solar Power Tower System Using Adaptive Neuro-Fuzzy Inference System Optimized with a Combination of Genetic Algorithm and Teaching Learning-Based Optimization Algorithm ', Journal of Cleaner Production, vol. 244, 118904 . https://doi.org/10.1016/j.jclepro.2019.118904en
dc.identifier.doi10.1016/j.jclepro.2019.118904en_US
dc.identifier.issn0959-6526
dc.identifier.issn1879-1786
dc.identifier.otherPURE UUID: 3f819601-0ab4-4846-aca9-f22e2140d3bben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3f819601-0ab4-4846-aca9-f22e2140d3bben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85074441203&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/37973522/1_s2.0_S0959652619337746_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42505
dc.identifier.urnURN:NBN:fi:aalto-202001171620
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Cleaner Productionen
dc.relation.ispartofseriesVolume 244en
dc.rightsopenAccessen
dc.subject.keywordArtificial intelligenceen_US
dc.subject.keywordFuzzy systemen_US
dc.subject.keywordGenetic algorithmen_US
dc.subject.keywordSolar power tower systemen_US
dc.subject.keywordTeaching learning-based optimization algorithmen_US
dc.subject.keywordThermo-economic analysisen_US
dc.titleDesign Parameter Modeling of Solar Power Tower System Using Adaptive Neuro-Fuzzy Inference System Optimized with a Combination of Genetic Algorithm and Teaching Learning-Based Optimization Algorithmen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files