Optimized proximity thermometer for ultrasensitive detection : Role of an ohmic electromagnetic environment

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNikolić, Daniloen_US
dc.contributor.authorKarimi, Bayanen_US
dc.contributor.authorRengel, Diego Suberoen_US
dc.contributor.authorPekola, Jukka P.en_US
dc.contributor.authorBelzig, Wolfgangen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorQuantum Phenomena and Devicesen
dc.contributor.organizationUniversität Konstanzen_US
dc.date.accessioned2023-08-23T06:09:22Z
dc.date.available2023-08-23T06:09:22Z
dc.date.issued2023-07-01en_US
dc.descriptionFunding Information: This work received funding from the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie actions (Grant No. 766025, QuESTech) and Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) via SFB 1432 (Project No. 425217212). | openaire: EC/H2020/766025/EU//QuESTech
dc.description.abstractWe propose a mesoscopic thermometer for ultrasensitive detection based on the proximity effect in superconductor-normal metal (SN) heterostructures. The device is based on the zero-bias anomaly due to the inelastic Cooper-pair tunneling in an SNIS junction (I stands for an insulator) coupled to an ohmic electromagnetic (EM) environment. The theoretical model is done in the framework of the quasiclassical Usadel Green's formalism and the dynamical Coulomb blockade. The usage of an ohmic EM environment makes the thermometer highly sensitive down to very low temperatures, Formula Presented. Moreover, defined in this way, the thermometer is stable against small but nonvanishing voltage amplitudes typically used for measuring the zero-bias differential conductance in experiments. Finally, we propose a simplified view, based on an analytic treatment, which is in very good agreement with numerical results and can serve as a tool for the development, calibration, and optimization of such devices in future experiments in quantum calorimetry.en
dc.description.versionPeer revieweden
dc.format.extent7
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNikolić, D, Karimi, B, Rengel, D S, Pekola, J P & Belzig, W 2023, ' Optimized proximity thermometer for ultrasensitive detection : Role of an ohmic electromagnetic environment ', Physical Review B, vol. 108, no. 2, 024507, pp. 1-7 . https://doi.org/10.1103/PhysRevB.108.024507en
dc.identifier.doi10.1103/PhysRevB.108.024507en_US
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPURE UUID: d440d4fc-753f-4c3a-a586-239337305349en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d440d4fc-753f-4c3a-a586-239337305349en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85165620226&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/118762258/Optimized_proximity_thermometer_for_ultrasensitive_detection_Role_of_an_ohmic_electromagnetic_environment.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122672
dc.identifier.urnURN:NBN:fi:aalto-202308235018
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/766025/EU//QuESTechen_US
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 108, issue 2, pp. 1-7en
dc.rightsopenAccessen
dc.titleOptimized proximity thermometer for ultrasensitive detection : Role of an ohmic electromagnetic environmenten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files