Brittle Failure of Nanoscale Notched Silicon Cantilevers: A Finite Fracture Mechanics Approach
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2020-03-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
Series
Applied Sciences, Volume 10, issue 5
Abstract
Featured Application The work provides an extremely useful method to predict the static failure of Micro- and Nano-Electromechanical Systems (MEMS, NEMS). The Finite Fracture Mechanics approach may have an enormous impact on the failure characterization of notched and cracked components in the field of nanodevices. Abstract The present paper focuses on the Finite Fracture Mechanics (FFM) approach and verifies its applicability at the nanoscale. After the presentation of the analytical frame, the approach is verified against experimental data already published in the literature related to in situ fracture tests of blunt V-notched nano-cantilevers made of single crystal silicon, and loaded under mode I. The results show that the apparent generalized stress intensity factors at failure (i.e., the apparent generalized fracture toughness) predicted by the FFM are in good agreement with those obtained experimentally, with a discrepancy varying between 0 and 5%. All the crack advancements are larger than the fracture process zone and therefore the breakdown of continuum-based linear elastic fracture mechanics is not yet reached. The method reveals to be an efficient and effective tool in assessing the brittle failure of notched components at the nanoscale.Description
Keywords
finite fracture mechanics, nanoscale, silicon, brittle, notch, fracture, nanodevice
Other note
Citation
Gallo, P & Sapora, A 2020, ' Brittle Failure of Nanoscale Notched Silicon Cantilevers: A Finite Fracture Mechanics Approach ', Applied Sciences, vol. 10, no. 5, 1640 . https://doi.org/10.3390/app10051640