Correlated states in super-moiré materials with a kernel polynomial quantics tensor cross interpolation algorithm

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorOtero Fumega, Adolfo
dc.contributor.authorNiedermeier, Marcel
dc.contributor.authorLado, Jose
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCorrelated Quantum Materials (CQM)en
dc.contributor.groupauthorQuantum Transporten
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.date.accessioned2024-12-31T15:09:49Z
dc.date.available2024-12-31T15:09:49Z
dc.date.issued2024-12-24
dc.description.abstractSuper-moiré materials represent a novel playground to engineer states of matter beyond the possibilities of conventional moiré materials. However, from the computational point of view, understanding correlated matter in these systems requires solving models with several millions of atoms, a formidable task for state-of-the-art methods. Conventional wavefunction methods for correlated matter scale with a cubic power with the number of sites, a major challenge for super-moiré materials. Here, we introduce a methodology capable of solving correlated states in super-moiré materials by combining a kernel polynomial method with a quantics tensor cross interpolation matrix product state algorithm. This strategy leverages a mapping of the super-moiré structure to a many-body Hilbert space, that is efficiently sampled with tensor cross interpolation with matrix product states, where individual evaluations are performed with a Chebyshev kernel polynomial algorithm. We demonstrate this approach with interacting super-moiré systems with up to several millions of atoms, showing its ability to capture correlated states in moiré-of-moiré systems and domain walls between different moiré systems. Our manuscript puts forward a widely applicable methodology to study correlated matter in ultra-long length scales, enabling rationalizing correlated super-moiré phenomena.en
dc.description.versionPeer revieweden
dc.format.extent12
dc.format.mimetypeapplication/pdf
dc.identifier.citationOtero Fumega, A, Niedermeier, M & Lado, J 2024, 'Correlated states in super-moiré materials with a kernel polynomial quantics tensor cross interpolation algorithm', 2D Materials, vol. 12, no. 1, pp. 1-12. https://doi.org/10.1088/2053-1583/ad9d59en
dc.identifier.doi10.1088/2053-1583/ad9d59
dc.identifier.issn2053-1583
dc.identifier.otherPURE UUID: 44479657-14ce-41c3-a25f-508a0cf42dec
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/44479657-14ce-41c3-a25f-508a0cf42dec
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/168559588/Correlated_states_in_super-moir_materials_with_a_kernel_polynomial_quantics_tensor_cross_interpolation_algorithm.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132651
dc.identifier.urnURN:NBN:fi:aalto-202412318178
dc.language.isoenen
dc.publisherInstitute of Physics Publishing
dc.relation.ispartofseries2D Materialsen
dc.relation.ispartofseriesVolume 12, issue 1, pp. 1-12en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCorrelated states in super-moiré materials with a kernel polynomial quantics tensor cross interpolation algorithmen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files