Compliant Manipulation of Free-Floating Objects
No Thumbnail Available
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2018-05-22
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
Series
Proceedings of the 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, pp. 865-872, IEEE International Conference on Robotics and Automation
Abstract
Compliant motions allow alignment of workpieces using naturally occurring interaction forces. However, free-floating objects do not have a fixed base to absorb the reaction forces caused by the interactions. Consequently, if the interaction forces are too high, objects can gain momentum and move away after contact. This paper proposes an approach based on direct force control for compliant manipulation of free-floating objects. The objective of the controller is to minimize the interaction forces while maintaining the contact. The proposed approach achieves this by maintaining small constant force along the motion direction and an apparent reduction of manipulator inertia along remaining Degrees of Freedom (DOF). Simulation results emphasize the importance of relative inertia of the robotic manipulator with respect to the free-floating object. The experiments were performed with KUKA LWR4+ manipulator arm and a two-dimensional micro-gravity emulator (object floating on an air bed), which was developed in-house. It was verified that the proposed control law is capable of controlling the interaction forces and aligning the tools without pushing the object away. We conclude that direct force control works better with a free-floating object than implicit force control algorithms, such as impedance control.Description
Keywords
Manipulators, Force, Force control, Impedance, Damping, Aerospace electronics
Other note
Citation
Sharma, S, Suomalainen, M & Kyrki, V 2018, Compliant Manipulation of Free-Floating Objects . in Proceedings of the 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 . IEEE International Conference on Robotics and Automation, IEEE, pp. 865-872, IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21/05/2018 . https://doi.org/10.1109/ICRA.2018.8462889