Structural analysis of recorded music

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorKlapuri, Anssi
dc.contributor.authorSaikkonen, Lauri
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorVälimäki, Vesa
dc.date.accessioned2020-01-26T18:01:58Z
dc.date.available2020-01-26T18:01:58Z
dc.date.issued2020-01-20
dc.description.abstractStructural analysis of music is one sub field of music information retrieval. The objective of structural analysis of music is to segment the audio into musically meaningful temporal segments. Finding relations between those different segments is also of interest when analysing structure. Using these relations - especially similarities - between different segments can be utilised to try to improve other music information retrieval algorithms. The objective of this thesis is to take a look into some of the state of the art methods for music structure analysis and find out if automatic chord transcription can be improved using these methods. In total, three different methods are examined and different strategies for chord transcription improvement are introduced. The results of this thesis indicate that the structure of music can be automatically analysed to an extent but not at the level of a human expert. The results also show that it is very difficult to improve current state of the art automatic chord transcription using information from a structural analysis algorithm. A more robust and granular structural analysis algorithm could in theory provide improvements to automatic chord transcription.en
dc.description.abstractMusiikin rakenteen analyysi on musiikkitiedonhaun alahaara. Sen tavoitteena on jaotella musiikillinen teos musiikillisesti merkittäviin osiin ja löytää näiden osien väliltä yhtäläisyyksiä ja riippuvuuksia. Käyttämällä eri musiikillisten osioiden samankaltaisuutta voidaan myös yrittää parantaa muita musiikkitiedonhakualgoritmeja. Tämän diplomityön tavoitteena on tarkastella tämän hetken tehokkaimpia automaattisia menetelmiä musiikin rakenteen analyysiin ja selvittää, voiko automaattista soinnuntunnistusta parantaa rakenteen analyysin menetelmillä. Tässä diplomityössä tarkastellaan kolmea eri rakenteen analyysin menetelmää ja esitellään eri strategioita soinnuntunnistamisen parantamiseen. Tämä diplomityö osoittaa, että ihminen pystyy analysoimaan musiikin rakennetta paremmin kuin tämän hetken parhaimmat algoritmit, vaikka automaattisilla menetelmillä voidaankin analysoida musiikin rakennetta tiettyyn pisteeseen asti. Tulokset myös osoittavat, että tämän hetken parhaimpia menetelmiä soinnuntunnistukseen on erittäin hankala parantaa musiikin rakenteen analyysin keinoin. Pienempiin osiin jakavalla rakenteen analyysin menetelmällä pystyttäisiin teoriassa parantamaan automaattista soinnuntunnistusta.fi
dc.format.extent55
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42696
dc.identifier.urnURN:NBN:fi:aalto-202001261806
dc.language.isoenen
dc.programmeMaster’s Programme in Computer, Communication and Information Sciencesfi
dc.programme.majorAkustiikka ja äänenkäsittelytekniikkafi
dc.programme.mcodeELEC3030fi
dc.subject.keywordaudio signal processingen
dc.subject.keywordacoustic signal analysisen
dc.subject.keywordmachine learningen
dc.subject.keywordmusic information retrievalen
dc.titleStructural analysis of recorded musicen
dc.titleMusiikin rakenteen analyysifi
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessyes
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_Saikkonen_Lauri_2020.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format