Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorFeng, Ziyien_US
dc.contributor.authorel Issaoui, Aimaden_US
dc.contributor.authorLehtomäki, Mattien_US
dc.contributor.authorIngman, Matiasen_US
dc.contributor.authorKaartinen, Harrien_US
dc.contributor.authorKukko, Anteroen_US
dc.contributor.authorSavela, Joonaen_US
dc.contributor.authorHyyppä, Hannuen_US
dc.contributor.authorHyyppä, Juhaen_US
dc.contributor.departmentDepartment of Built Environmenten
dc.contributor.groupauthorMeMoen
dc.contributor.organizationFinnish Geospatial Research Institute
dc.date.accessioned2023-01-25T07:33:55Z
dc.date.available2023-01-25T07:33:55Z
dc.date.issued2022en_US
dc.description.abstractIn this paper, we compared five crack detection algorithms using terrestrial laser scanner (TLS) point clouds. The methods are developed based on common point cloud processing knowledge in along- and across-track profiles, surface fitting or local pointwise features, with or without machine learning. The crack area and volume were calculated from the crack points detected by the algorithms. The completeness, correctness, and F1 score of each algorithm were computed against manually collected references. Ten 1-m-by-3.5-m plots containing 75 distresses of six distress types (depression, disintegration, pothole, longitudinal, transverse, and alligator cracks) were selected to explain variability of distresses from a 3-km-long-road. For crack detection at plot level, the best algorithm achieved a completeness of up to 0.844, a correctness of up to 0.853, and an F1 score of up to 0.849. The best algorithm’s overall (ten plots combined) completeness, correctness, and F1 score were 0.642, 0.735, and 0.685 respectively. For the crack area estimation, the overall mean absolute percentage errors (MAPE) of the two best algorithms were 19.8% and 20.3%. In the crack volume estimation, the two best algorithms resulted in 19.3% and 14.5% MAPE. When the plots were grouped based on crack detection complexity, in the ‘easy’ category, the best algorithm reached a crack area estimation MAPE of 8.9%, while for crack volume estimation, the MAPE obtained from the best algorithm was 0.7%.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationFeng, Z, el Issaoui, A, Lehtomäki, M, Ingman, M, Kaartinen, H, Kukko, A, Savela, J, Hyyppä, H & Hyyppä, J 2022, 'Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison', ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 3, 100010. https://doi.org/10.1016/j.ophoto.2021.100010en
dc.identifier.doi10.1016/j.ophoto.2021.100010en_US
dc.identifier.issn2667-3932
dc.identifier.otherPURE UUID: 2285bbad-d5a5-4e2d-960a-44e1fcf09112en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2285bbad-d5a5-4e2d-960a-44e1fcf09112en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/98705606/1_s2.0_S2667393221000107_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/119140
dc.identifier.urnURN:NBN:fi:aalto-202301251494
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesISPRS Open Journal of Photogrammetry and Remote Sensingen
dc.relation.ispartofseriesVolume 3en
dc.rightsopenAccessen
dc.subject.keywordTerrestrial laser scanningen_US
dc.subject.keywordPavementen_US
dc.subject.keywordRoaden_US
dc.subject.keywordCracken_US
dc.subject.keywordDistressen_US
dc.subject.keywordPoint clouden_US
dc.titlePavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparisonen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files