Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2022

Major/Subject

Mcode

Degree programme

Language

en

Pages

13

Series

ISPRS Open Journal of Photogrammetry and Remote Sensing, Volume 3

Abstract

In this paper, we compared five crack detection algorithms using terrestrial laser scanner (TLS) point clouds. The methods are developed based on common point cloud processing knowledge in along- and across-track profiles, surface fitting or local pointwise features, with or without machine learning. The crack area and volume were calculated from the crack points detected by the algorithms. The completeness, correctness, and F1 score of each algorithm were computed against manually collected references. Ten 1-m-by-3.5-m plots containing 75 distresses of six distress types (depression, disintegration, pothole, longitudinal, transverse, and alligator cracks) were selected to explain variability of distresses from a 3-km-long-road. For crack detection at plot level, the best algorithm achieved a completeness of up to 0.844, a correctness of up to 0.853, and an F1 score of up to 0.849. The best algorithm’s overall (ten plots combined) completeness, correctness, and F1 score were 0.642, 0.735, and 0.685 respectively. For the crack area estimation, the overall mean absolute percentage errors (MAPE) of the two best algorithms were 19.8% and 20.3%. In the crack volume estimation, the two best algorithms resulted in 19.3% and 14.5% MAPE. When the plots were grouped based on crack detection complexity, in the ‘easy’ category, the best algorithm reached a crack area estimation MAPE of 8.9%, while for crack volume estimation, the MAPE obtained from the best algorithm was 0.7%.

Description

Keywords

Terrestrial laser scanning, Pavement, Road, Crack, Distress, Point cloud

Other note

Citation

Feng, Z, el Issaoui, A, Lehtomäki, M, Ingman, M, Kaartinen, H, Kukko, A, Savela, J, Hyyppä, H & Hyyppä, J 2022, ' Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison ', ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 3, 100010 . https://doi.org/10.1016/j.ophoto.2021.100010