Data-driven robust optimization for pipeline scheduling under flow rate uncertainty

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBaghban, Amiren_US
dc.contributor.authorCastro, Pedro M.en_US
dc.contributor.authorOliveira, Fabricioen_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorOperations Research and Systems Analysisen
dc.contributor.organizationAzarbaijan Shahid Madani Universityen_US
dc.contributor.organizationUniversidade de Lisboaen_US
dc.date.accessioned2024-11-29T11:45:06Z
dc.date.available2024-11-29T11:45:06Z
dc.date.issued2025-02en_US
dc.descriptionPublisher Copyright: © 2024 The Author(s)
dc.description.abstractFrequently, parameters in optimization models are subject to a high level of uncertainty coming from several sources and, as such, assuming them to be deterministic can lead to solutions that are infeasible in practice. Robust optimization is a computationally efficient approach that generates solutions that are feasible for realizations of uncertain parameters near the nominal value. This paper develops a data-driven robust optimization approach for the scheduling of a straight pipeline connecting a single refinery with multiple distribution centers, considering uncertainty in the injection rate. For that, we apply support vector clustering to learn an uncertainty set for the robust version of the deterministic model. We compare the performance of our proposed robust model against one utilizing a standard robust optimization approach and conclude that data-driven robust solutions are less conservative.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBaghban, A, Castro, P M & Oliveira, F 2025, 'Data-driven robust optimization for pipeline scheduling under flow rate uncertainty', Computers and Chemical Engineering, vol. 193, 108924, pp. 1-14. https://doi.org/10.1016/j.compchemeng.2024.108924en
dc.identifier.doi10.1016/j.compchemeng.2024.108924en_US
dc.identifier.issn0098-1354
dc.identifier.issn1873-4375
dc.identifier.otherPURE UUID: e43ed83d-7141-4a1a-add6-40a8d31001d4en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e43ed83d-7141-4a1a-add6-40a8d31001d4en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85209406380&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/165454421/Data-driven_robust_optimization_for_pipeline_scheduling_under_flow_rate_uncertainty.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/132044
dc.identifier.urnURN:NBN:fi:aalto-202411297549
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesComputers and Chemical Engineeringen
dc.relation.ispartofseriesVolume 193, pp. 1-14en
dc.rightsopenAccessen
dc.subject.keywordContinuous-time formulationen_US
dc.subject.keywordMixed-integer linear programmingen_US
dc.subject.keywordRobust optimizationen_US
dc.subject.keywordStraight liquid pipelinesen_US
dc.subject.keywordSupport vector clusteringen_US
dc.titleData-driven robust optimization for pipeline scheduling under flow rate uncertaintyen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files