Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKemppainen, Erno
dc.contributor.authorHalme, Janne
dc.contributor.authorHansen, Ole
dc.contributor.authorSeger, Brian
dc.contributor.authorLund, Peter D.
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.labNew Energy Technologies (Renewable)en
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.date.accessioned2018-05-21T09:02:52Z
dc.date.available2018-05-21T09:02:52Z
dc.date.issued2016
dc.description.abstractWith electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when the gas volume fraction is sufficiently high to facilitate H2 transfer to bubbles within a distance shorter than the diffusion layer thickness. At current densities below about 40 mA/cm2 the model reduces to an analytical approximation that has characteristics similar to the diffusion of H2. At higher current densities the increase in the gas volume fraction makes the H2 surface concentration nonlinear with respect to the current density. Compared to the typical diffusion layer model, our model is an extension that allows more detailed studies of reaction kinetics and mass transport in the electrolyte and the effects of gas bubbles on them.en
dc.description.versionPeer revieweden
dc.format.extent7568-7581
dc.format.mimetypeapplication/pdfen
dc.identifier.citationKemppainen, Erno & Halme, Janne & Hansen, Ole & Seger, Brian & Lund, Peter D. 2016. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction. International Journal of Hydrogen Energy. Volume 41, Issue 18. 7568-7581. ISSN 0360-3199 (printed). DOI: 10.1016/j.ijhydene.2015.12.207.en
dc.identifier.doi10.1016/j.ijhydene.2015.12.207
dc.identifier.issn0360-3199 (printed)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/30730
dc.identifier.urnURN:NBN:fi:aalto-201607062839
dc.language.isoenen
dc.publisherElsevier BVen
dc.relation.ispartofseriesInternational Journal of Hydrogen Energyen
dc.relation.ispartofseriesVolume 41, Issue 18
dc.rights© 2016 Elsevier BV. This is the post print version of the following article: Kemppainen, Erno & Halme, Janne & Hansen, Ole & Seger, Brian & Lund, Peter D. 2016. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction. International Journal of Hydrogen Energy. Volume 41, Issue 18. 7568-7581. ISSN 0360-3199 (printed). DOI: 10.1016/j.ijhydene.2015.12.207, which has been published in final form at http://www.sciencedirect.com/science/article/pii/S0360319916000847.en
dc.rights.holderElsevier BV
dc.subject.keywordhydrogenen
dc.subject.keywordwateren
dc.subject.keywordhydrogen evolution reactionen
dc.subject.keywordmass transporten
dc.subject.keywordgas transporten
dc.subject.keywordplatinumen
dc.subject.otherChemistryen
dc.subject.otherEnergyen
dc.subject.otherPhysicsen
dc.titleTwo-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reactionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.dcmitypetexten
dc.type.versionPost printen

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A1_kemppainen_erno_2016.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format