TSignal : a transformer model for signal peptide prediction

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorDumitrescu, Alexandruen_US
dc.contributor.authorJokinen, Emmien_US
dc.contributor.authorPaatero, Anjaen_US
dc.contributor.authorKellosalo, Juhoen_US
dc.contributor.authorPaavilainen, Ville O.en_US
dc.contributor.authorLähdesmäki, Harrien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife) - Research areaen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2023-08-01T06:22:56Z
dc.date.available2023-08-01T06:22:56Z
dc.date.issued2023-06-01en_US
dc.descriptionFunding Information: This work was supported by the Academy of Finland [grant numbers 314445 and 328401 to H.L. and 338836 and 314672 to V.O.P.]; by Sigrid Juselius Foundation [grant to V.O.P]; by the Jane and Aatos Erkko Foundation [grant to V.O.P] and by National Institute of Health [grant number 1R01GM132649 to V.O.P.]. Publisher Copyright: © 2023 The Author(s). Published by Oxford University Press.
dc.description.abstractMotivation: Signal peptides (SPs) are short amino acid segments present at the N-terminus of newly synthesized proteins that facilitate protein translocation into the lumen of the endoplasmic reticulum, after which they are cleaved off. Specific regions of SPs influence the efficiency of protein translocation, and small changes in their primary structure can abolish protein secretion altogether. The lack of conserved motifs across SPs, sensitivity to mutations, and variability in the length of the peptides make SP prediction a challenging task that has been extensively pursued over the years. Results: We introduce TSignal, a deep transformer-based neural network architecture that utilizes BERT language models and dot-product attention techniques. TSignal predicts the presence of SPs and the cleavage site between the SP and the translocated mature protein. We use common benchmark datasets and show competitive accuracy in terms of SP presence prediction and state-of-the-art accuracy in terms of cleavage site prediction for most of the SP types and organism groups. We further illustrate that our fully data-driven trained model identifies useful biological information on heterogeneous test sequences.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDumitrescu, A, Jokinen, E, Paatero, A, Kellosalo, J, Paavilainen, V O & Lähdesmäki, H 2023, ' TSignal : a transformer model for signal peptide prediction ', Bioinformatics, vol. 39, pp. I347-I356 . https://doi.org/10.1093/bioinformatics/btad228en
dc.identifier.doi10.1093/bioinformatics/btad228en_US
dc.identifier.issn1367-4803
dc.identifier.issn1367-4811
dc.identifier.otherPURE UUID: d94277d9-e5bd-411b-903d-8e71234fb475en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d94277d9-e5bd-411b-903d-8e71234fb475en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85163693976&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/116879557/TSignal_a_transformer_model_for_signal_peptide_prediction.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122273
dc.identifier.urnURN:NBN:fi:aalto-202308014634
dc.language.isoenen
dc.publisherOxford University Press
dc.relation.ispartofseriesBioinformaticsen
dc.relation.ispartofseriesVolume 39, pp. I347-I356en
dc.rightsopenAccessen
dc.titleTSignal : a transformer model for signal peptide predictionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files