Critical Drift in a Neuro-Inspired Adaptive Network
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sormunen, Silja | |
dc.contributor.author | Gross, Thilo | |
dc.contributor.author | Saramäki, Jari | |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Saramäki J. | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Complex Systems (Cxsys) - Research area | en |
dc.contributor.organization | Department of Computer Science | |
dc.contributor.organization | Carl von Ossietzky University of Oldenburg | |
dc.date.accessioned | 2023-05-31T10:52:06Z | |
dc.date.available | 2023-05-31T10:52:06Z | |
dc.date.issued | 2023-05-02 | |
dc.description | Publisher Copyright: © 2023 American Physical Society. | |
dc.description.abstract | It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been depicted as a one-dimensional process, where one parameter is tuned to a critical value. However, the number of adjustable parameters in the brain is vast, and hence critical states can be expected to occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, where the system is poised between inactivity and persistent activity. During the drift, global network parameters continue to change while the system remains at criticality. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 6 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Sormunen, S, Gross, T & Saramäki, J 2023, 'Critical Drift in a Neuro-Inspired Adaptive Network', Physical Review Letters, vol. 130, no. 18, 188401. https://doi.org/10.1103/PhysRevLett.130.188401 | en |
dc.identifier.doi | 10.1103/PhysRevLett.130.188401 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issn | 1079-7114 | |
dc.identifier.other | PURE UUID: cbc62f40-bcf7-4281-8ca9-d814bf479d6c | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/cbc62f40-bcf7-4281-8ca9-d814bf479d6c | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85158894750&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/110223993/SCI_Sormunen_etal_PhysRevLett_2023.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/121173 | |
dc.identifier.urn | URN:NBN:fi:aalto-202305313508 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review Letters | en |
dc.relation.ispartofseries | Volume 130, issue 18 | en |
dc.rights | openAccess | en |
dc.title | Critical Drift in a Neuro-Inspired Adaptive Network | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |