Omnis Praedictio
No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2020-10
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
International Journal of Human Computer Studies, Volume 142
Abstract
Designing effective, usable, and widely adoptable stroke gesture commands for graphical user interfaces is a challenging task that traditionally involves multiple iterative rounds of prototyping, implementation, and follow-up user studies and controlled experiments for evaluation, verification, and validation. An alternative approach is to employ theoretical models of human performance, which can deliver practitioners with insightful information right from the earliest stages of user interface design. However, very few aspects of the large spectrum of human performance with stroke gesture input have been investigated and modeled so far, leaving researchers and practitioners of gesture-based user interface design with a very narrow range of predictable measures of human performance, mostly focused on estimating production time, of which extremely few cases delivered accompanying software tools to assist modeling. We address this problem by introducing "Omnis Praedictio" (OMNISfor short), a generic technique and companion web tool that provides accurate user-independent estimations of any numerical stroke gesture feature, including custom features specified in code. Our experimental results on three public datasets show that our model estimations correlate on average r(s) > 0.9 with groundtruth data. OMNISalso enables researchers and practitioners to understand human performance with stroke gestures on many levels and, consequently, raises the bar for human performance models and estimation techniques for stroke gesture input.Description
Keywords
Estimation, Gesture synthesis, Gesture user interfaces, Human performance, Kinematic theory, Prediction, Stroke gestures, Touch gestures
Citation
Leiva , L A , Vatavu , R D , Martín-Albo , D & Plamondon , R 2020 , ' Omnis Praedictio : Estimating the full spectrum of human performance with stroke gestures ' , International Journal of Human Computer Studies , vol. 142 , 102466 . https://doi.org/10.1016/j.ijhcs.2020.102466