Finite-discrete element modelling of sea ice sheet fracture

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLilja, Ville-Pekkaen_US
dc.contributor.authorPolojärvi, Arttuen_US
dc.contributor.authorTuhkuri, Jukkaen_US
dc.contributor.authorPaavilainen, Janien_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorSolid Mechanicsen
dc.date.accessioned2020-12-31T08:51:25Z
dc.date.available2020-12-31T08:51:25Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-12-01en_US
dc.date.issued2021-05-15en_US
dc.description.abstractA rate-independent, de-cohesive damage model for the fracture modelling of large, cellular, plate-like, quasi-brittle structures is proposed. A hybrid, three-dimensional finite-discrete element method to investigate sea ice sheet fracture is then introduced, followed by three applications. The uniaxial tensile fracture of an ice sheet of varying physical sizes is examined first. The effects of both the size of an ice sheet and the loading rate applied on the effective tensile strength are investigated. The vertical penetration fracture of an ice sheet loaded by a rigid, flat-ended, cylindrical indenter is examined next. The breakthrough loads and strengths of an ice sheet of varying physical sizes are computed, applicable scaling rules as regards to the vertical breakthrough strength searched for. To conclude, the breaking of an ice sheet containing a circular hole by a surfacing, rigid, truncated cone is studied (an axisymmetric contact problem). The loads on the cone are computed and then compared with loads that can be obtained analytically for a case in which a structure is stationary, a sheet moves, and the contact is unilateral. While computing the tensile and the breakthrough strengths, a set of self-similar sheet samples with an in-plane size range of 1:16 is examined. The samples are square; have a side length of either L=10, 20, 40, 80, or 160 m; and a thickness of either h=0.5, 1.0, or 1.5 m. With the sheets containing holes, only the largest samples (L=160 m) are investigated. The results indicate that i) both the tensile and the breakthrough strengths are strong functions of both L and h; ii) the tensile strength is a strong function of the applied loading rate; iii) the failure mode as regards to the vertical penetration fracture changes drastically as a function of L; iv) the model is able to demonstrate both radial and circumferential cracking; and that v) the proposed (in-direct) approach to compute ice loads on a conical offshore structure provides realistic results.en
dc.description.versionPeer revieweden
dc.format.extent31
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLilja, V-P, Polojärvi, A, Tuhkuri, J & Paavilainen, J 2021, 'Finite-discrete element modelling of sea ice sheet fracture', International Journal of Solids and Structures, vol. 217-218, pp. 228-258. https://doi.org/10.1016/j.ijsolstr.2020.11.028en
dc.identifier.doi10.1016/j.ijsolstr.2020.11.028en_US
dc.identifier.issn0020-7683
dc.identifier.issn1879-2146
dc.identifier.otherPURE UUID: fc918bce-0a93-4c28-9528-2467dacf5d50en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fc918bce-0a93-4c28-9528-2467dacf5d50en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85101662539&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53717919/ENG_Lilja_et_al_Finite_discrete_element_modelling_International_Journal_of_Solids_and_Structures.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/101684
dc.identifier.urnURN:NBN:fi:aalto-2020123160505
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesInternational Journal of Solids and Structuresen
dc.relation.ispartofseriesVolume 217-218, pp. 228-258en
dc.rightsopenAccessen
dc.subject.keyworddynamic fractureen_US
dc.subject.keywordplatesen_US
dc.subject.keywordnumerical algorithmsen_US
dc.subject.keywordsize effecten_US
dc.subject.keywordice and snowen_US
dc.titleFinite-discrete element modelling of sea ice sheet fractureen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files