Hydrogen-induced delayed cracking in TRIP-aided lean-alloyed ferritic-austenitic stainless steels

Loading...
Thumbnail Image

Access rights

openAccess CC BY

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2017-06-03

Major/Subject

Mcode

Degree programme

Language

en

Pages

Series

MATERIALS, Volume 10, issue 6

Abstract

Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

Description

Keywords

Constant load tensile testing, Deep drawing, Delayed cracking, Ferritic-austenitic stainless steel, Hydrogen, Martensite transformation

Other note

Citation

Papula, S, Sarikka, T, Anttila, S, Talonen, J, Virkkunen, I & Hänninen, H 2017, ' Hydrogen-induced delayed cracking in TRIP-aided lean-alloyed ferritic-austenitic stainless steels ', Materials, vol. 10, no. 6, 613 . https://doi.org/10.3390/ma10060613