Indirect mechanism of Au adatom diffusion on the Si(100) surface

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPeña-Torres, Alejandroen_US
dc.contributor.authorAli, Abiden_US
dc.contributor.authorStamatakis, Michailen_US
dc.contributor.authorJónsson, Hannesen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.organizationUniversity of Icelanden_US
dc.contributor.organizationUniversity College Londonen_US
dc.date.accessioned2022-08-10T08:25:20Z
dc.date.available2022-08-10T08:25:20Z
dc.date.issued2022-05-15en_US
dc.description| openaire: EC/H2020/814416/EU//ReaxPro Funding Information: This project was funded by European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 814416, and the Icelandic Research Fund. We thank Adam Foster for helpful discussions. The calculations were carried out at the Icelandic Research High Performance Computing (IRHPC) facility. Publisher Copyright: © 2022 American Physical Society.
dc.description.abstractCalculations of the diffusion of a Au adatom on the dimer reconstructed Si(100)-2×1 surface reveal an interesting mechanism that differs significantly from a direct path between optimal binding sites, which are located in between dimer rows. Instead, the active diffusion mechanism involves promotion of the adatom to higher-energy sites on top of a dimer row and then fast migration along the row, visiting ca. a hundred sites at room temperature, before falling back down into an optimal binding site. This top-of-row mechanism becomes more important the lower is the temperature. The calculations are carried out by finding minimum energy paths on the energy surface obtained from density functional theory within the PBEsol functional approximation followed by kinetic Monte Carlo simulations of the diffusion over a range of temperature from 200 to 900 K. While the activation energy for the direct diffusion mechanism, both parallel and perpendicular to the dimer rows, is calculated to be 0.84 eV, the effective activation energy for the indirect mechanism parallel to the rows is on average 0.56 eV.en
dc.description.versionPeer revieweden
dc.format.extent7
dc.format.extent1-7
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPeña-Torres, A, Ali, A, Stamatakis, M & Jónsson, H 2022, ' Indirect mechanism of Au adatom diffusion on the Si(100) surface ', Physical Review B, vol. 105, no. 20, 205411, pp. 1-7 . https://doi.org/10.1103/PhysRevB.105.205411en
dc.identifier.doi10.1103/PhysRevB.105.205411en_US
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPURE UUID: bfbf3e04-8692-45c8-a1bc-fa715377c398en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bfbf3e04-8692-45c8-a1bc-fa715377c398en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85130524931&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/85959046/Indirect_mechanism_of_Au_adatom_diffusion_on_the_Si_100_surface.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/115904
dc.identifier.urnURN:NBN:fi:aalto-202208104726
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/814416/EU//ReaxPro Funding Information: This project was funded by European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 814416, and the Icelandic Research Fund. We thank Adam Foster for helpful discussions. The calculations were carried out at the Icelandic Research High Performance Computing (IRHPC) facility. Publisher Copyright: © 2022 American Physical Society.en_US
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 105, issue 20en
dc.rightsopenAccessen
dc.titleIndirect mechanism of Au adatom diffusion on the Si(100) surfaceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files