Benchmarking pose estimation for robot manipulation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHietanen, Anttien_US
dc.contributor.authorLatokartano, Jyrkien_US
dc.contributor.authorFoi, Alessandroen_US
dc.contributor.authorPieters, Roelen_US
dc.contributor.authorKyrki, Villeen_US
dc.contributor.authorLanz, Minnaen_US
dc.contributor.authorKämäräinen, Joni Kristianen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorIntelligent Roboticsen
dc.contributor.organizationTampere Universityen_US
dc.date.accessioned2021-07-01T13:08:22Z
dc.date.available2021-07-01T13:08:22Z
dc.date.issued2021-09en_US
dc.descriptionFunding Information: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825196. Publisher Copyright: © 2021 The Author(s)
dc.description.abstractRobot grasping and manipulation require estimation of 3D object poses. Recently, a number of methods and datasets for vision-based pose estimation have been proposed. However, it is unclear how well the performance measures developed for visual pose estimation predict success in robot manipulation. In this work, we introduce an approach that connects error in pose and success in robot manipulation, and propose a probabilistic performance measure of the task success rate. A physical setup is needed to estimate the probability densities from real world samples, but evaluation of pose estimation methods is offline using captured test images, ground truth poses and the estimated densities. We validate the approach with four industrial manipulation tasks and evaluate a number of publicly available pose estimation methods. The popular pose estimation performance measure, Average Distance of Corresponding model points (ADC), does not offer any quantitatively meaningful indication of the frequency of success in robot manipulation. Our measure is instead quantitatively informative: e.g., a score of 0.24 corresponds to average success probability of 24%.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHietanen, A, Latokartano, J, Foi, A, Pieters, R, Kyrki, V, Lanz, M & Kämäräinen, J K 2021, 'Benchmarking pose estimation for robot manipulation', Robotics and Autonomous Systems, vol. 143, 103810. https://doi.org/10.1016/j.robot.2021.103810en
dc.identifier.doi10.1016/j.robot.2021.103810en_US
dc.identifier.issn0921-8890
dc.identifier.otherPURE UUID: a84ba792-01c3-4ff8-9822-59d389a8f4a5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/a84ba792-01c3-4ff8-9822-59d389a8f4a5en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85107696736&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/65141697/ELEC_Hietanen_etal_Benchmarking_pose_estimation_Robotics_and_Autonomous_Systems_2021_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/108630
dc.identifier.urnURN:NBN:fi:aalto-202107017884
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesRobotics and Autonomous Systemsen
dc.relation.ispartofseriesVolume 143en
dc.rightsopenAccessen
dc.subject.keywordEvaluationen_US
dc.subject.keywordObject pose estimationen_US
dc.subject.keywordRobot manipulationen_US
dc.titleBenchmarking pose estimation for robot manipulationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files