Benchmarking pose estimation for robot manipulation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Hietanen, Antti | en_US |
dc.contributor.author | Latokartano, Jyrki | en_US |
dc.contributor.author | Foi, Alessandro | en_US |
dc.contributor.author | Pieters, Roel | en_US |
dc.contributor.author | Kyrki, Ville | en_US |
dc.contributor.author | Lanz, Minna | en_US |
dc.contributor.author | Kämäräinen, Joni Kristian | en_US |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.groupauthor | Intelligent Robotics | en |
dc.contributor.organization | Tampere University | en_US |
dc.date.accessioned | 2021-07-01T13:08:22Z | |
dc.date.available | 2021-07-01T13:08:22Z | |
dc.date.issued | 2021-09 | en_US |
dc.description | Funding Information: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825196. Publisher Copyright: © 2021 The Author(s) | |
dc.description.abstract | Robot grasping and manipulation require estimation of 3D object poses. Recently, a number of methods and datasets for vision-based pose estimation have been proposed. However, it is unclear how well the performance measures developed for visual pose estimation predict success in robot manipulation. In this work, we introduce an approach that connects error in pose and success in robot manipulation, and propose a probabilistic performance measure of the task success rate. A physical setup is needed to estimate the probability densities from real world samples, but evaluation of pose estimation methods is offline using captured test images, ground truth poses and the estimated densities. We validate the approach with four industrial manipulation tasks and evaluate a number of publicly available pose estimation methods. The popular pose estimation performance measure, Average Distance of Corresponding model points (ADC), does not offer any quantitatively meaningful indication of the frequency of success in robot manipulation. Our measure is instead quantitatively informative: e.g., a score of 0.24 corresponds to average success probability of 24%. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 10 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Hietanen, A, Latokartano, J, Foi, A, Pieters, R, Kyrki, V, Lanz, M & Kämäräinen, J K 2021, 'Benchmarking pose estimation for robot manipulation', Robotics and Autonomous Systems, vol. 143, 103810. https://doi.org/10.1016/j.robot.2021.103810 | en |
dc.identifier.doi | 10.1016/j.robot.2021.103810 | en_US |
dc.identifier.issn | 0921-8890 | |
dc.identifier.other | PURE UUID: a84ba792-01c3-4ff8-9822-59d389a8f4a5 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/a84ba792-01c3-4ff8-9822-59d389a8f4a5 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85107696736&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/65141697/ELEC_Hietanen_etal_Benchmarking_pose_estimation_Robotics_and_Autonomous_Systems_2021_finalpublishedversion.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/108630 | |
dc.identifier.urn | URN:NBN:fi:aalto-202107017884 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Robotics and Autonomous Systems | en |
dc.relation.ispartofseries | Volume 143 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Evaluation | en_US |
dc.subject.keyword | Object pose estimation | en_US |
dc.subject.keyword | Robot manipulation | en_US |
dc.title | Benchmarking pose estimation for robot manipulation | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |