Computational modelling of fracture and dislocations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSzelestey, Peter
dc.contributor.departmentDepartment of Electrical and Communications Engineeringen
dc.contributor.departmentSähkö- ja tietoliikennetekniikan osastofi
dc.contributor.labLaboratory of Computational Engineeringen
dc.contributor.labLaskennallisen tekniikan laboratoriofi
dc.date.accessioned2012-02-17T06:43:44Z
dc.date.available2012-02-17T06:43:44Z
dc.date.issued2005-02-04
dc.description.abstractMechanical properties of solids bear great significance because of their importance in various fields of engineering and materials science. Fracture and plasticity are the two characteristic mechanisms by which materials permanently deform under external loading. Beside experiments and theoretical model calculation computational modelling greatly contributes to the understanding of these phenomena. This dissertation consists of various studies of topics related to these fields. First, the branching instability of dynamic fracture is studied in a simple lattice model which describes a brittle material at mesoscopic length-scales. It is shown that the presence of anisotropy leads to a variation in the fracture pattern and crack tip velocity oscillations. The second part of the thesis consists of atomic level computational modelling of dislocations using molecular dynamics method. Here, the interatomic potential plays a definite and relevant role. For that reason a semi-empirical, many-body embedded-atom potential is developed which turns out to be especially suitable for dislocation studies in fcc crystals, because of the realistic stacking-fault energies it predicts. Dislocation properties at the atomic level determine the micro-structure and in turn the plastic properties of materials. The static dislocation core structure is determined for dissociated dislocations in nickel and compared to analytical calculations. Furthermore, the effective Peierls stress, characterizing the dislocation mobility, and the variation in the dislocation structure through its motion is investigated for the screw orientation as a function of the separation distance of partials. Finally, the interaction of a dissociated screw dislocation and a vacancy type stacking-fault tetrahedron is studied. A wide variety of dislocation processes are found including bending and jog line formation, depending on the internal structure of the dislocation, the orientation and position of the defect.en
dc.description.versionrevieweden
dc.format.extent51, [58]
dc.format.mimetypeapplication/pdf
dc.identifier.isbn951-22-7500-7
dc.identifier.issn1455-0474
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/2521
dc.identifier.urnurn:nbn:fi:tkk-004691
dc.language.isoenen
dc.publisherHelsinki University of Technologyen
dc.publisherTeknillinen korkeakoulufi
dc.relation.haspartSzelestey P., Heino P., Kertész J. and Kaski K., 2000. Effect of anisotropy on the instability of crack propagation. Physical Review E 61, number 4, pages 3378-3383.
dc.relation.haspartPerondi L., Szelestey P. and Kaski K., 2000. Structure of a dissociated edge dislocation in copper. Materials Research Society Symposium Proceedings 578, pages 223-228.
dc.relation.haspartSzelestey P., Patriarca M., Perondi L. and Kaski K., 2002. Modified EAM potentials for modelling stacking-fault behavior in Cu, Al, Au, and Ni. International Journal of Modern Physics B 16, number 19, pages 2823-2835.
dc.relation.haspartSzelestey P., Patriarca M. and Kaski K., 2003. Computational study of core structure and Peierls stress of dissociated dislocations in nickel. Modelling and Simulation in Materials Science and Engineering 11, number 6, pages 883-895.
dc.relation.haspartSzelestey P., Patriarca M. and Kaski K., 2005. Dissociated dislocations in Ni: a computational study. Materials Science and Engineering A 390, numbers 1-2, pages 393-399.
dc.relation.haspartSzelestey P., Patriarca M. and Kaski K., Computational study of a screw dislocation interacting with a stacking-fault tetrahedron. Modelling and Simulation in Materials Science and Engineering, submitted for publication.
dc.relation.ispartofseriesHelsinki University of Technology Laboratory of Computational Engineering publications. Report Ben
dc.relation.ispartofseries45en
dc.subject.keywordbranching instabilityen
dc.subject.keywordmolecular dynamicsen
dc.subject.keywordEAM potentialen
dc.subject.keyworddislocation core structureen
dc.subject.keywordPeierls stressen
dc.subject.keyworddislocation-defect interactionen
dc.subject.otherMaterials scienceen
dc.titleComputational modelling of fracture and dislocationsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotVäitöskirja (artikkeli)fi
dc.type.ontasotDoctoral dissertation (article-based)en
local.aalto.digiauthask
local.aalto.digifolderAalto_66764
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9512275007.pdf
Size:
718.6 KB
Format:
Adobe Portable Document Format