Ultra-narrow metallic armchair graphene nanoribbons

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKimouche, A.en_US
dc.contributor.authorErvasti, Mikkoen_US
dc.contributor.authorDrost, R.en_US
dc.contributor.authorHalonen, S.en_US
dc.contributor.authorHarju, A.en_US
dc.contributor.authorJoensuu, Pekkaen_US
dc.contributor.authorSainio, J.en_US
dc.contributor.authorLiljeroth, P.en_US
dc.contributor.departmentDepartment of Chemistryen
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.departmentSchool services,SCIen
dc.contributor.groupauthorAtomic Scale Physicsen
dc.contributor.groupauthorQuantum Many-Body Physicsen
dc.contributor.groupauthorSurface Scienceen
dc.date.accessioned2016-09-23T06:36:55Z
dc.date.issued2015en_US
dc.description.abstractGraphene nanoribbons (GNRs)—narrow stripes of graphene—have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, where m is an integer) should be nearly metallic with a very small bandgap. Here, we synthesize the narrowest possible GNR belonging to this family (five carbon atoms wide, N=5). We study the evolution of the electronic bandgap and orbital structure of GNR segments as a function of their length using low-temperature scanning tunnelling microscopy and density-functional theory calculations. Already GNRs with lengths of 5 nm reach almost metallic behaviour with ~100 meV bandgap. Finally, we show that defects (kinks) in the GNRs do not strongly modify their electronic structure.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKimouche, A, Ervasti, M, Drost, R, Halonen, S, Harju, A, Joensuu, P, Sainio, J & Liljeroth, P 2015, ' Ultra-narrow metallic armchair graphene nanoribbons ', Nature Communications, vol. 6, 10177, pp. 1-6 . https://doi.org/10.1038/ncomms10177en
dc.identifier.doi10.1038/ncomms10177en_US
dc.identifier.issn2041-1723
dc.identifier.otherPURE UUID: 06b67acc-e68c-48fa-9388-052f3b081cf7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/06b67acc-e68c-48fa-9388-052f3b081cf7en_US
dc.identifier.otherPURE LINK: http://www.nature.com/ncomms/2015/151214/ncomms10177/full/ncomms10177.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/4244225/ncomms10177.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/22214
dc.identifier.urnURN:NBN:fi:aalto-201609234218
dc.language.isoenen
dc.publisherNature Research
dc.relation.ispartofseriesNature Communicationsen
dc.relation.ispartofseriesVolume 6, pp. 1-6en
dc.rightsopenAccessen
dc.subject.keywordgraphene nanoribbonsen_US
dc.subject.keywordscanning tunneling microscopyen_US
dc.subject.keywordscanning tunneling spectroscopyen_US
dc.titleUltra-narrow metallic armchair graphene nanoribbonsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files