Algorithmic pairs trading: empirical investigation of exchange traded funds
No Thumbnail Available
URL
Journal Title
Journal ISSN
Volume Title
School of Business |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2013
Department
Major/Subject
Finance
Rahoitus
Rahoitus
Mcode
Degree programme
Language
en
Pages
70
Series
Abstract
ALGORITHMIC PAIRS TRADING: EMPIRICAL INVESTIGATION OF EXCHANGE TRADED FUNDS PURPOSE OF THE STUDY The objective of this thesis is to study whether the algorithmic pairs trading with Exchange Traded Funds (ETFs) generates abnormal return. Particularly, I firstly study whether the trading strategy used in this thesis generates higher return than the benchmark index MSCI World and secondly even higher return than stocks. DATA AND METHODOLOGY The dataset includes over 66,000 possible pairs of ETFs worldwide from 2004 to 2012. In addition, I use the empirical results from the relevant papers in comparison. To test the hypothesis, I first apply cointegration tests to identify ETFs to be used in pairs trading strategies. Subsequently, I select ETF pairs to compose a pairs trading portfolio based on profitability and finally compare the results to the benchmark index and the empirical results of the relevant papers. RESULTS The empirical results of this thesis show that pairs trading with ETFs generate significant abnormal return with low volatility from the eight year trading period compared to the benchmark index as well as stocks traded with pairs trading strategy. The cumulate net profit is 105.43% and an annual abnormal return of 27.29% and with volatility of 10.57%. Furthermore, the results confirmed market neutrality with no significant correlation with MSCI World index.Description
Keywords
algorithmic trading, cointegration, exchange traded funds, market neutral strategy, pairs trading, statistical arbitrage