Explainable empirical risk minimization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhang, Linlien_US
dc.contributor.authorKarakasidis, Georgiosen_US
dc.contributor.authorOdnoblyudova, Arinaen_US
dc.contributor.authorDogruel, Leylaen_US
dc.contributor.authorTian, Yuen_US
dc.contributor.authorJung, Alexen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Jung Alexanderen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML) - Research areaen
dc.contributor.groupauthorComputer Science - Large-scale Computing and Data Analysis (LSCA) - Research areaen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationJohannes Gutenberg University Mainzen_US
dc.date.accessioned2024-01-04T09:17:19Z
dc.date.available2024-01-04T09:17:19Z
dc.date.issued2024-03en_US
dc.descriptionFunding Information: Open Access funding provided by Aalto University. The work in this paper is supported by the following three fundings: funding “Ensemble nowcasting of irradiance/clouds for solar energy using novel machine learning tools—can AI beat physics?" with project number 885377 granted by Austrian Research Promotion Agency (FFG) in 2021, funding “Intelligent Techniques in Condition Monitoring of Electromechanical Energy Conversion Systems" granted by Academy of Finland (decision number 331197) in 2020, and funding“XAI-based software-defined energy networks via packetized management for fossil fuel-free next-generation of industrial cyber-physical systems (X-SDEN)” granted by Academy of Finland (decision number 349966) in 2022. Publisher Copyright: © 2023, The Author(s).
dc.description.abstractThe successful application of machine learning (ML) methods increasingly depends on their interpretability or explainability. Designing explainable ML (XML) systems is instrumental for ensuring transparency of automated decision-making that targets humans. The explainability of ML methods is also an essential ingredient for trustworthy artificial intelligence. A key challenge in ensuring explainability is its dependence on the specific human end user of an ML system. The users of ML methods might have vastly different background knowledge about ML principles, with some having formal training in the specific field and others having none. We use information-theoretic concepts to develop a novel measure for the subjective explainability of predictions delivered by a ML method. We construct this measure via the conditional entropy of predictions, given the user signal. Our approach allows for a wide range of user signals, ranging from responses to surveys to biophysical measurements. We use this measure of subjective explainability as a regularizer for model training. The resulting explainable empirical risk minimization (EERM) principle strives to balance subjective explainability and risk. The EERM principle is flexible and can be combined with arbitrary ML models. We present several practical implementations of EERM for linear models and decision trees. Numerical experiments demonstrate the application of EERM to weather prediction and detecting inappropriate language in social media.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhang, L, Karakasidis, G, Odnoblyudova, A, Dogruel, L, Tian, Y & Jung, A 2024, 'Explainable empirical risk minimization', Neural Computing and Applications, vol. 36, no. 8, pp. 3983-3996. https://doi.org/10.1007/s00521-023-09269-3en
dc.identifier.doi10.1007/s00521-023-09269-3en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.otherPURE UUID: e38d43c7-8c46-4748-87f8-a18f56274b23en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e38d43c7-8c46-4748-87f8-a18f56274b23en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85178895312&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/166988522/SCI_Zhang_etal_Neural_Computing_and_Applications.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125561
dc.identifier.urnURN:NBN:fi:aalto-202401041250
dc.language.isoenen
dc.publisherSpringer
dc.relation.ispartofseriesNeural Computing and Applicationsen
dc.relation.ispartofseriesVolume 36, issue 8, pp. 3983-3996en
dc.rightsopenAccessen
dc.subject.keywordEmpirical risk minimizationen_US
dc.subject.keywordExplainable machine learningen_US
dc.subject.keywordSubjective explainabilityen_US
dc.titleExplainable empirical risk minimizationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files