Fracture toughness of hierarchical lattice materials

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLeraillez, Akseli
dc.contributor.authorSt-Pierre, Luc
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMaterials to Productsen
dc.date.accessioned2025-04-30T07:24:22Z
dc.date.available2025-04-30T07:24:22Z
dc.date.issued2025-06-15
dc.descriptionPublisher Copyright: © 2025 The Authors
dc.description.abstractNatural materials, such as wood and bone, have a high fracture toughness and this is often attributed to their hierarchical microstructures. While previous studies have shown that hierarchy can increase the buckling strength of lattice materials, a detailed analysis of its impact on fracture toughness is missing. Here, we used analytical modeling and finite element simulations to predict the mode I and mode II fracture toughness of three hierarchical topologies: hexagonal, triangular, and Kagome lattices. Hierarchy significantly improved the fracture toughness of the bending-dominated hexagonal lattice. Notably, the hierarchical hexagonal lattice has a fracture toughness KIC that scales linearly with relative density ρ̄, whereas its non-hierarchical counterpart has KIC∝ρ̄2. In contrast, hierarchy did not improve the toughness of stretching-dominated triangular and Kagome lattices. Hierarchy did, however, modify the behavior of a Kagome lattice: its hierarchical design has a toughness that scales linearly with relative density, whereas KIC∝ρ̄ for its non-hierarchical counterpart. This work presents scaling laws for the fracture toughness of hierarchical lattices, enabling the design of tough architectures at very low densities.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdf
dc.identifier.citationLeraillez, A & St-Pierre, L 2025, 'Fracture toughness of hierarchical lattice materials', International Journal of Solids and Structures, vol. 316, 113374. https://doi.org/10.1016/j.ijsolstr.2025.113374en
dc.identifier.doi10.1016/j.ijsolstr.2025.113374
dc.identifier.issn0020-7683
dc.identifier.issn1879-2146
dc.identifier.otherPURE UUID: 17b9dbf4-09eb-491f-a535-67e98bf3a8bb
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/17b9dbf4-09eb-491f-a535-67e98bf3a8bb
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=105002210927&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/179872339/1-s2.0-S002076832500160X-main.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/135092
dc.identifier.urnURN:NBN:fi:aalto-202504303402
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesInternational Journal of Solids and Structuresen
dc.relation.ispartofseriesVolume 316en
dc.rightsopenAccessen
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordFinite Element simulation
dc.subject.keywordFracture toughness
dc.subject.keywordHierarchy
dc.subject.keywordHoneycomb
dc.subject.keywordLattice material
dc.titleFracture toughness of hierarchical lattice materialsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S002076832500160X-main.pdf
Size:
5.61 MB
Format:
Adobe Portable Document Format