Fracture toughness of hierarchical lattice materials
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Leraillez, Akseli | |
dc.contributor.author | St-Pierre, Luc | |
dc.contributor.department | Department of Energy and Mechanical Engineering | en |
dc.contributor.groupauthor | Materials to Products | en |
dc.date.accessioned | 2025-04-30T07:24:22Z | |
dc.date.available | 2025-04-30T07:24:22Z | |
dc.date.issued | 2025-06-15 | |
dc.description | Publisher Copyright: © 2025 The Authors | |
dc.description.abstract | Natural materials, such as wood and bone, have a high fracture toughness and this is often attributed to their hierarchical microstructures. While previous studies have shown that hierarchy can increase the buckling strength of lattice materials, a detailed analysis of its impact on fracture toughness is missing. Here, we used analytical modeling and finite element simulations to predict the mode I and mode II fracture toughness of three hierarchical topologies: hexagonal, triangular, and Kagome lattices. Hierarchy significantly improved the fracture toughness of the bending-dominated hexagonal lattice. Notably, the hierarchical hexagonal lattice has a fracture toughness KIC that scales linearly with relative density ρ̄, whereas its non-hierarchical counterpart has KIC∝ρ̄2. In contrast, hierarchy did not improve the toughness of stretching-dominated triangular and Kagome lattices. Hierarchy did, however, modify the behavior of a Kagome lattice: its hierarchical design has a toughness that scales linearly with relative density, whereas KIC∝ρ̄ for its non-hierarchical counterpart. This work presents scaling laws for the fracture toughness of hierarchical lattices, enabling the design of tough architectures at very low densities. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 14 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Leraillez, A & St-Pierre, L 2025, 'Fracture toughness of hierarchical lattice materials', International Journal of Solids and Structures, vol. 316, 113374. https://doi.org/10.1016/j.ijsolstr.2025.113374 | en |
dc.identifier.doi | 10.1016/j.ijsolstr.2025.113374 | |
dc.identifier.issn | 0020-7683 | |
dc.identifier.issn | 1879-2146 | |
dc.identifier.other | PURE UUID: 17b9dbf4-09eb-491f-a535-67e98bf3a8bb | |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/17b9dbf4-09eb-491f-a535-67e98bf3a8bb | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=105002210927&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/179872339/1-s2.0-S002076832500160X-main.pdf | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/135092 | |
dc.identifier.urn | URN:NBN:fi:aalto-202504303402 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | International Journal of Solids and Structures | en |
dc.relation.ispartofseries | Volume 316 | en |
dc.rights | openAccess | en |
dc.rights | CC BY | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | Finite Element simulation | |
dc.subject.keyword | Fracture toughness | |
dc.subject.keyword | Hierarchy | |
dc.subject.keyword | Honeycomb | |
dc.subject.keyword | Lattice material | |
dc.title | Fracture toughness of hierarchical lattice materials | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S002076832500160X-main.pdf
- Size:
- 5.61 MB
- Format:
- Adobe Portable Document Format