NSVQ: Noise Substitution in Vector Quantization for Machine Learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorVali, Mohammadhassanen_US
dc.contributor.authorBäckström, Tomen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSpeech Interaction Technologyen
dc.date.accessioned2022-02-16T07:41:38Z
dc.date.available2022-02-16T07:41:38Z
dc.date.issued2022en_US
dc.description.abstractMachine learning algorithms have been shown to be highly effective in solving optimization problems in a wide range of applications. Such algorithms typically use gradient descent with backprop- agation and the chain rule. Hence, the backpropagation fails if intermediate gradients are zero for some functions in the computational graph, because it causes the gradients to collapse when multiplying with zero. Vector quantization is one of those challenging functions for machine learning algorithms, since it is a piece-wise constant function and its gradient is zero almost everywhere. A typical solution is to apply the straight through estimator which simply copies the gradients over the vector quantization function in the backpropagation. Other solutions are based on smooth or stochastic approximation. This study proposes a vector quantization technique called NSVQ, which approximates the vector quantization behavior by substituting a multiplicative noise so that it can be used for machine learning problems. Specifically, the vector quantization error is replaced by product of the original error and a normalized noise vector, the samples of which are drawn from a zero-mean, unit-variance normal distribution. We test our proposed NSVQ in three scenarios with various types of applications. Based on the experiments, the proposed NSVQ achieves more accuracy and faster convergence in comparison to the straight through estimator, exponential moving averages, and the MiniBatchKmeans approaches.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationVali, M & Bäckström, T 2022, 'NSVQ: Noise Substitution in Vector Quantization for Machine Learning', IEEE Access, vol. 10, pp. 13598 - 13610. https://doi.org/10.1109/ACCESS.2022.3147670en
dc.identifier.doi10.1109/ACCESS.2022.3147670en_US
dc.identifier.issn2169-3536
dc.identifier.otherPURE UUID: fdc99ac5-e212-4acb-8ef1-0d00cfae3791en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fdc99ac5-e212-4acb-8ef1-0d00cfae3791en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85124066697&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/79421464/NSVQ_Noise_Substitution_in_Vector_Quantization_for_Machine_Learning.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113062
dc.identifier.urnURN:NBN:fi:aalto-202202161954
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Accessen
dc.relation.ispartofseriesVolume 10, pp. 13598 - 13610en
dc.rightsopenAccessen
dc.subject.keywordbackpropagationen_US
dc.subject.keywordgradient collapseen_US
dc.subject.keywordgradient propagationen_US
dc.subject.keywordnoise substitutionen_US
dc.subject.keywordvector quantizationen_US
dc.titleNSVQ: Noise Substitution in Vector Quantization for Machine Learningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files